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Abstract: The Pearson correlation coefficient (ρ) is a commonly used measure of correlation, but it
has limitations as it only measures the linear relationship between two numerical variables. The
distance correlation measures all types of dependencies between random vectors X and Y in arbitrary
dimensions, not just the linear ones. In this paper, we propose a filter method that utilizes distance
correlation as a criterion for feature selection in Random Forest regression. We conduct extensive
simulation studies to evaluate its performance compared to existing methods under various data
settings, in terms of the prediction mean squared error. The results show that our proposed method is
competitive with existing methods and outperforms all other methods in high-dimensional (p ≥ 300)
nonlinearly related data sets. The applicability of the proposed method is also illustrated by two real
data applications.
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1. Introduction

Feature selection is a crucial aspect of model construction in machine learning. Its
main objective is to identify the most significant features while eliminating irrelevant,
redundant, and noisy ones. This process involves selecting a subset of the most prominent
features. Feature selection is widely used for various reasons, including enhancing model
interpretability, reducing learning time, improving learning accuracy, and overcoming the
curse of dimensionality, among others. This method is widely employed in many fields,
particularly in classification tasks such as bioinformatics data analysis, image recognition,
change point detection, and others. Various techniques have been proposed in the literature
for evaluating feature subsets in machine learning. The filter method, as described by [1,2],
utilizes the intrinsic properties of data to assess feature subsets. The wrapper method,
as discussed by [3,4], determines the best subset of features useful for the task based on
the performance of the learning algorithm. Finally, the hybrid approach, as described
by [5–7], makes use of both filters and wrappers by utilizing independent criteria and
learning algorithms to measure feature subsets. Additionally, AIC and BIC criteria are
used to identify the ‘best model’. One popular method is the Lasso, which was introduced
by [8] and employs `1 regularized linear regression model. Other Lasso-based feature
selection methods have been developed since then, such as Adaptive Lasso [9], Lars [10],
and elastic net [11], among others. However, when dealing with high-dimensional data,
Lasso methods can face two significant problems: high computational cost and over-fitting.
The correlation coefficient (CC) is a criterion, introduced by [12], utilized in feature selection
for multiple machine learning algorithms. Ref. [13] used the CC, amongst other measures,
for feature selection in high-dimensional data analysis. Ref. [14] made improvements to
their models using the CC as well as a clustering technique to filter out less important
parameters. We even see [15] use the CC for detecting daily activities in smart homes,
where models rely heavily on selecting the appropriate features for these daily activities,
and thus on feature selection.
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Random forests (RF) is an ensemble learning algorithm that was first proposed by [16].
This method utilizes decision trees and can perform both classification and regression
analyses. It achieves this by using a combination of the bootstrap aggregation method and
the random subspace method to generate a collection of decision trees, which are then
utilized for classification purposes. When building a random forest, the best predictor from
a randomly chosen subset of predictors is used to divide each node. Although this method
may seem counterintuitive, it has proven to be more effective than other classifiers such
as discriminant analysis, support vector machines, and neural networks. Additionally,
ref. [16] showed that this approach is resistant to overfitting. According to [17], when a
data set has a small number of relevant features and a large number of irrelevant features,
RF algorithms may not be able to attain the intended predictive performance, especially
if the algorithm selects only a few features at each node. Several methods have been
proposed in the literature to improve the performance of the [16]’s traditional RF. For
example, ref. [18] establishes consistency of a special type of purely random forest model
where strong variables have a larger probability of selection as a splitting variable. Ref. [19]
proposed a modification to the standard RF algorithm called Reinforcement Learning
Trees (RLT), which involves using a specific type of splitting variable selection and muting
of noise variables to prioritize strong variables in the initial stages of tree construction,
and gradually decreasing the number of candidate variables towards the terminal nodes.
Ref. [20] investigated regression problems within the context of random forest algorithms
by focusing on the selection of significant features that are strongly correlated with the
response variable. The Pearson product-moment correlation is a criterion to identify
features that exhibit high levels of correlation with the response. The Pearson product-
moment correlation (ρ) has some drawbacks. One issue is that it only measures the linear
relationship between two random variables, X and Y. Additionally, ρ = 0 indicates that
X and Y are independent only if their joint distribution is bivariate normal. Furthermore,
even if X and Y are dependent, the ρ can still be zero.

