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Abstract: A periodic intermittent adaptive control method with saturation is proposed to pin the
quasi-consensus of nonlinear heterogeneous multi-agent systems with external disturbances in this
paper. A new periodic intermittent adaptive control protocol with saturation is designed to control
the internal coupling between the follower agents and the feedback gain between the leader and
the follower. In particular, we use the saturation adaptive law: when the quasi-consensus error
converges to a certain range, the adaptive coupling edge weight and the adaptive feedback gain will
not be updated. Furthermore, we propose three saturated adaptive pinning control protocols. The
quasi-consensus is achieved through its own pinning as long as the agents remain connected to each
other. Using the Lyapunov function method and inequality technique, the convergence range of
the quasi-consensus error of a heterogeneous multi-agent system is obtained. Finally, the rationality
of the proposed control protocol is verified through numerical simulation. Theoretical derivation
and simulation results show that the novel proposed periodic intermittent adaptive control method
with saturation can successfully be used to achieve the pinning of quasi-consensus of nonlinear
heterogeneous multi-agent systems.

Keywords: multi-agent systems; quasi-consensus; periodic intermittent; adaptive pinning control

1. Introduction

Scientists have conducted extensive research on the clustering phenomenon of various
organisms in nature [1] and put forward the concept of multi-agent systems (MASs). Due
to the high robustness of MASs’ distributed coordinated control, they have been widely
used in practical engineering, including for UAV and robot formation, satellite orbit control,
smart power grid, collaborative monitoring and other fields [2–8]; in addition, in-depth
theoretical research has been conducted in control theory, physics, computer and other
fields [9].

For MAS distributed coordination control, the consensus problem is the typical basis
of multi-agent coordination control research. Methods of distributed consistent coordinated
control of MASs have developed rapidly in recent years, for example, the consensus of
transformation topology [10]; the consensus problem with communication delay [11]; the
second-order, high-order and even fractional-order consensus [12]; and the consensus
problem of finite time [13]. Multi-agent consensus control includes leaderless consensus
and leader-following consensus. And the control protocol value of the latter is determined
by the initial state of the agent. It has the advantage of a predetermined consensus value
for control. Therefore, it has been studied extensively in recent years. In [14], the author
uses Lyapunov stability theory to realize the leader-following consensus of second-order
MASs. A unified framework of complex network synchronization and MAS consensus
is established in [15]. In [16], output feedback and state feedback are used to study the
consensus problem of leaders and followers. In [17], the sliding mode method is used to
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solve the bounded unknown input of leads. In [18], the author realizes the leader-following
consensus for a single-integrator system.

However, the above research on MASs is based on the premise that all agents have
the same dynamics. Of course, in practical engineering, it is unrealistic to require each
agent to satisfy the same dynamics. Therefore, the research on heterogeneous multi-agent
systems (HMASs) is more practical. The current complete consensus of HMASs is not well
studied. In [19], the author parameterizes the unknown dynamic linear of agents to realize
the consistent tracking of HMASs. In [20], the distributed consensus problem of HMASs
with asymmetric input saturation is studied. However, in other studies, heterogeneity was
transformed into homogeneity [21,22] or complex compensators were added to eliminate
heterogeneity [23–26]. These methods cannot be applied in practical engineering because
of their complexity. In fact, in practical engineering applications, only a certain error range
is allowed. So, there is no need for complete consensus between HMASs. Therefore, the
research on quasi-consensus (QC) of HMASs is of more practical significance. In [27,28],
the definition of HMAS QC is proposed and expanded.

Subsequently, researchers began to achieve the QC of multi-agent systems through
sampling data control, pulse control, adaptive control and other methods [29–31]. In
particular, adaptive control is favored by researchers in the field of control because of
its many advantages in realizing collaborative control, especially its low operating cost,
fewer system requirements, high robustness and strong adaptability. Yu Wenwu et al. [29]
further studied the problem of leader-following consensus of second-order multi-agents
through the method of adaptive control. In [31], two new inequalities are proposed and an
adaptive controller is designed to realize the QC of HMASs. However, the above adaptive
control methods rely on continuous control, which is an obstacle to the application of
control methods in practical engineering, and the proposed cost-saving adaptive control
method will have great advantages. In addition, since periodic intermittent control is a
discontinuous control method, continuous control is not required. So, the cost is greatly
reduced, clearly being more in line with actual needs. Since intermittent control is activated
only at work time, its fault tolerance is greatly increased, which is important for dealing
with HMASs problems. Combining the adaptive method with the periodic intermittent
control method could be an effective approach. Motivated by the application of adaptive
control in integer and fractional complex dynamic networks [32–35], a control method based
on periodic intermittent adaptive control is proposed to realize the QC of nonlinear HMASs
with external disturbances in this paper. This control method realizes discontinuous control
and provides more possibilities for realizing control cost savings.

2. Preliminary Preparation and Model Description
2.1. Graph Theory

A graph can be used to represent the topological relationship in an HMAS. An N-
dimensional graph G = {V, E, A} includes the nodes V = (v1, v2, . . . , vN), which are con-
nected to edges between different agents E ⊆ {(i, j)|i, j ∈ V, i 6= j}E ⊆ {(i, j)|i, j ∈ V, i 6= j}
in the adjacency matrix A = (aij)N×N . In a directed graph, the edge (i, j) ∈ E indicates
that agent j can obtain information from agent i, but agent i cannot obtain information
from agent j. For undirected graphs, the edge (i, j) ∈ E indicates that agent i and agent j
can exchange information with each other. We assume that the topological connection is
an undirected graph, and node i and node j are called neighbor nodes in this paper. The
undirected connecting edge between node i and node j can be represented by (vi, vj) and
aij= aji > 0 is the weight of undirected edges (vi, vj). When node i is not connected to node
j, aij= aji = 0. The degree matrix D = diag(di) with di = ∑

j∈Ni

aij and the Laplace matrix

L = (Lij)N×N with Lij =
N
∑

j=1.j 6=i
aij and L = D− A.

