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Abstract: The emotional changes in facial micro-expressions are combinations of action units. The
researchers have revealed that action units can be used as additional auxiliary data to improve facial
micro-expression recognition. Most of the researchers attempt to fuse image features and action unit
information. However, these works ignore the impact of action units on the facial image feature
extraction process. Therefore, this paper proposes a local detail feature enhancement model based on
a multimodal dynamic attention fusion network (MADFN) method for micro-expression recognition.
This method uses a masked autoencoder based on learnable class tokens to remove local areas with
low emotional expression ability in micro-expression images. Then, we utilize the action unit dynamic
fusion module to fuse action unit representation to improve the potential representation ability of
image features. The state-of-the-art performance of our proposed model is evaluated and verified on
SMIC, CASME II, SAMM, and their combined 3DB-Combined datasets. The experimental results
demonstrated that the proposed model achieved competitive performance with accuracy rates of
81.71%, 82.11%, and 77.21% on SMIC, CASME II, and SAMM datasets, respectively, that show the
MADFN model can help to improve the discrimination of facial image emotional features.

Keywords: micro-expression recognition; learnable class token; dynamic fusion

1. Introduction

Facial micro-expressions (hereinafter referred to as micro-expressions) are short-
duration and low-intensity facial muscle movements. Since it usually occurs when hiding
emotion in the heart and can reflect genuine emotions and motivations [1]. If people are
not professionally trained, it is impossible to hide the appearance of micro-expressions [2].
Researchers found that micro-expressions are often present in lie detection scenarios. Thus,
it has major implications when it comes to high-risk situations, including criminal investi-
gation, social interactions, national security, and business negotiations [3].

The researchers have shown that facial emotional changes are a combination of some
action units (AUs), which can be used as additional auxiliary information to improve
the performance of facial micro-expressions recognition [4]. Xie et al. [5] combined AU
detection and micro-expression recognition and proposed an AU-assisted Graph Attention
Convolutional Network. The model predicts micro-expression categories by learning AUs
node features in the graph convolutional network learning module. Lei et al. [6] proposed
a graph convolutional network based on AU, which enhanced the feature representation
of nodes and graph edges extracted by the graph convolutional network by fusing AU
features. Zhao et al. [7] proposed a Spatio-Temporal AU Graph Convolution Network,
which inputs local image regions of AUs to a three-dimensional convolutional model
to obtain AU features. They tried to utilize graph convolutional networks to focus on
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the dependencies between different local regions to improve the performance of micro-
expressions recognition.

Although these methods employ action units to enhance image features, they do not
consider the impact of action units on the image feature extraction process. The studies
have shown that the Vision Transformer (ViT) [8] model can achieve success in tasks such
as image recognition [9], object detection [10], image segmentation [11], and generation [12]
by focusing on image local information. The ViT model structure can introduce auxiliary
information into the image encoder model to dynamically enhance features. Therefore, this
paper proposes a local detail feature enhancement method based on a multimodal dynamic
attention fusion network (MADFN) model for micro-expression recognition. This model of
the local detail feature enhancement method is shown in Figure 1.
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Figure 1. The framework of the MADFN method. The apex frame of the micro-expression video clip
is input to an LCT module to remove local areas with low emotional expression. Then, the AUDF
module adds to the vision transformer encoder to fuse action unit representation to improve the
potential representation ability of image features. Finally, the local image features with high attention
weight are fused action unit representations for micro-expression recognition.

In this model, a learnable class token (LCT) is used to remove local areas with low
emotional expression ability in micro-expression images. To enhance the discrimination
of emotional features, the action unit representation is added to the extraction process of
extracting the potential emotional features of the image, and the action unit dynamic fusion
(AUDF) module is used to fuse the action unit representation with the local features of
the image sub-blocks with high weight for micro-expression recognition. We evaluated
the MADFN model on three datasets: Spontaneous Micro-expression Corpus (SMIC) [13],
Chinese Academy of Sciences Micro-Expression II (CASME II) [14], Spontaneous Actions,
and Micro-Movements (SAMM) [15], and their combined dataset (3DB-combined) [16].

In general, this paper attempts to propose a MADFN model for solving the local
detail feature enhancement problem. The main contributions of this paper are summarized
as follows:

1. The masked autoencoder based on the learnable class token is proposed to remove
small contributing local image sub-blocks for micro-expression recognition.

2. The influence of action units on facial micro-expression recognition is analyzed,
and we are the first to add action unit representations to the feature extraction process of
micro-expression images.
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The remainder of this paper is organized as follows: In Section 2, a brief review
of the related research on micro-expression recognition. Section 3 provides a complete
introduction to the proposed model. Section 4 shows the datasets, details, and results of
the experiment. Finally, Section 5 presents the conclusions of this research method.

2. Related Work

The facial micro-expression recognition methods are generally divided into two types.
The first type of method extracts global features from the whole image for micro-expressions
recognition; meanwhile, the second type of method locates the local regions where micro-
expressions occur and then extracts local features for micro-expression recognition.

2.1. Global Features for Micro-Expression Recognition

Several earlier studies [17–21] that make hand-crafted features adequately represent
the micro-expression changes on facial micro-expression recognition used a rule-based
block division approach to extract features from each block to be stitched into a com-
pact feature vector for micro-expression recognition to make hand-crafted features best
represent micro-expression changes [22,23]. This methodology was first used for micro-
expression recognition by Pfister et al. [17]. The micro-expression video images were
uniformly separated into 4 × 4, 5 × 5, and 6 × 6 blocks evenly from the three planes of XY,
XT, and YT. To recognize the micro-expressions, the Local Binary Pattern (LBP) features
of these blocks are extracted and combined into a feature vector. Wang et al. developed
the Local Binary Pattern with Six Intersections Point (LBP-SIP) to reduce the information
redundancy of the LBP-TOP feature and, thus, the time-space complexity. Spatio-Temporal
Local Binary Pattern with Integral Projection (STLBP-IP) was proposed by Huang et al.
to enhance the properties of LBP-TOP through integrated projection. By using Sparsity-
Promoting Dynamic Mode Decomposition (DMDSP) to remove neutral expressions from
micro-expression videos, Le Ngo et al. managed to achieve a high recognition rate. To
overcome the sparsity problem of the LBP features, Huang et al. [20] utilized the same
procedure to divide the micro-expression video images and thereafter extract the Spatiotem-
poral Completed Local Quantized Patterns (STCLQP) features of each region block. Wang
et al. [24] explored the rule-based block division method in different color spaces to verify
the influence of the color feature spaces on micro-expression recognition.