To remedy this, ref. [21] introduced distance correlation (dCor) that measures all
types of dependence between random vectors X and Y in arbitrary dimensions. The
dCor is bounded between 0 and 1, and it equals zero only when the random vectors are
independent. According to [22], the dCor is effective in identifying nonlinear relationships
that cannot be detected by the Pearson correlation coefficient. Additionally, it can be
used for random variables of any dimension, unlike the Pearson correlation coefficient,
which is limited to two-dimensional variables. This paper introduces a new approach
that incorporates the dCor as a pre-processing step in the conventional RF algorithm for
high-dimensional nonlinear datasets. Specifically, we utilize the dCor to select the features
that have a significant correlation with the response variable, which are then used in the
construction of the RF.

2. Main Results

Consider a set of p features , X = (X1, ..., Xp), and the dependent variable Y. The goal
is to estimate the regression function f (x) = E(Y|X = x) and we assume that Y = f (x) + ε.
We observe a sample of i.i.d. training observations Dn =

{
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

}
,

where each Xi =
(
Xi1, . . . , Xip

)> denotes a set of p variables from a feature space X . Let εi’s
be i.i.d. with mean 0 and variance σ2 and p∗ refers to the chosen features after removing the
ones that have less correlation with the response. The remaining p− p∗ variables have no
influence on the response. We also assume that the expected value E(Y|X∗) is completely
determined by a set of p∗ < p variables, which means E(Y|X∗) = E(Y|X1, X2, . . . , Xp∗).

In their work, ref. [21] proposed a statistical measure called distance correlation (DC)
that quantifies all forms of dependence between random vectors X and Y in arbitrary
dimensions, unlike Pearson CC, which is limited to two-dimensional variables. The DC
ranges from 0 to 1, and it equals 0 only when the random vectors are independent. Accord-
ing to [22], the DC is effective in detecting nonlinear relationships that cannot be detected
by the Pearson CC. The DC is a measure of dependence between two variables that measure
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the distance between their two characteristic functions. In the bivariate normal case, the
DC becomes the Pearson product-moment correlation ρ (CC).

Definition 1. Supposing random variables X and Y have finite and positive variances, the distance
correlation (R) is defined as,

R(X, Y) =
dCov(X, Y)√

dCov(X, X) · dCov(Y, Y)
,

where dCov(X, Y) is the distance covariance between random variables X and Y.

The dCov(X, Y) is defined as follows.

dCov(X, Y) =
√∫

Rp+q
|| fX,Y(t, s)− fX(t) fY(s)||2w(t, s)dtds,

where fX(·), fY(·), and fX,Y(·) are the characteristic and joint characteristic functions of the
random variables X (p-dimensional) and Y (q-dimensional). The weight function is given
by w(t, s) = (cpcq||t||pp+1||s||

q
q+1)

−1, where cd = π(1+d)/2/Γ((1 + d)/2). The calculation
of dCov(X, Y) is more complex compared to the relatively simple calculations performed
when computing the covariance for the CC. However, we are fortunate that the R package
“energy”, authored by Rizzo, simplifies the calculation of the following definition. It is
interesting to note that, according to [22], the population distance covariance coincides with
the covariance with respect to Brownian motion, the random motion of particles suspended
in a medium. In the same article, the distance correlation is described as the “natural
extension” of the CC, and it is clear that the DC offers certain advantages over the CC.

In terms of advantages, DC surpasses CC in several ways. For example, while CC
is restricted to two-dimensional variables, DC can handle variables in any dimension.
Moreover, the range of R is between 0 and 1, which is inclusive. It is interesting to note
that when CC = 0, there is no linear correlation, but this does not indicate independence,
whereasR(X, Y) = 0 indicates independence between X and Y. Our aim is to utilize DC
as a criterion for our filter method. However, having these advantages over CC does not
necessarily mean that our filter method would perform better than the one presented in [20].
Nonetheless, there is a reason for optimism since [23] employs DC as a feature selection
criterion in selecting features for energy polynomials. It is worth noting that they achieved
a performance that matched that of the unfiltered models using two orders of magnitude
fewer parameters.