Lemma 1 [36]. The Laplacian matrix L of an undirected graph G satisfies
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1. The Laplacian matrix, L, is positive semi-definite, and its eigenvalues are 0 and positive.
2. The smallest nonzero eigenvalues λ2(L) satisfies

λ2(L) =xT1 min
N=0,x 6=0

xT Lx
xTx

3. For any vector η = (η1, η2, . . . , ηn)
T ∈ RN ,

ηT Lη =
1
2

N

∑
i=1

N

∑
j=1

Aij
(
ηi − ηj

)2

Lemma 2 [37]. Leta continuous function V : [µ, ∞)→ [0, ∞) , which satisfies

.
V(t) ≤ −g1V(t) + ω2 (1)

If g1 > 0, ω2 > 0, when t ≥ a:

V(t) < V(a) exp{−g1(t− a)}+ ω2

g1
, t ≥ a (2)

Lemma 3 [38]. For vector x, y ∈ Rn, there is a constant γ > 0, which makes the following
inequality true:

2xTy ≤ γxTx + γ−1yTy (3)

Assumption 1. Suppose the nonlinear function f (t, ·) for vector α, β ∈ Rn satisfies∣∣∣∣ f (α, t)− f
(

β, t
)∣∣∣∣≤ l

∣∣∣∣α− β
∣∣∣∣ (4)

where l is a positive constant.

Assumption 2. Suppose that the external disturbances is bounded and satisfies

||ψ(t)−vi(t)|| ≤ Si (5)

where Si > 0

Assumption 3. Suppose the network connection topology between the following multiple agents is
undirected (Lij = Lji); each follower can obtain the state information of the agent with the coupling
relationship and the leader agent at any time.

Definition 1. For an HMAS, if each agent can satisfy the following inequality for any state variable
of the system under the initial conditions, the entire HMAS is said to have reached QC:

lim
t→+∞

∣∣∣∣∣∣∣∣zi(t)− z0(t)
∣∣∣∣∣∣∣∣≤ δ, i = 1, 2, . . . , N (6)

2.2. Model Description

Consider an HMAS with 1+N multi-agents; the subscripts 0 and i are used to represent
the leader and follower, respectively. The dynamic equations of the leader multi-agent and
follower multi-agent are described as follows:

.
z0(t) = C0z0(t) + D0 f (z0(t), t) + ψ(t) (7)
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.
zi(t) = Cizi(t) + Di f (zi(t), t) + vi(t) + ui(t) (8)

where zi ∈ Rn represents the follower state variable, z0 ∈ Rn represents the leader state
variable, f : Rn × Rn × R+ → Rn is a nonlinear function, C0, D0 ∈ Rn×n is the leader
parameter matrix, Ci, Di ∈ Rn×n is the parameter matrix of the ith agent, vi(t), ψ(t) ∈ Rn

is the external time-varying disturbance, and ui(t) ∈ Rn is the control protocol.
The error is described as ξi(t) = zi(t)− z0(t); as a result, the error model is as follows:

.
ξ i(t) = Ciξi(t) + Di f (ξi(t), t) + hi(x0(t), t) + vi(t)− ψ(t)− ui(t) (9)

where

f (ξi(t), t) = f (zi(t), t)− f (z0(t), t), hi(z0(t), t) = (Ci − C0)z0(t) + (Di − D0) f (z0(t), t)

Consider the following control protocol for achieving QC between the leader state (7)
and the follower state (8):

ui =

−c
N
∑

j=1
Lij(t)

(
zj(t)− zi(t)

)
− ri(t)(zi(t)− z0(t)), nT ≤ t ≤ nT + σT

0, nT + σT ≤ t ≤ (n + 1)T
(10)

where c represents the coupling strength of the communication topology in the HMASs.
For the control protocol (10), we designed the following adaptive law:

.
ri(t) = γiπie2βt(zi(t)− z0(t))

T(zi(t)− z0(t)) (11)

.
Lij(t) = −κijπie2βt(zi(t)− zj(t)

)T(zi(t)− zj(t)
)
, Lij(0) = Lji(0) > 0, (i, j) ∈ E (12)

πi =

{
1, when

∣∣∣∣ξ∣∣∣∣> ε
0, others

(13)

where γi,κij = κji are positive constants.

Remark 1. The condition of convergence can be achieved quickly by using this adaptive law. But
in this quasi-consensus study, the error converges to a certain range and does not become zero.
Therefore, when the error reaches the allowable range, the adaptive law will continue to increase
rapidly. This will increase the control cost in practical applications. Therefore, we designed an
adaptive control protocol with saturation. When the error converges to our allowable range, the
adaptive law becomes zero. In this case, the adaptive feedback gain and adaptive coupling side
weight will not be updated, which greatly reduces the practical application cost. And when the error
converges to the range that we allow, the error itself is small enough. Under the action of feedback
gain and coupling side weight, the error can be controlled within the allowable range.

