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Abstract: A joint probability formalism for quantum games with noise is proposed, inspired by the
formalism of non-factorizable probabilities that connects the joint probabilities to quantum games
with noise. Using this connection, we show that the joint probabilities are non-factorizable; thus, noise
does not generically destroy entanglement. This formalism was applied to the Prisoner’s Dilemma,
the Chicken Game, and the Battle of the Sexes, where noise is coupled through a single parameter µ.
We find that for all the games except for the Battle of the Sexes, the Nash inequalities are maintained
up to a threshold value of the noise. Beyond the threshold value, the inequalities no longer hold for
quantum and classical strategies. For the Battle of the sexes, the Nash inequalities always hold, no
matter the noise strength. This is due to the symmetry and anti-symmetry of the parameters that
determine the joint probabilities for that game. Finally, we propose a new correlation measure for
the games with classical and quantum strategies, where we obtain that the incorporation of noise,
when we have quantum strategies, does not affect entanglement, but classical strategies result in
behavior that approximates quantum games with quantum strategies without the need to saturate
the system with the maximum value of noise. In this manner, these correlations can be understood as
entanglement for our game approach.

Keywords: quantum games; quantum strategies; noise; correlation measure; dilemma dissolution

1. Introduction

The study of information processing has led to the birth of the quantum equivalent of
classical games or quantum games (QG) [1–5]. While in classical games (CG), cooperation
among players has expanded the possibilities for game outcomes and equilibria, QG has
expanded these possibilities even further. The latter works have shown that quantum
strategies can result in responses that often challenge our classical intuition. In this sense,
entanglement allows the dilemma of CG to be broken [2,3,6]. Quantum games provide
mathematical configurations to explore competitive interactions between quantum and
classical players [1,7], in emblematic CG, such as the Prisoner’s Dilemma [2,3], the Chicken
Game [3] and the Battle of the Sexes [8]. Also, there are important implications to quantum
multiplayer games [9–12] interactions in the nascent field of quantum networks [13].

Quantum games are also subject to the effects of noise, which introduces mathematical
operations that significantly modify the initial and final quantum state of the game. The
incorporation of noise in QG has been spearheaded by Johnson [14]. Quantum games with
noise must account for the influence of decoherence, and assessing the robustness against
decoherence, which is always present, is a central issue in any practical implementation.
Decoherence can take many forms, including dephasing (unitary) and dissipation (non-
unitary) effects on quantum states. For this, we will determine the quantum game with
noise in terms of Eisert’s [2,3] formulation of quantum games.
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The consideration of joint probabilities in quantum games has been conceived in
various works [7,15–18]. The joint probabilities can characterize games in a very precise
way; if these are factorizable, it will be a classical game, and if they are not, we will have
a quantum game [17]. From the work of Iqbal, Chappell, and Abbott [18], the pay-off
relationships of the players are written in such a way that it allows us to obtain a non-
factorizable game directly from the factorizable game, defining a function of the players’
strategies that satisfies certain restrictions. Therefore, canonical quantum game schemes
can be described from the joint probabilities. This is advantageous since elements of the
quantum information theory can be combined with the non-factorizable joint probabilities.

The full connection between the joint probabilities with Eisert quantum games has re-
cently been achieved [6]. However, the connection between the joint probabilities approach
and noise in the Eisert formulation has not been realized so far. In this work, we establish
that connection by describing the quantum game with noise from the joint probabilities
involved in the pay-off, inspired by the formalism proposed by [18]. To this end, we write
the parameters εi, proposed by [6,18], that correspond to the scheme of joint probabilities
in terms of the joint probabilities with noise into the quantum games (Eisert’s quantum
games). Furthermore, we determine the inequalities for the Nash Equilibrium (NE) for
quantum games with noise and see the applications of this connection to three of the
canonical games in game theory.

A necessary problem to address in quantum information theory is entanglement [19–21].
Here, we further develop the treatment of entanglement in the context of quantum games
noise within the joint probabilities approach. A first approach to the problem without noise
was advanced in reference [6], and this is the point of departure to include the effects of
noise. In this sense, we review our previous proposal for a new correlation measure from
joint probabilities in quantum games. In this way, we can quantify the entanglement in
our game approach through a correlation measure and subsequently determine for noisy
quantum games the effect of entanglement.

This work is divided as follows: first, we will start from the approach of [22] in order to
write Eisert’s quantum games with noise [2,3]. Following that, starting from the approach
of [18], a scheme of joint probabilities is proposed for Eisert’s quantum games with noise.
Then we build the connection of the joint probabilities for the Eisert quantum game with
noise, the inequalities associated with the NE, and the restrictions corresponding to the
Prisoner’s Dilemma, the Chicken Game, and the Battle of the Sexes. The symmetry of
joint probabilities in quantum games with noise is analyzed, differentiating the Battle of
the Sexes from all the other reference games analyzed. Finally, we propose a correlation
measure for quantum games with noise from their joint probabilities.