2.1. Feature Selection Method in Random Forest

Our focus is on exploring how distance correlation can facilitate feature selection. To
this end, we employ a feature selection algorithm to enhance our machine-learning models,
particularly random forests (Algorithm 1). The goal of our feature selection algorithm is to
reduce the feature space by considering the DC between each feature and the dependent
variable, using a threshold value ofR, denoted byR∗.

As outlined above, our approach involves creating a subset of this feature space using
training data, which will then be employed to train a random forest model. To achieve
this, we first specify a threshold value, denoted by R∗. We then compute R(Y, Xi) for
i = 1, . . . , p. Based on the resulting distance correlation values, we identify a subset
of X∗, denoted by X∗ ⊆ X, that includes any feature Xj satisfying R(Y, Xj) ≥ R∗. We
subsequently employ X∗ to construct a random forest and compute the mean squared error
(MSE) using test data.
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Algorithm 1 Proposed DC-based Method

Given a training data set Dn and the distance correlation set
−→
R∗ of length s,

1. Compute the distance correlation between Y and each feature Xj and rank the features
using the distance correlation.

2. For eachR∗,
(a) eliminate the less correlated variables using the specified R∗ as

a threshold.
(b) Using the new training data with reduced feature space, construct a

random forest using the Breiman RF algorithm.
3. Given the s constructed random forests, select the model with the minimum prediction

error based on the value ofR∗.

2.2. Theoretical Results

In this section, we develop a large sample theory for the proposed DC-based feature
selection method. We assume that our features are statistically independent and that only
the relevant ones have a strong correlation with the response variable. Consider the model

Y = f (Xi) + εi.

As in [19], we assume a moment condition on the random error terms εi. Our goal is to
ensure that our variable importance measure still converges and that it depends only on the
filtered features. The j-th variable importance is calculated based on randomly permuting
the values of Xj in the out-of-bag sample, which is denoted by X̃j. Given that we are using
a regression tree and have chosen to minimize the sum of squared errors as our criterion,
the resulting squared error after permutation can be calculated

EX̃j

(
Y− f̂

(
X1, . . . , X̃j, . . . , Xp∗

))2

We can express the variable importance for the j-th variable as follows.

VIj =

E
[(

f
(
X1, . . . , X̃j, . . . , Xp

)
− f

(
X1, . . . , Xj, . . . , Xp

))2]
E
[(

Y− f
(
X1, . . . , X̃j, . . . , Xp

))2] .

Theorem 1. Under assumptions 3.1, 3.2, 3.3, and 3.4 of [19], and there exists a fixed constant
1 < B < ∞, for any κ > 0, the estimated variable importance converges to the true variable
importance at an exponential rate. That is

P
(
|V̂ I j −VIj| > κ

)
≤ e−κ·nν(p∗)/B,

where 0 < v(p∗) ≤ 1 is a function of the dimension p∗, which represents the reduced number of
features obtained using the DC-based filter method. VIj is a measure of variable importance for each
variable j ∈ P , as defined in (Section 2.2), along with its estimate V̂ I j.

Proof. Employing analogous reasoning as presented in [20], we can establish the validity
of Theorem 1. Consequently, the detailed proof is omitted here.

3. Simulation Study

In this section, we perform a simulation study to assess the efficacy of our pro-
posed method. In addition to the simulation setup used in [20], we examine two ad-
ditional settings. For each setting, we generate 200 training samples and 1000 test samples.
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We evaluate the performance of our approach for various numbers of features, namely
p = 80, 100, 300, 500.

• Under settings 1 & 2, we consider the following model

Model 1: Yi = 5
(
Xi,1 + Xi,2 + Xi,3 + Xi,4

)
+ εi

where εi’s are the random errors that are normally distributed with a mean of 0 and
variance of 1.

– Setting 1: Generate Xi from a normal distribution: N
(
0p×1, Σp×p

)
, where

Σi,j = ρ|i−j|, with ρ = 0.5 and 0.8.
– Setting 2: Generate Xi from a normal distribution: N

(
0p×1, Σp×p

)
, where

Σi,j = ρ|i−j| + 0.2I(i 6=j), with ρ = 0.5

• Under setting 3, we consider the following model

Model 2: Yi = X2
i,1 + Xi,20 + X3

i,33 + X2
i,55 + εi

where εi’s are the random errors that are normally distributed with a mean of 0 and
variance of 1.