In combination with (10)–(12), error model (9) is as follows:

.
ξ i =

Ciξi(t) + Di f (ξi(t), t) + hi(z0(t), t) + vi(t)− ψ(t)− c
N
∑

j=1
Lij(t)ξ j(t)− ri(t)ξi(t), nT ≤ t ≤ nT + σT

Ciξi(t) + Di f (ξi(t), t) + hi(z0(t), t) + vi(t)− ψ(t), nT + σT ≤ t ≤ (n + 1)T
(14)

3. Main Result
3.1. Adaptive Control Protocol

Theorem 1. If the HMAS satisfies Assumptions 1–4, the HMAS can achieve QC under the adaptive
control protocol (10) and adaptive laws (11) and (12).
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Proof: When ||ξ||> ε , πi = 1, we construct the following Lyapunov function to achieve the
QC of leader-following HMASs:

V(t) =
1
2

N

∑
i=1

ξT
i (t)ξi(t) +

1
2

N

∑
i=1

N

∑
j=1

ce−2βt (Lij(t) + Lij)
2

2κij
+

1
2

N

∑
i=1

ce−2βt (ri(t)− ri)
2

γi
(15)

when nT ≤ t ≤ nT + σT.
Taking the derivative of (15), we can obtain

.
V(t) =

N
∑

i=1
ξT

i (t)
.
ξ i(t) +

1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+

N
∑

i=1
ce−2βt (Lij(t)+Lij)

2κij

.
Lij(t)

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

N
∑

i=1
ce−2βt (ri(t)−ri)

γi

.
ri(t)

=
N
∑

i=1
ξT

i (t)Ciξi(t) +
N
∑

i=1
ξT

i (t)Di f (ξi(t), t) +
N
∑

i=1
ξT

i (t)hi(z0(t), t) +
N
∑

i=1
ξT

i (vi(t)− ψ(t))

−
N
∑

i=1
ξT

i (t)

(
c

N
∑

j=1
Lij(t)ξ j(t) + ri(t)ξi(t)

)
+ 1

2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+

N
∑

i=1
ce−2βt (Lij(t)+Lij)

2κij

(
−κije2βt(zi(t)− zj(t)

)T(zi(t)− zj(t)
))

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

N
∑

i=1
ce−2βt (ri(t)−ri)

γi

(
γie2βt(zi(t)− z0(t))

T(zi(t)− z0(t))
)

=
N
∑

i=1
ξT

i (t)Ciξi(t) +
N
∑

i=1
ξT

i (t)Di f (ξi(t), t) +
N
∑

i=1
ξT

i (t)hi(z0(t), t) +
N
∑

i=1
ξT

i (vi(t)− ψ(t))

−
N
∑

i=1
ξT

i (t)

(
c

N
∑

j=1
Lij(t)ξ j(t) + ri(t)ξi(t)

)
+ 1

2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
− 1

2

N
∑

i=1

N
∑

j=1
c(Lij(t) + Lij)

((
zi(t)− zj(t)

)T(zi(t)− zj(t)
))

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

N
∑

i=1
c(ri(t)− ri)

(
(zi(t)− z0(t))

T(zi(t)− z0(t))
)

(16)

We can define the Laplacian matrix Ω =
(
τij
)

N×N , where τij = −Lij, i 6= j and

τii = −
N
∑

j=1,j 6=i
τij, through Lemma 1, one can obtain

1
2

N

∑
i=1

N

∑
j=1

c(Lij(t) + Lij)
((

zi(t)− zj(t)
)T(zi(t)− zj(t)

))
= −c

N

∑
i=1

N

∑
j=1

Lij(t)ξi
Tξ j + c

N

∑
i=1

N

∑
j=1

τijξi
Tξ j (17)

Then one can obtain

.
V(t) =

N
∑

i=1
ξT

i (t)Ciξi(t) +
N
∑

i=1
ξT

i (t)Di f (ξi(t), t) +
N
∑

i=1
ξT

i (t)hi(z0(t), t) +
N
∑

i=1
ξT

i (vi(t)− ψ(t))

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
− c

N
∑

i=1

N
∑

j=1
τijξi

Tξ j

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
− c

N
∑

i=1
riξi

Tξi
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Through Lemma 3 and Assumption 1, one can obtain

N
∑

i=1
ξT

i (t)Di f (ξi(t), t) =
N
∑

i=1
eT

i (t)Di( f (zi(t), t)− f (z0(t), t))

≤ 1
2

N
∑

i=1
ξT

i (t)DiDi
Tξi(t) + 1

2

N
∑

i=1
|| f (zi(t), t)− f (z0(t), t)||22

≤ 1
2

N
∑

i=1
ξT

i (t)
(

DiDi
T + l2 In

)
ξi(t)

(18)

and
N

∑
i=1

ξT
i (t)hi(z0(t), t) ≤ 1

2

N

∑
i=1

ξT
i (t)ξi(t) +

1
2

N

∑
i=1
||hi(z0(t), t)||22 (19)

and
N

∑
i=1

ξT
i (vi(t)− ψ(t)) ≤ 1

2

N

∑
i=1

ξT
i ξi +

1
2

N

∑
i=1

S2
i (20)

then

.
V(t) ≤

N
∑

i=1
ξT

i (t)Ciξi(t) + 1
2

N
∑

i=1
ξT

i (t)
(

DiDi
T +

(
l2 + 2

)
In − 2ri In

)
ξi(t)

+ 1
2

N
∑

i=1
||hi(z0(t), t)||22 + 1

2

N
∑

i=1
S2

i − c
N
∑

i=1

N
∑

j=1
τijξ

T
i (t)ξ j(t)

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

We define 1
2 ||h(z0(t), t)||22 + 1

2

N
∑

i=1
S2

i = ω2; let Λ be the diagonal matrix of Ω. There is

a unitary matrix U = (u1, . . . , uN), so that UTΩU = Λ. Let y(t) =
(
UT ⊗ In

)
ξ(t), so that

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

)
− c(Ω⊗ In)

)
ξ(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

= ξT(t)
(

C + 1
2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

))
ξ(t)− cyT(t)(Λ⊗ In)y(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

(21)

where C = diag(C1, C2, . . . , CN), D = diag(D1, D2, . . . , DN), R = diag(r1, r2, . . . , rN).
Through Lemma 1, since In is positive definite, we can obtain yT(t)(Λ⊗ In)y(t) ≥

λ2(Ω)yT(t)(IN ⊗ In)y(t); hence,

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

))
ξ(t)− λ2(Ω)yT(t)(IN ⊗ In)y(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

= ξT(t)
(

C + 1
2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

))
ξ(t)