Although hand-crafted feature methods may give excellent micro-expression recogni-
tion results, they can ignore additional information in the original image data. With the
development of deep learning, researchers consider applying it in micro-expression recog-
nition to extract subtle changes in the features of micro-expression [25–27]. Kim et al. [28]
employed a Recurrent Neural Network to extract the temporal features of the micro-
expression video images for micro-expression recognition while using the Convolutional
Neural Networks (CNN) architecture to capture the spatial information from different
temporal stages (onset, apex, and offset frame). Liong et al. [29] developed an optical flow
feature from the apex frame (OFF-apex) framework, which utilizes the optical flow feature
map of the micro-expression apex frame as the input of the CNN to enhance the optical
flow features and improve the recognition rate of micro-expressions. Micro-expression
recognition using deep learning methods is the favorite choice of researchers with excellent
results in the 2019 Facial Micro-Expression Grand Challenge (MEGC 2019) [30–33].

2.2. Local Features for Micro-Expression Recognition

Although, the global image feature extraction method can improve effectiveness in
micro-expression recognition. However, this may neglect the influence of local information
and also brings the problem of information redundancy. Therefore, researchers first locate
regions where micro-expressions occur and then extract local features of these regions for
micro-expression recognition. The initial work on local features moved away from a rule-
based block division approach and toward a rule-based facial ROI features extraction [34,35].
Wang et al. [36] used the Facial Action Coding System (FACS) to distinguish 16 ROIs and
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obtained the Local Spatiotemporal Directional features of these regions through Robust
Principal Component Analysis (RPCA) for micro-expression recognition. Liu et al. [37]
proposed a Main Directional Mean Optical (MDMO) flow feature. To reduce the impact of
noise caused by head movement in micro-expression recognition, this method employs the
robust optical flow method to extract features from 36 ROIs divided by Action Units (AU)
in micro-expression video images. Xu et al. [38] suggested a micro-expression recognition
method based on the Facial Dynamics Map (FDM), which locates ROIs based on facial
emotion in a micro-expression video sequence and extracts features from these regions
for micro-expression recognition. Happy et al. [39] employed the FACS to locate 36 facial
ROIs and applied the Fuzzy Histogram of Optical Flow Orientation (FHOFO) method to
extract the subtle changes features in these regions of these regions for micro-expression
recognition. Liong et al. [40] presented a Bi-Weighted Oriented Optical Flow (BI-WOOF)
feature descriptor, which uses two schemes to perform a weighted average of the global
and local Histogram of Oriented Optical Flow (HOOF) features. Each ROI is weighted
using the magnitude component and multiplied by the average optical variation of each
ROI amplitude in the local feature extraction. The final histogram features are weighted
from the overall HOOF features for micro-expression recognition.

Although the rule-based ROIs location method can help improve the recognition
accuracy of the micro-expressions, it may not obtain the best results. Therefore, researchers
use deep learning or attention mechanisms to obtain local features to recognize micro-
expressions. Chen et al. [41] introduced a three-dimensional spatiotemporal convolutional
neural network with a Convolutional Block Attention Module (CBAM) for micro-expression
recognition, which included a visual attention mechanism. While this method focuses on
the importance of the features of interest, it ignores the subtle feature of the local regions.
Li et al. [42] presented an LGCcon learning module, which combines local and global infor-
mation to discover local regions of key emotional information while suppressing the detri-
mental impact of irrelevant facial regions on micro-expression recognition. Wang et al. [43]
presented a Residual Network with Micro-Attention (RNMA) model to locate the facial
ROIs holding distinct AU to address the influence of micro-expression changes in local
regions. Xia et al. [44] proposed a recurrent convolutional network (RCN) to explore the ef-
fects of shallow architecture and low-resolution input data on micro-expression recognition
using an attention model for focusing on local facial regions.

3. Methodology
3.1. Multimodal Dynamic Attention Fusion Network

The multimodal dynamic attention fusion network consists of two inputs micro-
expression image and AU embedding. First, the micro-expression image is divided into
regular non-overlapping sub-blocks. The mask operation is performed on the image sub-
blocks that contribute less to micro-expression recognition through the learnable class
token module. The image sub-blocks with high attention weights are input into the
action unit dynamic fusion module through normalization and multi-head self-attention
(MSA) operations and fused with AU embedding to improve the distinguishability of
high-dimensional local feature representation of micro-expression images. Finally, the final
micro-expression prediction is performed by fusing AU embedding and enhanced image
local representation.

Different from the fusion methods of feature connection, addition, or multiplication,
this paper embeds the action unit dynamic fusion module into the transformer encoder
model and uses AU embedding to enhance the local feature representation of micro-
expression image, thereby increasing the discrimination of image features to improve
micro-expression recognition performance. The framework structure of the multimodal
dynamic attention fusion network is shown in Figure 2.



Entropy 2023, 25, 1246 5 of 18

Entropy 2023, 25, x FOR PEER REVIEW 5 of 18 
 

 

Different from the fusion methods of feature connection, addition, or multiplication, 

this paper embeds the action unit dynamic fusion module into the transformer encoder 

model and uses AU embedding to enhance the local feature representation of micro-ex-

pression image, thereby increasing the discrimination of image features to improve micro-

expression recognition performance. The framework structure of the multimodal dy-

namic attention fusion network is shown in Figure 2. 

 

Figure 2. The framework structure of the multimodal dynamic attention fusion network. 

3.2. Image Autoencoders Based on Learnable Class Token 

The problem of small datasets for micro-expressions severely limits model fitting, 

while the micro-expression image needs to be divided into regular non-overlapping im-

age sub-blocks in a multimodal dynamic attention fusion network model. If these image 

sub-blocks are directly input to the visual transformer, it will lead to information redun-

dancy. The low intensity of micro-expression movement results in slight differences be-

tween images of a subject in different categories but huge differences between images of 

different subjects within the same category. Therefore, micro-expression recognition can 

be regarded as a fine-grained image classification problem, and more attention should be 

paid to the distinguishability of local image features. 

For the local perception of fine-grained image classification, He et al. [45] proposed a 

Masked Autoencoder (MAE) model, which adopts a random sampling (RS) module to 

mask a large number of image sub-blocks to reduce redundancy. Compared with block-

wise sampling (BS) and grid-wise sampling (GS) modules, random sampling can con-

struct efficient feature representation through highly sparse image sub-blocks. However, 

the uncertainty of random sampling may remove some image sub-blocks with high rep-

resentational power. 