– Setting 3: Generate Xi from a normal distribution: N
(
0p×1, Σp×p

)
, where

Σi,j = ρ|i−j|, with ρ = 0.8.

• Under setting 4, we consider the following model

Model 3: Yi = 100×
(
Xi,1 − 0.5

)2 ×
(
Xi,2 − 0.25

)+
+ εi

where (·)+ represents the positive part and εi’s are the random errors that are normally
distributed with a mean of 0 and variance of 1.

– Setting 4: Generate Xi from Uni f [0, 1]p.

The first step of our method involves calculating the distance correlation between
the response variable Y and each feature variable Xj for all j = 1, . . . , p. Next, we
use pre-defined thresholds to select significant features. These thresholds are deter-
mined based on minimum distance correlation levels between Y and Xj, which include
−→R ∗ =

{
0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60

}
. If R∗ = 0, then all features are selected and

included in the random forest regression. Conversely, ifR∗ = 0.5, then only features with
a distance correlation of at least 0.5 with the response variable are selected and added to
the RF at each stage. We repeated the procedure 200 times to obtain reliable results.

3.1. Analysis of the Linear Models

Table 1 presents the results for all methods for Model 1 and setting 1 with ρ = 0.5.
One trend that is evident is that the increase in the number of parameters (p) leads to

an increase in the MSE. This implies that the model’s accuracy decreases as the number
of parameters increases, which is expected. The RLTNo5 model, which is RLT without
muting where five features are utilized in the linear combination to create a split candidate,
performed significantly better than other models. On the other hand, the traditional RF
had the worst performance, which is desirable since our aim is to enhance the traditional
RF with our methods. The optimal r∗ threshold is likely between 0.4 and 0.6, although the
optimalR∗ threshold value is inconclusive. Nonetheless, the general trend indicates that
as R∗ increases, MSE decreases. It appears that the best model has an R∗ > 0.6, but we
found that this was not the case. For R∗ > 0.6, the model’s accuracy decreased, and we
even encountered errors forR∗ values that were excessively high since this meant that the
model was discarding all parameters, and as a result, no random forest could be generated.
It is probable that for these settings, the optimalR∗ threshold is between 0.5 and 0.7.
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Table 1. Prediction Mean Squared Error for Model 1 and Setting 1 with ρ = 0.5.

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 30.4468 32.3146 37.0157 39.9092

No RLTNo1 17.1149 18.2449 20.6827 22.2395
RLTNo2 8.3586 9.2965 10.8636 12.1497
RLTNo5 5.9539 6.8420 8.4067 9.5437

Moderate RLTMod1 23.5688 24.9247 29.2962 31.4494
RLTMod2 12.7399 13.8862 16.9476 19.1914
RLTMod5 9.7806 10.9047 13.5140 15.6142

CC (r∗) 0 30.4568 32.3099 36.9560 39.9454
0.1 22.8696 24.6372 29.9454 33.0442
0.2 16.5787 16.7887 16.9566 18.2652
0.3 15.9218 15.8904 15.7830 15.7455
0.4 13.3106 13.4890 13.0326 13.0766
0.5 12.5500 12.8932 12.4917 12.5678
0.6 16.4444 16.9558 16.4051 15.5541

DC (R∗) 0 30.5103 32.2662 36.9264 39.9739
0.1 30.4394 32.3129 36.9792 39.9157
0.2 30.4860 32.2304 37.0245 39.8639
0.3 30.2126 32.1138 37.0334 39.8655
0.4 20.8794 22.2660 27.2499 30.5149
0.5 16.7517 16.6341 16.3208 16.6678
0.6 13.7511 13.8123 13.5889 13.3938