− cλ2(Ω)ξT(t)(U ⊗ In)(IN ⊗ In)
(
UT ⊗ In

)
ξ(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

= ξT(t)
(

C + 1
2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

)
− cλ2(Ω)(IN ⊗ In)

)
ξ(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
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.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

)
− cλ2(Ω)(IN ⊗ In) + β(IN ⊗ In)

)
ξ(t)

− βξT(t)ξ(t) + ω2 + 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

We can choose Lij and ri, which are large enough to meet the conditions:
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

)
−cλ2(Ω)(IN ⊗ In) + β(IN ⊗ In) ≤ 0. One

can obtain

.
V(t) ≤ −β

N
∑

i=1
ξi

T(t)ξi(t) + 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

+ ω2

= −β
N
∑

i=1
ξi

T(t)ξi(t)−
N
∑

i=1

N
∑

j=1
(βc)e−2βt (Lij(t)+Lij)

2

2κij
−

N
∑

i=1
(βc)e−2βt (ri(t)−ri)

2

γi
+ ω2

= −2β( 1
2

N
∑

i=1
ξi

T(t)ξi(t) + 1
2

N
∑

i=1

N
∑

j=1
ce−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
ce−2βt (ri(t)−ri)

2

γi
) + ω2

= −g1V(t) + ω2 (22)

where g1 = 2β.
when nT + σT ≤ t ≤ (n + 1)T.

Similar to the discussion above, we have

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In
))

ξ(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In
)
+ (β− d)(IN ⊗ In)

)
ξ(t)

+ (d− β)ξT(t)ξ(t) + ω2 + 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

(23)

where d− β > 0. One can obtain

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In
)
+ (β− d)(IN ⊗ In)

)
ξ(t) + (d− β)ξT(t)ξ(t) + ω2

+
N
∑

i=1

N
∑

j=1
(−βc)e−2βt (Lij(t)+Lij)

2

2κij
+

N
∑

i=1
(−βc)e−2βt (ri(t)−ri)

2

γi

+
N
∑

i=1

N
∑

j=1
dce−2βt (Lij(t)+Lij)

2

2κij
+

N
∑

i=1
dce−2βt (ri(t)−ri)

2

γi

We choose d, β to meet the conditions . One can obtain

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In
)
+ (β− d)(IN ⊗ In)

)
ξ(t)

+ (d− β)ξT(t)ξ(t) + ω2 +
N
∑

i=1

N
∑

j=1
(d− β)ce−2βt (Lij(t)+Lij)

2

2κij

+
N
∑

i=1
(d− β)ce−2βt (ri(t)−ri)

2

γi
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≤ (d− β)
N
∑

i=1
ξT

i (t)ξi(t) +
N
∑

i=1

N
∑

j=1
(d− β)ce−2βt (Lij(t)+Lij)

2

2κij

+
N
∑

i=1
(d− β)ce−2βt (ri(t)−ri)

2

γi
+ ω2

= 2(d− β)

(
1
2

N
∑

i=1
ξT

i (t)ξi(t) + 1
2

N
∑

i=1

N
∑

j=1
ce−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

N
∑

i=1
ce−2βt (ri(t)−ri)

2

γi

)
+ ω2

= g2V(t) + ω2

(24)
where g2 = 2(d− β).

Combining (22) and (24), we have{ .
V(t) ≤ −g1V(t) + ω2, nT ≤ t ≤ nT + σT

.
V(t) ≤ g2V(t) + ω2, nT + σT ≤ t ≤ (n + 1)T

(25)

through Lemma 2, when nT ≤ t ≤ nT + σT, we have the following:

V(ξ(t)) ≤ V(ξ(nT)) exp(−g1(t− nT)) +
λ−1

1 ω2

g1
(26)

Simultaneously, when nT + σT ≤ t ≤ (n + 1)T, we have

V(ξ(t)) ≤ V(ξ(nT + σT)) exp(g2(t− nT − σT))−
λ−1

1 ω2

g2
(27)

Combining this with (27), we have{
V(t) ≤ V(nT) exp(−g1(t− nT)) + ω2

g1
, nT ≤ t ≤ nT + σT

V(t) ≤ V(nT+σT) exp(g2(t− nT − σT))− ω2

g2
, nT + σT ≤ t ≤ (n + 1)T

(28)

Similar to the discussion in [37], when t ≥ 0 if 1 > g1σ− g2(1− σ) > 0, we obtain the
following inequality:

V(t) ≤ V(0) exp(−g1σt + g2(1− σ)t) +
ω2

g1

(
1 +

n

∑
i=1

exp(ig2(T − σT)− ig1σT)

)
(29)

So, we can obtain:

1
2

N
∑

i=1
ξT

i (t)ξi(t) + 1
2

N
∑

i=1

N
∑

j=1
ce−2βt (Lij(t)+Lij)

2

2ηi
+ 1

2

N
∑

i=1
ce−2βt (ri(t)−ri)

2

γi

≤ V(0) exp(−g1σt + g2(1− σ)t) + ω2

g1

(
1 +

n
∑

i=1
exp(ig2(T − σT)− ig1σT)

)

1
2
||ξ
∣∣∣∣∣
∣∣∣∣∣22 ≤ V(0) exp(−g1σt + g2(1− σ)t) +

ω2

g1

(
1 +

n

∑
i=1

exp(ig2(T − σT)− ig1σT)

)
(30)

When N → +∞ , one has:

1 +
n

∑
i=1

exp(ig2(T − σT)− ig1σT)→ 1
1− exp(g2(T − σT)− g1σT)

(31)
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Then, the margin of error convergence can be obtained:

‖ξ(t)‖ ≤

√
2ω2

g1

(
1

1− exp(g2(T − σT)− g1σT)

)
(32)

So far, it has been proved that the leader (7) and follower system (8) achieve QC, and
the error range bounds of consensus are obtained. �

3.2. Adaptive Pinning Control

The control protocol (10) and adaptive laws (11) and (12) are used to control the whole
situation. Each follower exchanges information with the leader. However, it is impractical
and costly in practical engineering applications. In practical engineering, under large-scale
tracking control, it is exceedingly expensive to maintain the information exchange between
the leader and all followers, which will greatly hinder the application of distributed control
methods. Therefore, this paper will continue to study the pinning control protocol. We
only use adaptive laws for partial coupling topologies and the leader only interacts with
some followers. We propose three pinning control schemes.