Therefore, this section proposed an image autoencoder pre-training model based on 

a learnable class token. The model structure is shown in Figure 3. The model utilizes a 

Figure 2. The framework structure of the multimodal dynamic attention fusion network.

3.2. Image Autoencoders Based on Learnable Class Token

The problem of small datasets for micro-expressions severely limits model fitting,
while the micro-expression image needs to be divided into regular non-overlapping image
sub-blocks in a multimodal dynamic attention fusion network model. If these image sub-
blocks are directly input to the visual transformer, it will lead to information redundancy.
The low intensity of micro-expression movement results in slight differences between
images of a subject in different categories but huge differences between images of different
subjects within the same category. Therefore, micro-expression recognition can be regarded
as a fine-grained image classification problem, and more attention should be paid to the
distinguishability of local image features.

For the local perception of fine-grained image classification, He et al. [45] proposed a
Masked Autoencoder (MAE) model, which adopts a random sampling (RS) module to mask
a large number of image sub-blocks to reduce redundancy. Compared with block-wise sam-
pling (BS) and grid-wise sampling (GS) modules, random sampling can construct efficient
feature representation through highly sparse image sub-blocks. However, the uncertainty
of random sampling may remove some image sub-blocks with high representational power.

Therefore, this section proposed an image autoencoder pre-training model based on
a learnable class token. The model structure is shown in Figure 3. The model utilizes
a learning sampling (LS) module to remove local image sub-blocks that contribute little
to micro-expression recognition, reducing the complexity of the pre-training model and
improving model performance while focusing on the emotional feature representation of
local areas.
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The image autoencoders-based learnable class tokens are an end-to-end pre-training
model. The model iteration is divided into two parts. Firstly, all the images of the micro-
expression video samples are input to the autoencoder for training to obtain the high-
dimensional representations of the facial image.

Specifically, the image is divided into regular non-overlapping image patches xp.
These image blocks are masked by the LCT module, and the high-weight image sub-blocks
are input to the encoder network. The encoder uses the image path of a multimodal
dynamic attention fusion network to extract the representations of local sub-blocks. Then,
these representations and the learnable class token are reconstructed according to the
original position and input to the decoder network to restore the original image. In the
second iteration, the apex frame is input to the autoencoder, and the output onset frame
extracts the emotional representation in the apex frame for micro-expression recognition.

The LCT module is a fully connected layer model in which the input is a feature vector
with the same length as the image sub-blocks xp, and the output is sorted to remove those
corresponding low-weight images. This module specifically expressed as

xs = xp ∗
[
wk, · · · , wi, · · · , wp

]T , (1)

wi =

{
1, i f wlmt_i ≥ θ
0, i f wlmt_i < θ

, (2)

θ = µ ∗ rank(wlmt), (3)

where, xs is the image sub-block sampled by the LCT module, wlmt is the parameter of
the LCT module, wi is the binary mask token projection corresponding to each image
sub-block, θ is the division of the mask weight threshold, and µ is the proportion of all
image sub-blocks masked by the LCT model.

In the model pre-training process, the parameters are updated through two different
loss functions, which are expressed as follows:

li =
1
n∑n

i=1

(
xi −

∼
x i

)2
, (4)
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lo =
1
n∑n

i=1

(
xo −

∼
xo

)2
, (5)

where, li is the loss function of image autoencoder, xi is the i-th frame image in the micro-
expression video sample, lo is the loss function of apex frame to onset frame mapping, xo is
the onset frame,

∼
x i and

∼
xo are corresponding generated face images.

Different from the random sampling of image sub-blocks in the MAE model, this
paper removes low-weight image sub-blocks through a learnable class token module. The
learned mask sub-blocks are rearranged in the order in which the sub-blocks were removed.
Finally, masked subblocks with low weights are again selected for deletion. This cycle
repeats until the best high-weight local region is selected for micro-expression recognition.
This learnable method reduces information redundancy to a large extent by deleting a large
number of image sub-blocks.

3.3. Vision Transformer Model Based on Action Unit Dynamic Fusion

Due to the low intensity of micro-expression facial motion, it is difficult to obtain
highly discriminative local representations, which affects the performance of facial micro-
expression recognition. The ViT model has been widely used in computer vision [46]. The
studies have shown that in image classification tasks, the ViT model can improve recog-
nition performance by focusing on the attention weights of image sub-blocks. However,
due to the complexity of the network structure, the ViT model usually requires large-scale
data for model training. Therefore, we first utilize a large number of mask operations
on the image through the LCT module to reduce the complexity of the model. Then, the
representations of the reserved image sub-blocks are input into the vision transformer
model based on action unit dynamic fusion to fuse the facial AU embedding to recognize
the emotional state of the face. The vision transformer model based on the action unit
dynamic fusion structure is shown in Figure 4.
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The improved ViT encoder includes L-layer MSA, AUDF, and MLP modules. The
single-layer MSA, AUDF, and MLP model structures are shown in Figure 5.
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Firstly, the image representations z0 of the remaining image, sub-blocks are normalized
and input to the MSA model to calculate the attention weight of each image sub-block.
For each subspace, define three feature matrices WQ,i, WK,i and WV,i to linearly map image
sub-blocks and obtain matrix query Qi, key Ki, and value Vi in the MSA module. Then, Qi
and Ki perform the dot product operation to obtain the attention probability distribution
of each image sub-block through SoftMax, and then multiply it with the value matrix to
obtain the attention weight of the image sub-block. Finally, the weights of each subspace in
MSA are concatenated and multiplied to obtain the final feature output z0

′.

zl
′ = MSA(LN(zl−1)) + zl−1, l = 1, . . . , L, (6)

MSA = LN(Concat(head1, head2, · · · , headk)), (7)

headi = So f tmax

(
QiKT

i√
dk

)
Vi (8)

Qi = zl−1WQ,i, i = 1, . . . , k (9)
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Ki = zl−1WK,i, i = 1, . . . , k (10)

Vi = zl−1WV,i, i = 1, . . . , k (11)

The AU embedding has been proven to help extract more effective feature represen-
tations in micro-expression recognition, but how to dynamically add AU information to
the process of feature extraction is still blank in the current research field. Inspired by
dynamic filters [47–50], this paper proposes an action unit dynamic fusion module to add
AU embedding to a vision transformer encoder model for enhancing the discriminability
of micro-expression image representations.