We observed a significant improvement in the CC method’s performance in the RF
model when r∗ increased from 0.1 to 0.2 in the p = 500 column. This resulted in a 44.7%
decrease in MSE. Similarly, there was a 45.4% reduction in MSE when our method’s
thresholdR∗ increased from 0.4 to 0.5. It is possible that the similarity in the magnitude of
these MSE drops is coincidental. However, we observed a similar pattern for p = 80, 100,
and 300. To clarify, let MSEDCR∗ ,p

represent the DC MSE at R∗ and p. Similarly, let
MSECCr∗ ,p

be the CC MSE at r∗ and p. We noticed the following trend:∣∣∣∣∣MSEDC0.5,80

MSEDC0.4,80

−
MSECC0.2,80

MSECC0.1,80

∣∣∣∣∣ = 0.0774∣∣∣∣∣MSEDC0.5,100

MSEDC0.4,100

−
MSECC0.2,100

MSECC0.1,100

∣∣∣∣∣ = 0.0656∣∣∣∣∣MSEDC0.5,300

MSEDC0.4,300

−
MSECC0.2,300

MSECC0.1,300

∣∣∣∣∣ = 0.0327∣∣∣∣∣MSEDC0.5,500

MSEDC0.4,500

−
MSECC0.2,500

MSECC0.1,500

∣∣∣∣∣ = 0.0065

The DC-based model accuracy eventually improves to a comparable level with the
CC-based model when R∗ reaches approximately 0.5. However, this is not the optimal
R∗ value, just as r∗ = 0.2 is not the optimal threshold. In this case, the CC method easily
identifies the more important parameters, while the DC method is more cautious and
does not filter out parameters with weak linear correlations. The best prediction MSEs are
achieved at r∗ = 0.5 for the CC method and R∗ = 0.6 for the DC method. Although a
higherR∗ threshold is required for the DC method to optimize, the prediction MSE results
are comparable to those of the CC method.

According to Table 2, we see the same optimal threshold values of r∗ and R∗. The
optimal MSEs for the DC and CC methods are even closer, but the CC method still has a
slight edge. The race for the best MSE is now closer with RLT, but RLTNo5 remains the
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best model, while the traditional RF remains the least accurate. As the correlation between
parameters and the response variable increases, the MSE generally decreases compared to
Table 1.

Table 2. Prediction Mean Squared Error for Model 1 and Setting 1 with ρ = 0.8.

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 16.4542 16.8286 20.2293 21.4920

No RLTNo1 11.1426 11.6650 13.5729 14.1749
RLTNo2 6.8722 7.3101 8.8551 9.6527
RLTNo5 5.4821 5.8649 7.3025 8.0649

Moderate RLTMod1 14.9992 15.5370 18.7807 19.8693
RLTMod2 10.3251 10.8486 13.8485 15.1718
RLTMod5 8.4156 8.9015 11.3316 12.5533

CC (r∗) 0 16.4618 16.8028 20.2333 21.5206
0.1 13.0510 13.2847 16.1036 17.3913
0.2 10.7760 10.5976 10.9608 11.1928
0.3 10.2295 10.0385 10.0109 10.0872
0.4 9.2580 9.0398 9.0732 9.1315
0.5 8.5590 8.4243 8.5828 8.5259
0.6 9.1113 9.0128 9.1327 9.0838

DC (R∗) 0 16.4589 16.8685 20.2596 21.5370
0.1 16.4747 16.8312 20.2180 21.5444
0.2 16.4707 16.7899 20.1973 21.5172
0.3 16.3218 16.7368 20.2653 21.5056
0.4 12.2518 12.5301 14.5710 15.9063
0.5 10.3558 10.2450 10.2731 10.3228
0.6 9.4236 9.2640 9.3533 9.3839

In Table 3, we observe that the CC method outperforms our method and marks the
first instance where a better model than RLTNo5 is identified. It is possible that the DC
method could achieve comparable results at a higher threshold, but we did not have the
opportunity to optimize this threshold for the DC method.

Table 3. Prediction Mean Squared Error for Model 1 and Setting 2 with ρ = 0.5.

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 21.9640 23.6652 28.2053 30.0032

No RLTNo1 13.0988 14.2620 16.5793 17.3747
RLTNo2 7.3378 8.2417 10.2177 11.1712
RLTNo5 5.5720 6.3689 8.2305 9.2038

Moderate RLTMod1 17.9596 19.3122 23.0986 24.3520
RLTMod2 11.4233 12.5715 16.2147 17.8654
RLTMod5 9.1465 10.2833 13.5496 15.2372

CC (r∗) 0 21.9342 23.6987 28.1940 29.9885
0.1 21.7451 23.6321 28.2193 29.9617
0.2 20.9032 22.9340 27.5293 29.3341
0.3 16.8882 18.6162 23.0721 25.1728
0.4 11.9670 12.4959 13.4938 14.0448
0.5 11.3873 11.7433 11.6022 11.3566
0.6 9.0305 9.2198 9.3215 9.1254
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Table 3. Cont.