Pinning 1. We use the following control protocol and adaptive laws (11) and (12).

ui =

−c
N
∑

j=1
Lij(t)

(
zj(t)− zi(t)

)
− ∂iri(t)(zi(t)− z0(t)), nT ≤ t ≤ nT + σT

0, nT + σT ≤ t ≤ (n + 1)T
(33)

where ∂i = 1 for i = 1, 2, . . . , NS and ∂i = 0 for i = NS + 1, . . . , N.

Theorem 2. If the HMAS satisfies Assumptions 1–4, the HMAS can achieve QC under the adaptive
control protocol (33) and adaptive laws (11) and (12).

Proof. When ||ξ||> ε , πi = 1. We construct the following Lyapunov function to achieve
the QC of leader-following HMASs:

V(t) =
1
2

N

∑
i=1

ξT
i (t)ξi(t) +

1
2

N

∑
i=1

N

∑
j=1

ce−2βt (Lij(t) + Lij)
2

2κij
+

1
2

NS

∑
i=1

ce−2βt (ri(t)− ri)
2

γi
(34)

when nT ≤ t ≤ nT + σT.
Taking the derivative of (34), we have

.
V(t) =

N
∑

i=1
ξT

i (t)
.
ξ i(t) +

1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+

N
∑

i=1
ce−2βt (Lij(t)+Lij)

2κij

.
Lij(t)

+ 1
2

NS
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

NS
∑

i=1
ce−2βt (ri(t)−ri)

γi

.
ri(t)

.
V(t) ≤

N
∑

i=1
ξT

i (t)Ciξi(t) + 1
2

N
∑

i=1
ξT

i (t)
(

DiDi
T +

(
l2 + 2

)
In − 2∂iri In

)
ξi(t)− c

N
∑

i=1

N
∑

j=1
τijξ

T
i (t)ξ j(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

NS
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
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.
V(t) ≤ ξT(t)

(
C + 1

2

(
DDT + IN ⊗

(
l2 + 2

)
In − 2

(∼
R⊗ In

)))
ξ(t)

− ξT(t)(cλ2(Ω)(IN ⊗ In) + β(IN ⊗ In))ξ(t)− βξT(t)ξ(t) + ω2

+ 1
2

N
∑

i=1

N
∑

j=1
(−2βc)e−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

NS
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

≤ −2β

(
1
2

N
∑

i=1
ξT

i (t)ξi(t) + 1
2

N
∑

i=1

N
∑

j=1
ce−2βt (Lij(t)+Lij)

2

2κij
+ 1

2

NS
∑

i=1
ce−2βt (ri(t)−ri)

2

γi

)
+ ω2

= −g1V(t) + ω2

where
∼
R = diag

(
r1, r2, . . . , rNS , 0, . . . , 0

)
.

When nT + σT ≤ t ≤ (n + 1)T, it is similar to Theorem 1. Hence, we have{ .
V(t) ≤ −g1V(t) + ω2, nT ≤ t ≤ nT + σT

.
V(t) ≤ g2V(t) + ω2, nT + σT ≤ t ≤ (n + 1)T

(35)

The rest of the proof is the same as Theorem 1. �

Pinning 2. We use the control protocol (10) and adaptive law (11) and the following adaptive laws:

.
Lij(t) = −κije2βt(zi(t)− zj(t)

)T(zi(t)− zj(t)
)
, Lij(0) = Lji(0) > 0, (i, j) ∈

∼
E (36)

πi =

{
1, when

∣∣∣∣ξ∣∣∣∣> ε
0, others

(37)

where
∼
E is the subset of E, and

∼
E is connected.

Theorem 3. If theHMAS satisfies Assumptions 1–4, the HMAS can achieve QC under the adaptive
control protocol (10)and adaptive laws (11) and (36).

Proof. When ||ξ||> ε , πi = 1. We construct the following Lyapunov function to achieve
the QC of leader-following HMASs:

V(t) =
1
2

N

∑
i=1

ξT
i (t)ξi(t) +

1
2

N

∑
i=1

∑
(i,j)∈

∼
E

ce−2βt (Lij(t) +
∼
Lij)

2

2κij
+

1
2

N

∑
i=1

ce−2βt (ri(t)− ri)
2

γi
(38)

where
∼
Lij =

∼
Lji > 0, (i, j) ∈

∼
E and Lij = 0, (i 6= j). Let

∼
Ω =

( ∼
τij

)
N×N

, where
∼
τij =

∼
Lij.i 6= j

and
∼
τii = −

N
∑

j=1,j 6=i

∼
τij; then,

Gij =


Lij(0), (i, j) ∈ E−

∼
E

−
N
∑

j=1,j 6=i
Lij(0), i = j

0, other

(39)

when nT ≤ t ≤ nT + σT.
Taking the derivative of (39), we have
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.
V(t) =

N
∑

i=1
ξT

i (t)
.
ξ i(t) +

1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+

N
∑

i=1
∑

(i,j)∈
∼
E

ce−2βt (Lij(t)+
∼
Lij)

2κij

.
Lij(t)

+ 1
2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

N
∑

i=1
ce−2βt (ri(t)−ri)

γi

.
ri(t)

.
V(t) ≤

N
∑

i=1
ξT

i (t)Ciξi(t) + 1
2

N
∑

i=1
ξT

i (t)
(

DiDi
T +

(
l2 + 2

)
In − 2ri In

)
ξi(t) + c

N
∑

i=1

N
∑

j=1
Gij(t)ξT

i (t)ξ j(t)− c
N
∑

i=1
∑

(i,j)∈
∼
E

∼
τijξ

T
i (t)ξ j(t)