In the basic AUDF module, the AU-encoded features are first replicated with the
same number of image sub-blocks and then multiplied with the output of MSA. The
AUDF module utilizes dynamic multiplication to fuse AU embedding into the local feature
extraction process to increase the discrimination of facial emotional representations. The
calculation method is as follows:

zl
′′ = AUDF

(
LN
(
zl
′))+ zl

′, l ∈ 1, . . . , L, (12)

AUDF = Reshape(LN(ze))× zl
′, (13)

where, zl
′ is the output image local attention representations weight of the MSA model, zl

′′

is the output of the AUDF module, ze is the additional facial AU embedding, Reshape() is
to transform the one-dimensional feature is a two-dimensional matrix, and LN() represents
a fully connected layer.

However, facial representation and AU embedding are mutually complementary
and interdependent in micro-expression recognition. Therefore, to further enhance the
enhancement effect of AU embedding on facial representations, this paper introduces an
AUDF enhancement module, AUDF-E.

First, the attention weight output by MSA is down-sampled and mapped to a one-
dimensional feature zi. Then, perform a splicing operation with the AU embedding ze and
then linearly change it to the same dimension feature as each local image sub-block. Finally,
the features copied and concatenated are multiplied by the output of MSA with the same
number of image sub-blocks. AUDF-E is expressed as follows:

AUDF− E = Reshape(LN([zi, ze]))× zl
′, (14)

zi = Pool(zl−1), (15)

The AUDF module is used to dynamically enhance the local image representations,
and the facial emotion representations are obtained through the MLP module by residual
connection and normalized. Finally, the output of the vision transformer encoder is fused
with the AU embedding to obtain the final classification result.

zl
′′ = LayerNorm(zl−1 + zl

′′ ), (16)

zl = MLP(LN(zl
′′ )) + zl

′′ , (17)

p = So f tmax
(

MLP
(

z0
L

)
+ MLP(ze)

)
(18)

where p is the micro-expression prediction probability of the MADFN model, z0
L is the cate-

gory label output. Finally, the class token z0
L is replaced with the parameters corresponding

to the micro-expression of LCT, and the comparison sub-block with high attention weight
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is used for the next iteration. During the MADFN model training process, the focal loss is
used to reduce the impact of category imbalance.

4. Results and Analysis

In this section, the analysis and comparison of experimental results, ablation exper-
imental analysis, and visualization analysis will be introduced in detail. The proposed
MADFN model was verified experimentally on three public facial micro-expression datasets
SMIC, CASME II, SAMM, and their combination 3DB-combined.

4.1. Quantitative Analysis
4.1.1. SMIC

Table 1 shows the comparison results of the MADFN model on the SMIC dataset and
two types of baseline methods for three classifications. The accuracy of the MADFN model
is 6.07% and 11.2% higher than the best KTGSL in the global feature method and the best
model SMDMO based on local features, respectively. The F1-Score of our model is higher
than the best TSCNN model in the global feature method, and the best model SMDMO
based on local features is 0.0966 and 0.1161, respectively. The effectiveness of the MADFN
model is demonstrated by comparing it with two classes of baseline methods.

Table 1. The performance comparison of MADFN and two types of models on the SMIC dataset.

Methods Accuracy (%) F1-Score

LBP-TOP (ICCV 2011) 48.78 0.4600
DiSTLBP-RIP (FADS 2019) 63.41 N/A

LBP-SDG (NC 2021) 69.68 0.6200
LBP-FIP (MTAP 2022) 67.86 N/A

KTGSL (NC 2022) 75.64 0.6900
OFF-Apex (SPIC 2019) 67.68 0.6709

DSSN (ICIP 2019) 63.41 0.6462
TSCNN (IEEE Access 2019) 72.74 0.7236

GEME (NC 2021) 64.63 0.6158
MoCo (PRL 2023) 75.61 0.7492

RPCA (ECCV 2014) 58.00 0.6000
MDMO (TAC 2015) 58.97 0.5845

FDM (TAC 2017) 54.88 0.5380
Bi-WOOF (SPIC 2018) 61.59 0.6110
FHOFO (TAC 2019) 51.83 0.5243
SMDMO (TAC 2021) 70.51 0.7041

CBAM (Information 2020) 54.84 N/A
RNMA (NC 2020) 49.40 0.4960

LGCconD (TIP 2020) 63.41 0.6200

MADFN 81.71 0.8202

4.1.2. CAMSE II

Table 2 shows the comparison results of the MADFN model on the CAMSE II dataset
and two types of baseline methods for three classifications. Compared with local feature
methods, the MADFN model outperforms existing baseline methods. Although the MER-
SiamC3D model with global features is 0.0205 higher than the F1-Score performance of the
MADFN, the MERSiamC3D model uses key frame images in video sequences for recog-
nition, and the model structure is more complex. Compared with the optimal TSGACN
method in local features, the strategy of fusing facial key points and optical flow features,
the MADFN enhances facial local features through AU embedding, and the accuracy and
F1-Score performance indicators of the model are higher than TSGACN 0.41% and 0.6641.
At the same time, the experimental results found that although TSGACN can achieve higher
recognition accuracy, its F1-Score performance is slightly lower, which shows that they
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did not consider the influence of sample imbalance in the CAMSE II, and similar results
emerged in the SAMM dataset.

Table 2. The performance comparison of MADFN and two types of models on the CAMSE II dataset.