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 21.9640 23.6652 28.2053 30.0032

DC (R∗) 0 21.9021 23.7338 28.1547 29.9792
0.1 21.8892 23.7192 28.1623 30.0492
0.2 21.8888 23.6486 28.1887 30.0208
0.3 21.8853 23.7239 28.2238 29.9949
0.4 21.6011 23.4470 28.0920 29.8334
0.5 19.3799 21.3558 26.1481 28.1744
0.6 12.5753 13.4929 15.1863 16.6041

3.2. Analysis of the Nonlinear Model

In this section, we examine a nonlinear model as outlined in setting 3. The results are
presented in Table 4.

Table 4. Prediction Mean Squared Error for Model 2 and Setting 3 with ρ = 0.8.

Method p = 80 p = 100 p = 300 p = 500
Traditional RF 9.4389 9.5245 10.4246 10.7869

No RLTNo1 8.6755 8.7385 9.4071 9.7955
RLTNo2 8.5479 8.6631 9.4587 9.9032
RLTNo5 8.6720 8.7762 9.5994 10.0118

Moderate RLTMod1 9.6584 9.7615 10.7009 11.2133
RLTMod2 9.7378 9.8579 10.9569 11.4871
RLTMod5 9.8222 9.9758 11.0402 11.6132

CC (r∗) 0 10.5241 10.4354 11.7246 12.1731
0.1 11.0046 10.9849 12.0554 12.3790
0.2 11.3745 11.1895 11.8162 11.9509
0.3 10.8041 10.5800 10.9673 10.8763

DC (R∗) 0 9.4371 9.5271 10.4387 10.7732
0.1 9.4270 9.5461 10.4322 10.7692
0.2 9.4465 9.5276 10.4433 10.7636
0.3 9.4336 9.5344 10.4295 10.7577
0.4 8.9385 8.9611 9.6091 9.8364
0.5 9.4990 9.4992 9.5010 9.4111
0.6 10.4607 10.4244 10.3874 10.3362

These results are particularly exciting as they reveal the advantages of using DC as
a feature selection criterion. It is worth noting that the CC method threshold stops at
0.3 because, as the data are not constructed under a linear model, setting a CC threshold
higher than 0.3 will filter out all the parameters of the model, making it impossible to
construct an RF. This is not the case with the DC method, as it is capable of detecting
nonlinear correlations and allowing more parameters to survive the filter method. Although
the CC method does not perform well in this case, we can see that RLT remains the
best method for p = 80, 100, and 300. However, for the high-dimensional case, our
proposed method performs best, indicating that it could be an improvement over RF in
high-dimensional scenarios. In the future, it would be interesting to compare the proposed
method with other machine learning techniques in high-dimensional datasets that exhibit
nonlinear correlations. Additionally, we assess the benefits of the proposed method using
the simulation setting employed in a previous study [19]. The outcomes of this analysis are
presented in Table 5.

The performance of our DC method is outstanding compared to both traditional RF
and the CC method in this nonlinear simulated dataset, similar to our other nonlinear
simulated dataset. It is worth noting that the CC method has a lower threshold, as a
threshold higher than 0.3 eliminates all parameters from the RF model. As we have
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previously observed, RLT performs exceptionally well here. However, as seen in setting 3,
as the number of parameters increases, our proposed method appears to gain an advantage
over RLT. Specifically, the DC-based feature selection method outperforms RLT for p = 300
and p = 500. This once again supports the notion that the DC-based method may be an
excellent candidate for high-dimensional data analysis.

Table 5. Prediction Mean Squared Error for Model 3 and Setting 4.