+ ω2 + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

.
V(t) ≤ ξT(t)

(
C + 1

2
(

DDT + IN ⊗
(
l2 + 2

)
In − 2(R⊗ In)

)
+ c(G⊗ In)− cλ2

(∼
Ω
)
(IN ⊗ In) + β(IN ⊗ In)

)
ξ(t)

− βξT(t)ξ(t) + ω2 + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

N
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

≤ −2β

 1
2

N
∑

i=1
ξT

i (t)ξi(t) + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

ce−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

N
∑

i=1
ce−2βt (ri(t)−ri)

2

γi

+ ω2

= −g1V(t) + ω2

where G =
(
Gij
)

N×N .
When nT + σT ≤ t ≤ (n + 1)T, it is similar to Theorem 1. And the rest of the proof is

the same as Theorem 1. �

Pinning 3. We consider the control protocol (33) and adaptive laws (11) and (36).

Theorem 4. If the HMAS satisfies Assumptions 1–4, the HMAS can achieve QC under the adaptive
control protocol (33) and adaptive laws (11) and (36).

Proof. When ||ξ||> ε , πi = 1, we construct the following Lyapunov function to achieve the
QC of leader-following HMASs:

V(t) =
1
2

N

∑
i=1

ξT
i (t)ξi(t) +

1
2

N

∑
i=1

∑
(i,j)∈

∼
E

ce−2βt (Lij(t) +
∼
Lij)

2

2κij
+

1
2

NS

∑
i=1

ce−2βt (ri(t)− ri)
2

γi
(40)

when nT ≤ t ≤ nT + σT.
Taking the derivative of (40), we have

.
V(t) =

N
∑

i=1
ξT

i (t)
.
ξ i(t) +

1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+

N
∑

i=1
∑

(i,j)∈
∼
E

ce−2βt (Lij(t)+
∼
Lij)

2κij

.
Lij(t)

+ 1
2

NS
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi
+

NS
∑

i=1
ce−2βt (ri(t)−ri)

γi

.
ri(t)

.
V(t) ≤

N
∑

i=1
ξT

i (t)Ciξi(t) + 1
2

N
∑

i=1
ξT

i (t)
(

DiDi
T +

(
l2 + 2

)
In − 2∂iri In

)
ξi(t) + c

N
∑

i=1

N
∑

j=1
Gij(t)ξT

i (t)ξ j(t)− c
N
∑

i=1
∑

(i,j)∈
∼
E

∼
τijξ

T
i (t)ξ j(t)

+ ω2 + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

NS

∑
i=1

(−2βc)e−2βt (ri(t)−ri)
2

γi
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.
V(t) ≤ ξT(t)

(
C + 1

2

(
DDT + IN ⊗

(
l2 + 2

)
In − 2

(∼
R⊗ In

))
+ c(G⊗ In)− cλ2

(∼
Ω
)
(IN ⊗ In) + β(IN ⊗ In)

)
ξ(t)

− βξT(t)ξ(t) + ω2 + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

(−2βc)e−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

NS
∑

i=1
(−2βc)e−2βt (ri(t)−ri)

2

γi

≤ −2β

 1
2

N
∑

i=1
ξT

i (t)ξi(t) + 1
2

N
∑

i=1
∑

(i,j)∈
∼
E

ce−2βt (Lij(t)+
∼
Lij)

2

2κij
+ 1

2

NS
∑

i=1
ce−2βt (ri(t)−ri)

2

γi

+ ω2

= −g1V(t) + ω2

where G =
(
Gij
)

N×N ,
∼
R = diag

(
r1, r2, . . . , rNS , 0, . . . , 0

)
.

When nT + σT ≤ t ≤ (n + 1)T, it is similar to Theorem 1. And the rest of the proof is
the same as Theorem 1. �

4. Numerical Examples

In this part, we will prove the effectiveness of the proposed control protocol us-
ing several simulation examples. Assume that the HMAS contains one leader agent
and five follower agents. For the leader system (7), assume the external disturbance is
ψ(t) = (0, 0, 0)T . For the follower system (8), the external disturbance is defined as
vi(t) = (0.1 sin t cos t, 0.2 sin t, 0.3 cos t)T .

Example 1. Assume the agent dynamics are described by a classical Chua circuit system model.

In the leader system (7), the linear part is presented as z0(t) = (z01, z02, z03)
T , and

the nonlinear part is presented as f (z0, t) = (0.5(|z01 + 1|−|z01 − 1|), 0, 0)T . The system

matrix selection is C0 =

−2.5 10 0
1 −1 1
0 −18 0

, D0 =

 35
6 0 0
0 0 0
0 0 0

. For the follower system

(8), the linear part can be described as zi(t) = (zi1, zi2, zi3)
T , and the nonlinear part can

be described as f (zi, t) = (0.5(|zi1 + 1|−|zi1 − 1|), 0, 0)T . Assume that the matrix of the
follower system is

Ci =

−2.5 + 0.2i 10 + 0.3i 0
1 + 0.1i −1 + 0.1i 1 + 0.1i

0 −18 + 0.3i 0

, Di =

 35
6 0 0
0 0 0
0 0 0


For state variables, we choose the initial value z0(0) = (2.9, 0.75, 0.1)T , and

zi(0) = (10 + 2i, 4 + i, 5 + 2i)T . The state changes of the HMASs without the control
protocol are shown in Figure 1. It can be concluded from Figure 1 that, when we do not
add control protocols, the state changes of the system increase.