Methods Accuracy (%) F1-Score

LBP-TOP (ICCV 2011) 39.68 0.3589
LTOGP (ICASSP 2019) 66.00 N/A

DiSTLBP-RIP (FADS 2019) 64.78 N/A
LBP-SDG (NC 2021) 71.32 0.6700

LBP-FIP (MTAP 2022) 70.00 N/A
KTGSL (NC 2022) 72.58 0.6800

OFF-Apex (SPIC 2019) 68.94 0.6967
DSSN (ICIP 2019) 70.78 0.7297

TSCNN (IEEE Access 2019) 80.97 0.8070
Graph-TCN (MM 2020) 73.98 0.7246

GEME (NC 2021) 64.63 0.6158
MoCo (PRL 2023) 76.30 0.7366
FDCN (SIVP 2023) 73.09 0.7200

MERSiamC3D (NC 2021) 81.89 0.8300

RPCA (ECCV 2014) 49.00 0.5100
MDMO (TAC 2015) 51.69 0.4966

FDM (TAC 2017) 45.93 0.4053
Bi-WOOF (SPIC 2018) 57.89 0.6125
FHOFO (TAC 2019) 56.64 0.5248

RAM (FG 2020) 68.20 0.5700
SMDMO (TAC 2021) 66.95 0.6911

CBAM (Information 2020) 69.92 N/A
RNMA (NC 2020) 65.90 0.5390

LGCconD (TIP 2020) 65.02 0.6400
AU-GCN (CVPR 2021) 74.27 0.7047
TSGACN (CVPR 2021) 81.30 0.7090

MADFN 82.11 0.8095

4.1.3. SAMM

Table 3 shows the comparison results of the MADFN model on the SAMM dataset and
two types of baseline methods for three classifications. Compared with the global feature
method, MADFN has achieved the best experimental results. However, in comparison with
the method of local features, MADFN is still much different from the TSGACN model. The
TSGACN has achieved excellent performance on the SAMM dataset with its unique model,
but they are more focused on improving model performance. The recognition performance
of the MADFN model is slightly inferior to that of TSGACN, but the MADFN model
proposed in this paper pays more attention to the generalization ability, the processing
of unbalanced data, and the complexity of the model. The experimental results show
that MADFN can improve the classification accuracy even by fusing the overall and local
features and alleviating the problem of micro-expression sample imbalance.
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Table 3. The performance comparison of MADFN and two types of models on the SAMM dataset.

Methods Accuracy (%) F1-Score

LBP-TOP (ICCV 2011) 35.56 0.3589
KTGSL (NC 2022) 56.11 0.4900
DSSN (ICIP 2019) 57.35 0.4644

TSCNN (IEEE Access 2019) 71.76 0.6942
Graph-TCN (MM 2020) 75.00 0.6985

GEME (NC 2021) 64.63 0.6158
MoCo (PRL 2023) 68.38 0.7366
FDCN (SIVP 2023) 58.07 0.5700

MERSiamC3D (NC 2021) 68.75 0.5436

RNMA (NC 2020) 48.50 0.4020
LGCconD (TIP 2020) 40.90 0.3400

AU-GCN (CVPR 2021) 74.26 0.7045
TSGACN (CVPR 2021) 88.24 0.8279

MADFN 77.21 0.7489

4.1.4. MEGC2019

Table 4 shows the comparison results of the MADFN model on the MEGC2019 dataset
and two types of baseline methods for three classifications. On the three subsets of SMIC,
CASME II, and SAMM datasets, the MADFN proposed in this paper achieves the SOTA
recognition results. At the same time, in the comparison experiment of the combined dataset
3DB-Combined, the MADFN model also achieved competitive performance. Compared
with the optimal PLAN method in local features, MADFN also improves the UF1 and
UAR indicators by 0.012 and 0.0024, respectively, which also proves the effectiveness of
the model.

Table 4. The performance comparison of MADFN and two types of models on the MEGC2019 dataset.

Methods
SMIC CASME II SAMM 3DB-Combined

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP (ICCV 2011) 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102 0.5882 0.5785
Bi-WOOF (SPIC 2018) 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139 0.6296 0.6227
OFF-Apex (SPIC 2019) 0.6817 0.6695 0.8764 0.8681 0.5409 0.5409 0.7196 0.7096
CapsuleNet (FG 2019) 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989 0.6520 0.6506

Dual-Inception (FG 2019) 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663 0.7322 0.7278
STSTNet (FG 2019) 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810 0.7353 0.7605

EMR (FG 2019) 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152 0.7885 0.7824
SHCFNet (2020) 0.6100 0.6311 0.6540 0.6536 0.6089 0.5926 0.6242 0.6222

MERSiamC3D (NE 2021) 0.7356 0.7598 0.8818 0.8763 0.7475 0.7280 0.8068 0.7986
FeatRef (PR 2022) 0.7011 0.7083 0.8915 0.8873 0.7372 0.7155 0.7838 0.7832
GEME (NC 2021) 0.6288 0.6570 0.8401 0.8508 0.6868 0.6541 0.7395 0.7500

Bi-WOOF (SPIC 2018) 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139 0.6296 0.6227
RCN-A (TIP 2020) 0.6441 0.6326 0.8123 0.8512 0.6715 0.7601 0.7190 0.7432
RCN-S (TIP 2020) 0.6572 0.6519 0.7914 0.8360 0.6565 0.7647 0.7106 0.7466
RCN-W (TIP 2020) 0.6600 0.6584 0.8131 0.8522 0.6164 0.7164 0.7100 0.7422
RCN-F (TIP 2020) 0.5980 0.5991 0.8087 0.8563 0.6771 0.6976 0.7052 0.7164

LGCcon (TIP 2021) N/A N/A 0.7929 0.7639 0.5248 0.4955 0.7914 0.7933
LGCconD (TIP 2020) 0.6195 0.6066 0.7762 0.7499 0.4924 0.4711 0.7715 0.7864

AU-GCN (CVPR 2020) 0.7192 0.7215 0.8798 0.8710 0.7751 0.7890 0.7979 0.8041
PLAN_S (NN 2022) 0.7127 0.7256 0.8632 0.8778 0.7164 0.7418 0.7826 0.7891

PLAN (NN 2022) N/A N/A 0.8941 0.8962 0.7358 0.7687 0.8075 0.8013

MADFN 0.8179 0.8102 0.9061 0.8986 0.8322 0.8289 0.8100 0.8044
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4.2. Ablation Experiment Analysis

A detailed analysis is carried out in the ablation experiments to evaluate the effec-
tiveness of the local feature extraction of the MADFN. This section conducts ablation
experiments in three aspects of the basic model, mask sampling strategy and fusion strat-
egy in the SMIC, CASME II, and SAMM.

4.2.1. Basic Model

This section first compares the influence of three different backbone networks of ViT
Base (ViT-B/16), ViT Large (ViT-L/16), and ViT Huge (ViT-H/14) on micro-expression
recognition. The backbone model network parameters are shown in Table 5.

Table 5. The different backbone model structure settings.

Model Patch Size Layers Hidden Size MLP Size Heads

ViT-Base 16 × 16 12 768 3072 12
ViT-Large 16 × 16 24 1024 4086 16
ViT-Huge 14 × 14 32 1280 5120 16

It was found that in SMIC and SAMM, although the performance of ViT-H was higher
than that of ViT-B structure, it was slightly inferior to that of ViT-L. In CASME II, ViT-H
achieved the best results. The reason for this result is that the size of the micro-expression
data set does not support training on a large-scale dataset but in a smaller-scale data set.
Therefore, in the follow-up experiment process, this paper uses ViT-L as the backbone
network for model training, and the experimental results are shown in Table 6.

Table 6. The influence of different backbone models.