Method p = 80 p = 100 p = 300 p = 500

Traditional RF 6.1719 6.3132 7.0491 7.4381

RLTNo1 2.4868 2.4958 2.9554 3.3648
RLTNo2 2.5882 2.6486 3.3094 3.8033
RLTNo5 2.8512 2.8675 3.5907 4.3271

RLTMod1 3.1720 3.1258 3.8918 4.5346
RLTMod2 3.6176 3.5186 4.5701 5.1221
RLTMod5 3.7851 3.7519 4.8743 5.7918

CC (r∗) 0 6.1638 6.2397 7.0040 7.4891
0.1 8.6832 8.9644 9.0353 9.1730
0.2 10.7540 10.7789 10.7112 10.5731
0.3 12.2340 12.2444 11.8764 12.3109

DC (R∗) 0 6.1879 6.1030 7.0218 7.5451
0.1 6.1925 6.0984 6.9839 7.4811
0.2 6.2513 6.0910 6.9863 7.4811
0.3 6.1112 6.0962 7.0018 7.4744
0.4 5.5324 5.5445 6.2003 6.7826
0.5 2.6557 2.5385 2.8895 3.2704
0.6 9.8633 9.5040 9.4988 9.9643

According to Figure 1, it is evident that the DC-based method outperforms CC sig-
nificantly. In setting 4, we observe that our optimal MSE is often less than half of the CC
method’s MSE.
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Figure 1. Prediction MSE Comparison for Model 2 & 3.
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4. Applications

To illustrate the practical usage, we apply our proposed methods to two real datasets,
which are provided below.

1. Riboflavin Data:
This dataset contains riboflavin production by Bacillus subtilis. There are n = 71
observations of p = 4088 predictors (gene expressions) and a one-dimensional re-
sponse variable.

2. Boston Housing Data:
This dataset contains housing data for 506 census tracts of Boston from the 1970 census.
There are n = 506 observations of p = 14 predictors.

4.1. Riboflavin Data

The Riboflavin dataset is a widely used dataset found in the ‘hdi’ R package, provided
by [24]. It consists of 71 observations of 4088 predictors, representing the expression
levels of 4088 genes, and a single response variable, which is the riboflavin production of
Bacillus Subtilis. The objective of our study is to predict the log-transformed riboflavin
production rate using gene expressions as predictors. This dataset is an example of a
high-dimensional dataset, as the number of features is much larger than the number of
observations, i.e., p > n. The results of our analysis are presented in Table 6.

Table 6. Prediction Mean Squared Error for Riboflavin Data.

Traditional RF 0.5029

No RLTNo1 0.5521
RLTNo2 0.5459
RLTNo5 0.5436

Moderate RLTMod1 0.5555
RLTMod2 0.5216
RLTMod5 0.5623

Threshold CC (r∗) DC (R∗)

0.00 0.5026 0.5071
0.05 0.4936 0.5133
0.10 0.4866 0.5049
0.15 0.4654 0.5104
0.20 0.4521 0.5130
0.25 0.4356 0.5043
0.30 0.4217 0.5063
0.35 0.4083 0.5076
0.40 0.3864 0.5100
0.45 0.4076 0.5029
0.50 0.5594 0.4990
0.55 0.4175 0.4873
0.60 0.5565 0.4628
0.65 NA 0.4358
0.70 NA 0.4126

To ensure stable results, we conduct 200 repetitions and calculate the average predic-
tion mean squared error. The findings indicate that the CC-based feature selection method
is much more precise than the RLT methods and significantly better than the traditional RF.
Our proposed method comes in second place with an optimal threshold of 0.7. It is worth
noting that a betterR∗ threshold may exist in the range of (6.5,7.5).
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The results indicate that the methods have similar accuracy, but the CC method
performs better. In support of this, Figure 2 shows a continued decrease in MSE as theR∗
threshold increases, suggesting that an optimal threshold may exist beyond 0.7. However,
even with this potential for improvement, the results obtained with our proposed method
are comparable at best to those of the CC method.
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Figure 2. Boxplot for Prediction MSE Comparison for Riboflavin Data.