The simulation results after adding the control protocol are shown in Figure 2.
Figure 2a shows the errors under the adaptive control protocol (10) and adaptive laws

(11) and (12). We pick the arbitrary value r(0) = (3.3, 4.1, 2.8, 1.6, 1.9)T , and
β = 0.1γi = (0.010, 0.011, 0.012, 0.013, 0.014), κ12 = κ21 = 1.7, κ13 = κ31 = 1.5,
κ14 = κ41 = 1.9 κ15 = κ51 = 1.3,κ24 = κ42 = 1.5, κ45 = κ54 = 1.5. It can be concluded from
Figure 2a that the errors of the leader system (7) and follower system (8) converge to a
bounded range. And the HMAS can achieve QC via the adaptive control protocol (10) and
adaptive laws (11) and (12).

Figure 2b shows the errors under the adaptive control protocol (33) and adaptive
laws (11) and (12). Assume that the leader only exchanges information with nodes 1 and
nodes 2. We pick the arbitrary values r(0) = (2.9, 3.6)T , and β = 0.1γi = (0.10, 0.11),
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κ12 = κ21 = 1.7, κ13 = κ31 = 1.5, κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, κ24 = κ42 = 1.5, and
κ45 = κ54 = 1.5.
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Figure 2c shows the errors under the adaptive control protocol (10) and adaptive laws
(11), (12), and (36). We pick the arbitrary value r(0) = (1.5, 1.3, 1.6, 1.1, 1.2)T , and β =
0.1γi = (0.010, 0.011, 0.012, 0.013, 0.014), κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, κ24 = κ42 = 1.5.

Figure 2d shows the errors under the adaptive control protocol (33) and adaptive laws
(11) and (36). Assume that the leader only exchanges information with nodes 1 and nodes
2. We pick the arbitrary value r(0) = (2.7, 3.5, 3.3)T , and β = 0.1 γi = (0.10, 0.11, 0.12),
κ14 = κ41 = 1.9, κ15 = κ51 = 1.5, and κ24 = κ42 = 1.5.

It can be concluded from Figure 2b–d that the errors of the leader system (7) and
follower system (8) converge to a bounded range. And the HMASs can achieve QC by
using three saturated adaptive pinning control protocols.

Example 2. Assume the agent dynamics are described by a classical Chen circuit system model.

For the leader system (7), the linear part is presented as z0(t) = (z01, z02, z03)
T and the

nonlinear part is presented as f (z0, t) = (0, z01z03, z01z02)
T . The system matrix selection

is C0 =

28 −28 0
7 −35 0
0 −3 0

, D0 =

1 0 0
0 1 0
0 0 1

. For the follower system (8), the linear part

can be described as zi(t) = (zi1, zi2, zi3)
T and the nonlinear part can be described as

f (zi, t) = (0, zi1zi3, zi1zi2)
T . Assume that the matrix of the follower system is

Ci =

28+i −28+i 0
7 + i −35 + 2i 0

0 −3 + i 0

, Di =

1 0 0
0 1 0
0 0 1


For state variables, we choose the initial value z0(0) = (−9, 14, 20)T , and zi(0) =

(−9 + 2i,−14 + i, 20− i)T . The state changes of the HMAS without the control protocol
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are shown in Figure 3. It can be concluded from Figure 3 that when we do not add control
protocols, the state changes of the system increase.
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The simulation results after adding the control protocol are shown in Figure 4.
Figure 4a shows the errors under the adaptive control protocol (10) and adaptive laws

(11) and (12). We pick the arbitrary value r(0) = (2.7, 3.2, 2.4, 3.1, 1.5)T , and
β = 0.1γi = (0.010, 0.011, 0.012, 0.013, 0.014), κ12 = κ21 = 1.7, κ13 = κ31 = 1.5,
κ14 = κ41 = 1.9 κ15 = κ51 = 1.3, κ24 = κ42 = 1.5, κ45 = κ54 = 1.5. It can be concluded from
Figure 4a that the errors of the leader system (7) and follower system (8) converge to a
bounded range. And the HMASs can achieve QC by using the adaptive control protocol
(10) and adaptive laws (11) and (12).

Figure 4b shows the errors under the adaptive control protocol (33) and adaptive
laws (11) and (12). Assume that the leader only exchanges information with nodes 1 and
nodes 2. We pick the arbitrary value r(0) = (2.7, 3.2)T , and β = 0.1 γi = (0.10, 0.11),
κ12 = κ21 = 1.7, κ13 = κ31 = 1.5, κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, κ24 = κ42 = 1.5, and
κ45 = κ54 = 1.5.

Figure 4c shows the errors under the adaptive control protocol (10) and adaptive laws
(11), (12), and (36). We pick the arbitrary value r(0) = (2.7, 3.2, 2.4, 3.1, 1.5)T , and β = 0.1
γi = (0.010, 0.011, 0.012, 0.013, 0.014), κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, κ24 = κ42 = 1.5.
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Figure 4d shows the errors under the adaptive control protocol (33) and adaptive laws
(11) and (36). Assume that the leader only exchanges information with nodes 1 and nodes
2. We pick the arbitrary value r(0) = (2.7, 3.2, 2.4)T , and β = 0.1 γi = (0.10, 0.11, 0.12),
κ14 = κ41 = 1.9, κ15 = κ51 = 1.5, and κ24 = κ42 = 1.5.

It can be concluded from Figure 4b–d that the errors of the leader system (7) and
follower system (8) converge to a bounded range. And the HMASs can achieve QC by
using the three saturated adaptive pinning control protocols.

Example 3. Assume the agent dynamics are described by a manipulator system with
flexible joints model, whose dynamic system is as follows:

.
θm = ωm

.
ωm = k

Jm
(θ1 − θm)− B

Jm
ωm + kτ

Jm
u

.
θ1 = ω1

.
ω1 = − k

J1
(θ − θm)− mgh

J1
sin(θ1)

(41)

Let z =
(
θm ωm θ1 ω1

)T . The nonlinear dynamics of the robotic arm system are
equivalent to

.
z(t) = Az(t) + f (z) + g(y)u(t) (42)

Let g(y) = In. For the leader system (7), the linear part is presented as z0(t) =

(z01, z02, z03, z04)
T and the nonlinear part is presented as f (z0, t) = (0, 0, 0, 1

3 sin (z03
3)

T .