Model
SMIC CASME II SAMM

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

ViT-B/16 64.63 0.6602 53.79 0.4780 58.19 0.3598
ViT-L/16 68.29 0.6858 57.24 0.5136 62.70 0.5280
ViT-H/14 65.24 0.6412 58.62 0.5386 59.69 0.4704

4.2.2. Mask Sampling

Based on determining the backbone network, the impact of different mask sampling
strategies on the performance of the DViT model is further compared. Specifically, the
impact of the four mask sampling strategies of BS, GS, RS, and LS is mainly compared.
Among them, block sampling is to randomly mask out large image blocks, grid sampling
refers to masking out three of every four small image blocks, and random sampling is
large-scale masking out of small image blocks; a different sampling strategy is shown in
the figure.

The experimental results are shown in Table 7. In the three comparison data sets,
random sampling and learning sampling are much higher than average block sampling
and grid sampling. Compared with the random adoption strategy, the learning sampling
strategy can improve the accuracy of recognition. This is because mask sampling through
learning can effectively avoid the uncertainty brought about by random mask sampling
so that a highly differentiated local region of interest can be obtained through an accurate
mask strategy, thereby extracting more robust local features to improve the performance of
micro-expression recognition.
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Table 7. The influence of different mask sampling strategies.

Model
SMIC CASME II SAMM

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

BS 65.85 0.6658 48.17 0.5069 68.38 0.6643
GS 65.24 0.6696 48.17 0.5008 67.64 0.6481
RS 68.29 0.6822 59.79 0.6033 69.11 0.6819
LS 69.51 0.7008 72.63 0.7327 72.46 0.7082

4.2.3. Fusion Strategy

In the ablation experiment of AU-encoded feature enhancement, the effect of different
fusion strategies on micro-expression recognition is mainly compared. First, the unimodal
image data is fed into the ViT model with learned masks as a baseline comparison. Secondly,
the local image features and AU embedding extracted by the ViT model are concatenated
(ViT-C-AU), sum (ViT-S-AU), and multiplied (ViT-M-AU) for fusion. Finally, facial features
are enhanced by fusing AU via the AUDF module.

The experimental results are shown in Table 8. Although the multi-modal feature
concatenated, addition, and multiplied can improve the performance of micro-expression
recognition, it cannot improve the discrimination of facial emotional features through AU
embedding. The AUDF module proposed in this paper uses dynamic mapping to add AU
embedding to the extraction process of facial emotional features and enhances emotional
features. The proposed AUDF-E can achieve better experimental results by fusing facial
image features and AU embedding.

Table 8. The influence of different fusion strategies.

Methods Image AU
SMIC CASME II SAMM

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

ViT
√

69.51 0.7008 72.63 0.7327 72.46 0.7082
ViT-C-AU

√ √
71.85 0.7026 73.17 0.7327 73.44 0.7181

ViT-S-AU
√ √

71.68 0.7030 73.62 0.7386 73.70 0.7180
ViT-M-AU

√ √
73.51 0.7208 74.63 0.7427 74.11 0.7219

AUDF
√ √

78.04 0.7784 77.64 0.7520 75.73 0.7316
AUDF-E

√ √
81.71 0.8202 82.11 0.8095 77.21 0.7489

4.3. Parameters

We have compared the total number of parameters, training, and testing time of the
proposed model compared with existing models in the SMIC dataset using PyTorch on the
GeForce RTX A6000 platform. The total parameters and time are shown in Table 9.

Table 9. The total number of parameters and training and testing time.

Model Params Training Times Test Times

ViT-Base 86M 7.3H 13MS
ViT-Large 307M 10.6H 18MS
ViT-Huge 632M 24.2H 24MS
MADFN 224M 9.2H 25MS

4.4. Visualization Analysis

The performance and scale of the AUDF model are largely determined by learning
mask marks. To further explain the impact of learning mask marks on model performance,
the performance of AUDF is visualized through Grad-CAM. Figures 6–8 can clearly show
the corresponding relationship between learning mask marks and Grad-CAM in SMIC,
CASME II, and SAMM datasets, where the first column is the sub-block division of the
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original image, and the second column is the visual representation of the mask of the
original image by the LCT module, the third column is the mask representation of LCT
in Grad-CAM, and the fourth column is the visual representation of Grad-CAM. It can
be seen from the figure that LCT can mask out areas that have little influence on category
weights and propose emotional features in local areas with high attention weights for
micro-expression recognition.
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5. Conclusions

In this paper, a multimodal dynamic attention fusion network method is proposed to
enhance the local features of facial images by facial action unit embedding. To the parameter
complexity of the vision transformer model, a learnable class token is proposed to sample
a subset of patches with high attention weights to reduce the computational complexity
of facial image feature extraction. The action unit dynamic fusion module is used to add
action unit embedding information in the process of facial image local feature extraction to
improve the distinguishability of image emotional features. The performance of the model



Entropy 2023, 25, 1246 16 of 18

is evaluated and verified on SMIC, CASME II, SAMM, and their combined 3DB-combined
datasets. The experimental results show that the MADFN model can perform feature fusion
through dynamic mapping, which can help improve the performance of micro-expression
recognition.

The research related to micro-expression analysis in this paper mainly discusses
the micro-expression recognition in determined videos, but often there is still how to
locate the occurrence of micro-expressions in the real environment. In a real environment,
the occurrence of micro-expressions is often to conceal one’s true emotions, so micro-
expressions are often accompanied by the occurrence of macro-expressions. How to locate
the location of micro-expressions from the complex environment and emotional changes is
also key research in future work.

Author Contributions: Conceptualization, H.Y. and L.X.; methodology, H.Y.; software, H.Y., C.L. and
H.P.; validation, H.Y. and J.Z.; formal analysis, H.P. and L.X.; investigation, H.Y. and L.X.; resources,
L.X. and Z.W.; data curation, H.P. and J.Z.; writing—original draft preparation, H.Y.; visualization,
H.Y., Z.W. and L.X.; funding acquisition, L.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, grant number
2018YFC2001700; Beijing Natural Science Foundation, grant number L192005.

Institutional Review Board Statement: The study did not require ethical approval.

Data Availability Statement: Publicly available SMIC, CASME II, and SAMM datasets were analyzed
in this study. The SMIC dataset can be found here: https://www.oulu.fi/cmvs/node/41319 (accessed
on 11 September 2018). The CASME II dataset can be found here: http://fu.psych.ac.cn/CASME/
casme2.php (accessed on 11 September 2018). The SAMM dataset can be found here: http://www2
.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php (accessed on 16 September 2018).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ekman, P. Lie catching and microexpressions. Philos. Decept. 2009, 1, 5.
2. Holler, J.; Levinson, S.C. Multimodal language processing in human communication. Trends Cognit. Sci. 2019, 23, 639–652.