Figure 3 illustrates the diminishing returns of increasing the CC threshold and high-
lights the potential for a better prediction of mean squared error (MSE) by increasing the
DC threshold.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
Threshold

P
re

di
ct

io
n 

M
S

E

Method CC DC

Figure 3. Prediction MSE Comparison for Riboflavin Data for CC and DC-based Methods.
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4.2. Boston Housing Data

The Boston housing data set is provided by [25] and is a built-in data set in R. Unlike
the riboflavin data set, it has a lower dimensionality with only 13 predictors and a one-
dimensional response variable. The data set contains 506 observations and provides
information gathered from the 1970s census. The predictors include the per capita crime
rate by town, the average number of rooms per dwelling, the pupil-teacher ratio by town,
and other factors. The response variable is the median value of owner-occupied homes in
$1000. The objective is to use the available information, such as the per capita crime rate by
town (CRIM), nitric oxides concentration (NOX), proportion of non-retail business acres
per town (INDUS), and full-value property-tax rate per $10,000 (TAX), among others, to
predict the median value of owner-occupied homes.

We applied the same methodology to analyze the Boston housing dataset, and the
prediction MSE results are presented in Table 7. Similar to the Riboflavin dataset, we do
not observe any improvement in the model by using the RLT method. However, we see
slight improvements from the two filter methods compared to traditional RF. Furthermore,
we notice that our proposed method slightly outperforms the CC method. Moreover, we
observe that our proposed DC-based method has relatively stable results irrespective of the
R∗, whereas the CC method shows an increasing trend in prediction MSE and results in
almost three times the MSE of the traditional RF as r∗ varies from 0.1 to 0.7.

Table 7. Prediction Mean Squared Error for Boston Housing Data.

Traditional RF 11.6123

No RLTNo1 16.5492
RLTNo2 16.7430
RLTNo5 16.0898

Moderate RLTMod1 16.0028
RLTMod2 15.6108
RLTMod5 15.6015

Threshold CC (r∗) DC (R∗)

0.1 11.5548 11.5702
0.15 11.5674 11.5258
0.2 11.5926 11.5477

0.25 11.9115 11.5586
0.3 12.6297 11.5891

0.35 12.7505 11.5651
0.4 12.9315 11.5344

0.45 15.3672 11.5441
0.5 18.6801 11.5417

0.55 21.5029 11.5951
0.6 21.7865 11.9905

0.65 22.6410 12.5806
0.7 30.9052 13.0999

Once again, the results obtained support the notion that our DC-based feature se-
lection method is more conservative in eliminating predictors that are relevant to the RF
model compared to other methods. It is interesting to note that a similar trend as seen in
Figure 4 can also be observed in Figure 5, where the change in MSE of the CC method from
r∗ = 0.2 to 0.4 is similar to that of the DC method from R∗ = 0.5 to 0.7. This change in
MSE is approximately 12% for both methods, as r∗ andR∗ vary within those ranges.
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Figure 4. Prediction MSE Comparison for Setting 1 (ρ = 0.5, 0.8) and Setting 2 with ρ = 0.5.
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Figure 5. Prediction MSE Comparison for Boston Housing Data for CC and DC-based Methods.

5. Conclusions

In this paper, we proposed a novel variable selection procedure for RF using distance
correlation. We observed that the proposed DC-based method performed very well in
most cases, especially in nonlinear models. Although we anticipated that our approach
would perform similarly or better than the CC-based filter method, we were pleasantly
surprised to find that it outperformed RLT methods under high-dimensional settings. Our
approach consistently outperformed the traditional RF method, and in the case of the
nonlinear models, it even outperformed the CC method. In the linearly simulated data,
we observed that the DC method performed similarly to the CC method in most cases.
However, we noticed that optimizing the DC prediction MSE required a higher threshold,
which is not surprising given that our method is more conservative in feature filtering. This
is not a significant disadvantage, except perhaps for computational cost, as more features
are retained in the RF model construction. To address this, we can adjust the threshold to a
higher value. We observed only one case where DC significantly underperformed the CC
method, which was in setting 2. In this case, a strong linear correlation was simulated, and
thus, the CC method was expected to perform well, which was indeed the case. However,
in situations such as this, we can consider increasing the DC threshold to 0.7 or 0.8 and
see if the prediction MSE improves and becomes comparable to that of the CC method, as
we observed previously. Our method demonstrated its superior performance in nonlinear
models, particularly in high-dimensional cases. This piqued our interest in exploring
high-dimensional datasets. Finally, two real data applications are provided to illustrate the
advantage of the proposed methods.
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