The system matrix selection is C0 =


0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0

, D0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

For the follower system (8), the linear part can be described as zi(t) = (zi1, zi2, zi3)
T and the

nonlinear part can be described as f (zi, t) = (0, 0, 0, 1
3 sin (zi3

3)
T . Assume that the matrix

of the follower system is

Ci =


0 1 + 0.1i 0 0

−48.6 + 0.5i −1.25 + 0.1i 48.6 + 0.6i 0
0 0 0 1 + 0.2i

19.5 + 0.3i 0 −19.5 + 0.2i 0

, Di =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


For state variables, we choose the initial value z0(0) = (0.2, 0.5, 0.7, 0.3)T , and

zi(0) = (0.3 + 1.2i, 0.5 + 1.1i, 0.8 + 1.3i, 0.4 + 1.5i)T . The state changes of the HMASs with-
out the control protocol are shown in Figure 5. It can be concluded from Figure 5 that,
when we do not add control protocols, the state changes of the system increase.

The simulation results after adding the control protocol are shown in Figure 6.
Figure 6a shows the errors under the adaptive control protocol (10) and adaptive

laws (11) and (12). We pick the arbitrary value r(0) = (1.3, 2.1, 0.4, 0.7, 0.1)T , and β = 0.1
γi = (0.010, 0.009, 0.010, 0.008, 0.012), κ12 = κ21 = 0.3, κ13 = κ31 = 0.3, κ14 = κ41 = 0.45
κ15 = κ51 = 0.55, κ23 = κ32 = 0.65, κ25 = κ52 = 0.6, κ34 = κ43 = 0.4. It can be concluded
from Figure 6a that the errors of the leader system (7) and follower system (8) converge to a
bounded range. And the HMASs can achieve QC when using the adaptive control protocol
(10) and adaptive laws (11) and (12).

Figure 6b shows the errors under the adaptive control protocol (33) and adaptive
laws (11) and (12). Assume that the leader only exchanges information with nodes 1 and
nodes 2. We pick the arbitrary value r(0) = (1.3, 2.1)T , and β = 0.1 γi = (0.010, 0.009),
κ12 = κ21 = 0.3, κ13 = κ31 = 0.3, κ14 = κ41 = 0.45, and κ15 = κ51 = 0.55.
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Figure 6c shows the errors under the adaptive control protocol (10) and adaptive laws
(11), (12), and (36). We pick the arbitrary value r(0) = (1.3, 2.1, 0.4, 0.7, 0.1)T , and β = 0.1
γi = (0.010, 0.009, 0.010, 0.008, 0.012), κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, κ24 = κ42 = 1.5.

Figure 6d shows the errors under the adaptive control protocol (33) and adaptive laws
(11) and (36). Assume that the leader only exchanges information with nodes 1 and nodes
2. We pick the arbitrary value r(0) = (2.7, 3.5, 3.3)T , and β = 0.1γi = (0.010, 0.009, 0.010),
κ14 = κ41 = 1.9, κ15 = κ51 = 1.3, and κ24 = κ42 = 1.5.

It can be concluded from Figure 6b–d that the errors of the leader system (7) and
follower system (8) converge to a bounded range. And the HMASs can achieve QC by
using three saturated adaptive pinning control protocols.

From the above three simulations, we can see the effectiveness of our proposed
saturated adaptive control protocol, and it can be widely used in various models. From the
simulations of three saturated adaptive pinning control protocols, it can be clearly seen that
distributed control has high robustness. By appropriately increasing the coupling strength
or feedback gain, the error caused by the loss of control can be compensated for.

Remark 2. Like existing works [11–31], we deal with this open problem with theoretical derivation
and numerical simulation. It is worth noting that, to expand the application scope of the proposed
control method, we chose a universal unified multi-agent system model, without establishing a
system model for specific applications. At the same time, to reduce the complexity of the control
method and the theoretical derivation, we simplified the system appropriately and adopted a more
idealized normalized model. From the perspective of control method research, it is reasonable and
feasible to verify the effectiveness and correctness of the proposed control methods via numerical
simulation. Within our research framework, one can construct a system model for a specific
application by considering suitable environment and detailed parameters for specific applications,
such as multi-robot formation and multi-UAV formation. In addition, to facilitate engineering
applications, we should consider more complex factors and more realistic working conditions, such
as limited communication, unpredictable state, unknown parameters, perturbations, time delays,
and so on. In this way, the proposed control methods might be practically tested and verified through
real-world experiments.

5. Conclusions

The QC of nonlinear HMASs with an external interference is studied in this paper.
Firstly, we design a periodic intermittent adaptive control protocol with saturation, which
controls both the internal coupling between follower agents and the communication be-
tween the leader and follower. Then, the feasibility of the control protocol is proved
theoretically using the Lyapunov function method. The convergence range of the QC error
is obtained by using lemma and inequality techniques. Furthermore, three cost-saving
saturated adaptive pinning control protocols are proposed. Adaptive feedback gain is
applied to only some of the followers, and only some the followers can interact with each
other. Due to the coupling effect inside the HMAS, the QC of the whole HMAS can be
achieved as long as each agent is connected. The adaptive check control protocol greatly
saves on control costs and demonstrates the high robustness of the distributed control.
Finally, the correctness of the control protocol is proved through four numerical simulations.
Although this paper presents a novel and reasonable control method, it is still difficult to
fully apply it in practical engineering applications. The main reason for this is that the
model is not fully consistent with the actual model. Therefore, in future work, in order to
make the research method and results more practical, we will apply the theoretical method
to the collaborative control of UAVs and robots as the focus of our next study.
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