[CrossRef]
3. O’Sullivan, M.; Frank, M.G.; Hurley, C.M.; Tiwana, J. Police lie detection accuracy: The effect of lie scenario. Law. Human. Behav.

2009, 33, 530. [CrossRef] [PubMed]
4. Li, Y.; Huang, X.; Zhao, G. Micro-expression action unit detection with spatial and channel attention. Neurocomputing 2021, 436,

221–231. [CrossRef]
5. Xie, H.-X.; Lo, L.; Shuai, H.-H.; Cheng, W.-H. AU-assisted Graph Attention Convolutional Network for Micro-Expression

Recognition. In Proceedings of the ACM International Conference on Multimedia (ACM MM), Seattle, WA, USA, 12–16 October
2020; pp. 2871–2880.

6. Lei, L.; Chen, T.; Li, S.; Li, J. Micro-expression recognition based on facial graph representation learning and facial action unit
fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25
June 2021; pp. 1571–1580.

7. Zhao, X.; Ma, H.; Wang, R. STA-GCN: Spatio-Temporal AU Graph Convolution Network for Facial Micro-expression Recognition.
In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Beijing, China, 29 October–1
November 2021; pp. 80–91.

8. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020.

9. Wang, Y.; Huang, R.; Song, S.; Huang, Z.; Huang, G. Not All Images are Worth 16 × 16 Words: Dynamic Transformers for Efficient
Image Recognition. In Proceedings of the Advances Conference on Neural Information Processing Systems (NeurIPS), Virtual,
6–14 December 2021.

10. Zhang, Z.; Lu, X.; Cao, G.; Yang, Y.; Jiao, L.; Liu, F. ViT-YOLO: Transformer-Based YOLO for Object Detection. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 2799–2808.

11. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

https://www.oulu.fi/cmvs/node/41319
http://fu.psych.ac.cn/CASME/casme2.php
http://fu.psych.ac.cn/CASME/casme2.php
http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
https://doi.org/10.1016/j.tics.2019.05.006
https://doi.org/10.1007/s10979-008-9166-4
https://www.ncbi.nlm.nih.gov/pubmed/19242785
https://doi.org/10.1016/j.neucom.2021.01.032


Entropy 2023, 25, 1246 17 of 18

12. Jiang, Y.; Chang, S.; Wang, Z. Transgan: Two pure transformers can make one strong gan, and that can scale up. Adv. Neural Inf.
Process. Syst. 2021, 34, 14745–14758.

13. Li, X.; Pfister, T.; Huang, X.; Zhao, G.; Pietikäinen, M. A spontaneous micro-expression database: Inducement, collection and
baseline. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Shanghai, China,
22–26 April 2013; pp. 1–6.

14. Yan, W.J.; Li, X.; Wang, S.J.; Zhao, G.; Liu, Y.J.; Chen, Y.H.; Fu, X. CASME II: An improved spontaneous micro-expression database
and the baseline evaluation. PLoS ONE 2014, 9, e86041. [CrossRef]

15. Davison, A.K.; Lansley, C.; Costen, N.; Tan, K.; Yap, M.H. SAMM: A spontaneous micro-facial movement dataset. IEEE Trans.
Affect. Comput. 2016, 9, 116–129. [CrossRef]

16. See, J.; Yap, M.H.; Li, J.; Hong, X.; Wang, S.J. Megc 2019—The second facial micro-expressions grand challenge. In Proceedings of
the IEEE International Conference on Automatic Face and Gesture Recognition, Lille, France, 14–18 May 2019; pp. 1–5.

17. Pfister, T.; Li, X.; Zhao, G.; Pietikäinen, M. Recognising spontaneous facial micro-expressions. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1449–1456.

18. Huang, X.; Wang, S.J.; Zhao, G.; Piteikainen, M. Facial micro-expression recognition using spatiotemporal local binary pattern
with integral projection. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile,
7–13 December 2015; pp. 1–9.

19. Le Ngo, A.C.; Liong, S.T.; See, J.; Phan, R.C.W. Are subtle expressions too sparse to recognize? In Proceedings of the IEEE
International Conference on Digital Signal Processing, Singapore, 21–24 July 2015; pp. 1246–1250.

20. Huang, X.; Zhao, G.; Hong, X.; Zheng, W.; Pietikäinen, M. Spontaneous facial micro-expression analysis using spatiotemporal
completed local quantized patterns. Neurocomputing 2016, 175, 564–578. [CrossRef]

21. Li, X.; Hong, X.; Moilanen, A.; Huang, X.; Pfister, T.; Zhao, G.; Pietikäinen, M. Towards reading hidden emotions: A comparative
study of spontaneous micro-expression spotting and recognition methods. IEEE Trans. Affect. Comput. 2017, 9, 563–577. [CrossRef]

22. Faisal, M.M.; Mohammed, M.S.; Abduljabar, A.M.; Abdulhussain, S.H.; Mahmmod, B.M.; Khan, W.; Hussain, A. Object Detection
and Distance Measurement Using AI. In Proceedings of the 2021 14th International Conference on Developments in eSystems
Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; pp. 559–565.

23. Mohammed, M.S.; Abduljabar, A.M.; Faisal, M.M.; Mahmmod, B.M.; Abdulhussain, S.H.; Khan, W.; Liatsis, P.; Hussain, A.
Low-cost autonomous car level 2: Design and implementation for conventional vehicles. Results Eng. 2023, 17, 100969. [CrossRef]

24. Wang, S.J.; Yan, W.J.; Li, X.; Zhao, G.; Fu, X. Micro-expression recognition using dynamic textures on tensor independent
color space. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014;
pp. 4678–4683.

25. Tang, J.; Li, L.; Tang, M.; Xie, J. A novel micro-expression recognition algorithm using dual-stream combining optical flow and
dynamic image convolutional neural networks. Signal Image Video Process. 2023, 17, 769–776. [CrossRef]

26. Thuseethan, S.; Rajasegarar, S.; Yearwood, J. Deep3DCANN: A Deep 3DCNN-ANN framework for spontaneous micro-expression
recognition. Inf. Sci. 2023, 630, 341–355. [CrossRef]

27. Wang, T.; Shang, L. Temporal augmented contrastive learning for micro-expression recognition. Pattern Recognit. Lett. 2023, 167,
122–131. [CrossRef]

28. Kim, D.H.; Baddar, W.J.; Ro, Y.M. Micro-expression recognition with expression-state constrained spatio-temporal feature
representations. In Proceedings of the ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19
October 2016; pp. 382–386.

29. Gan, Y.S.; Liong, S.T.; Yau, W.C.; Huang, Y.C.; Tan, L.K. Off-apexnet on micro-expression recognition system. Signal Process. Image
Commun. 2019, 74, 129–139. [CrossRef]

30. Van Quang, N.; Chun, J.; Tokuyama, T. Capsulenet for micro-expression recognition. In Proceedings of the IEEE International
Conference on Automatic Face and Gesture Recognition, Lille, France, 14–18 May 2019; pp. 1–7.

31. Zhou, L.; Mao, Q.; Xue, L. Dual-inception network for cross-database micro-expression recognition. In Proceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition, Lille, France, 14–18 May 2019; pp. 1–5.

32. Liong, S.T.; Gan, Y.S.; See, J.; Khor, H.Q.; Huang, Y.C. Shallow triple stream three-dimensional cnn (ststnet) for micro-expression
recognition. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Lille, France, 14–18
May 2019; pp. 1–5.

33. Liu, Y.; Du, H.; Zheng, L.; Gedeon, T. A neural micro-expression recognizer. In Proceedings of the IEEE International Conference
on Automatic Face and Gesture Recognition, Lille, France, 14–18 May 2019; pp. 1–4.

34. Wang, S.J.; Yan, W.J.; Li, X.; Zhao, G.; Zhou, C.G. Micro-Expression Recognition Using Color Spaces. IEEE Trans. Image Process.
2015, 24, 6034–6047. [CrossRef]

35. Davison, A.; Merghani, W.; Lansley, C.; Ng, C.C.; Yap, M.H. Objective micro-facial movement detection using facs-based regions
and baseline evaluation. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Xi’an,
China, 15–19 May 2018; pp. 642–649.

36. Wang, S.J.; Yan, W.J.; Zhao, G.; Fu, X.; Zhou, C.G. Micro-expression recognition using robust principal component analysis and
local spatiotemporal directional features. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland,
6–12 September 2014; pp. 325–338.

https://doi.org/10.1371/journal.pone.0086041
https://doi.org/10.1109/TAFFC.2016.2573832
https://doi.org/10.1016/j.neucom.2015.10.096
https://doi.org/10.1109/TAFFC.2017.2667642
https://doi.org/10.1016/j.rineng.2023.100969
https://doi.org/10.1007/s11760-022-02286-0
https://doi.org/10.1016/j.ins.2022.11.113
https://doi.org/10.1016/j.patrec.2023.02.003
https://doi.org/10.1016/j.image.2019.02.005
https://doi.org/10.1109/TIP.2015.2496314


Entropy 2023, 25, 1246 18 of 18

37. Liu, Y.J.; Zhang, J.; Yan, W.J.; Wang, S.J.; Zhao, G.; Fu, X. A main directional mean optical flow feature for spontaneous
micro-expression recognition. IEEE Trans. Affect. Comput. 2015, 7, 299–310. [CrossRef]

38. Xu, F.; Zhang, J.P.; Wang, J.Z. Microexpression identification and categorization using a facial dynamics map. IEEE Trans. Affect.
Comput. 2017, 8, 254–267. [CrossRef]

39. Happy, S.; Routray, A. Fuzzy histogram of optical flow orientations for micro-expression recognition. IEEE Trans. Affect. Comput.
2017, 10, 394–406. [CrossRef]

40. Liong, S.T.; See, J.; Wong, K.; Phan, R.C.W. Less is more: Micro-expression recognition from video using apex frame. Signal Process.
Image Commun. 2018, 62, 82–92. [CrossRef]

41. Chen, B.; Zhang, Z.; Liu, N.; Tan, Y.; Liu, X.; Chen, T. Spatiotemporal Convolutional Neural Network with Convolutional Block
Attention Module for Micro-Expression Recognition. Information 2020, 11, 380. [CrossRef]

42. Li, Y.; Huang, X.; Zhao, G. Joint Local and Global Information Learning With Single Apex Frame Detection for Micro-Expression
Recognition. IEEE Trans. Image Process. 2020, 30, 249–263. [CrossRef] [PubMed]

43. Wang, C.; Peng, M.; Bi, T.; Chen, T. Micro-attention for micro-expression recognition. Neurocomputing 2020, 410, 354–362.
[CrossRef]

44. Xia, Z.; Peng, W.; Khor, H.Q.; Feng, X.; Zhao, G. Revealing the invisible with model and data shrinking for composite-database
micro-expression recognition. IEEE Trans. Image Process. 2020, 29, 8590–8605. [CrossRef] [PubMed]

45. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009.

46. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 213–229.

47. Jia, X.; De Brabandere, B.; Tuytelaars, T.; Gool, L.V. Dynamic filter networks. Adv. Neural Inf. Process. Syst. 2016, 29, 667–675.
48. Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. Condconv: Conditionally parameterized convolutions for efficient inference. Adv. Neural

Inf. Process. Syst. 2019, 32, 1307–1318.
49. Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C. Sparse r-cnn: End-to-end object

detection with learnable proposals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 14454–14463.

50. Terry, J.C.D.; Roy, H.E.; August, T.A. Thinking like a naturalist: Enhancing computer vision of citizen science images by harnessing
contextual data. Methods Ecol. Evol. 2020, 11, 303–315. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TAFFC.2015.2485205
https://doi.org/10.1109/TAFFC.2016.2518162
https://doi.org/10.1109/TAFFC.2017.2723386
https://doi.org/10.1016/j.image.2017.11.006
https://doi.org/10.3390/info11080380
https://doi.org/10.1109/TIP.2020.3035042
https://www.ncbi.nlm.nih.gov/pubmed/33156789
https://doi.org/10.1016/j.neucom.2020.06.005
https://doi.org/10.1109/TIP.2020.3018222
https://www.ncbi.nlm.nih.gov/pubmed/32845838
https://doi.org/10.1111/2041-210X.13335

	Introduction 
	Related Work 
	Global Features for Micro-Expression Recognition 
	Local Features for Micro-Expression Recognition 

	Methodology 
	Multimodal Dynamic Attention Fusion Network 
	Image Autoencoders Based on Learnable Class Token 
	Vision Transformer Model Based on Action Unit Dynamic Fusion 

	Results and Analysis 
	Quantitative Analysis 
	SMIC 
	CAMSE II 
	SAMM 
	MEGC2019 

	Ablation Experiment Analysis 
	Basic Model 
	Mask Sampling 
	Fusion Strategy 

	Parameters 
	Visualization Analysis 

	Conclusions 
	References