2. Eisert Quantum Games with Noise

Regardless of the particular model used, e.g., a quantum channel with noise, or a
quantum game with decoherence [22–25], the model can be described as follows:

ρi = ρ0 = |ψ0〉〈ψ0| Initial state
ρ1 = Ĵρ0 Ĵ† Entanglement
ρ2 = D(ρ1, µ1) Partial decoherence
ρ3 = (⊗N

k=1M̂k)ρ2(⊗N
k=1M̂k)

† Player’s movements
ρ4 = D(ρ3, µ2) Partial decoherence
ρ5 = Ĵ†ρ4 Ĵ Dis-entanglement
ρ f = ρ5 Final state

(1)

where |ψ0〉 = |00 . . . 0〉 represents the initial state of the N qubits. The D(ρ, µ) function
is a completely positive map that generates decoherence to the ρ state controlled by the
probability µ. Ĵ is an operator that entangles while Ĵ† disentangles the players qubits. M̂k
for k = 1, . . . , N, represents the move of the player k associated with the operators πi, that
are the Kraus operators associated with the possible strategies of the game [2,3].
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The expectation value of the pay-off of the k-th player Πk, is computed as

Πk = ∑
α

παρ f π†
αηk

α, (2)

where ηk
α represents the payment to a player of a game outcome and is a numerical value

of the desirability of that outcome for the player [4], this player is associated with k. A
measurement is made on the computational basis on |ψ f 〉, and the pay-offs are determined
using the pay-off matrix gives numerical values to the players’ pay-offs for all the game
outcomes of the classical game [4] (see [6] for the formal definition). The two classical pure
strategies are the identity and the bit flit operator (see [26]). The classical game becomes
a subset of the quantum game by requiring J to commute with the direct product of N
classical moves. Games with more than two pure classical strategies associate each player
with a number of qubits. The expression (2) represents an extension of the quantum game
protocol proposed by Eisert [2,3], by introducing a quantum operation associated with
noise, understood as decoherence in the protocol in (1), that is, the pay-off is (2) continues
to represent the same pay-off for the quantum game in general, only now for a quantum
game with noise.

The set of quantum strategies for this type of quantum game is S (S) = {U(θ, φ, β) :
0 ≤ θ ≤ π, 0 ≤ φ, β ≤ π/2}, where

U(θ, φ, β) =

(
eiφ cos θ

2 −ieiβ sin θ
2

−ie−iβ sin θ
2 e−iφ cos θ

2

)
, (3)

is a super-operator in SU (2). S (S) is called a superset of strategies. The k-th player’s move
is U(θk, φk, βk). There is some arbitrariness in the representation of operators. Nevertheless,
different representations only lead to changes in a global phase in the final state.

After choosing the operation to represent the function D(ρ, µ) in (1), that is, the
quantum channel, we take the quantum phase damping channel as in [22]. We are then
able to quantify the consequences of decoherence in a bipartite quantum game. The unitary
operators of the quantum game are represented by

U(θ, φ) =

(
eiφ cos θ

2 sin θ
2

− sin θ
2 e−iφ cos θ

2

)
. (4)

with θ ∈ [0, π] and φ ∈ [0, π/2]. This determines the strategies for the Eisert quantum
game [2,3] for one (sets φ = 0) and two-parameter sets of strategies, respectively. Then,
we evaluate βA = βB = π

2 into (A2) (see Appendix B), and use trigonometric identities
sin(x + y)− sin(x− y) = 2 sin(y) cos(x) and sin(x + y) + sin(x− y) = 2 sin(x) cos(y), so
we have

Πk(θA, φA, θB, φB, µ) = ηk
1{

1
2

c2
Ac2

B[1 + N(µ) cos 2(φA + φB)] +
1
2

s2
As2

B[1− N(µ)]}

+ ηk
2{

1
2

c2
As2

B[1 + N(µ) cos(2φA)] +
1
2

s2
Ac2

B[1− N(µ) cos(2φB)]}

− ηk
2{sAcAsBcB M(µ) cos(φA) sin(φB)}

+ ηk
3{

1
2

c2
As2

B[1− N(µ) cos(2φA)] +
1
2

s2
Ac2

B[1 + N(µ) cos(2φB)]}

− ηk
3{sAcAsBcB M(µ) sin(φA) cos(φB)}+ ηk

4{
1
2

c2
Ac2

B[1− N(µ) cos 2(φA + φB)]}

+ ηk
4{

1
2

s2
As2

B[1 + N(µ)] + sAcAsBcB M(µ) sin(φA + φB)} (5)
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for k = A, B and µ ∈ [0, 1]. Where M(µ) and N(µ) are functions quantifying the noise in
the quantum game, given by

M(µ) ≡ 2(1− µ)2 ; N(µ) ≡ (1− µ)4 (6)

We have thus obtained the Eisert quantum game with noise played with quantum strategies
when using the strategy operator (4). If we choose µ = 0 in (5), we obtain the noiseless
Eisert quantum game for a two-parameter set of strategies [2,3].

When evaluating φA = φB = βA = βB = 0 in Equation (A2) (see Appendix B), we
obtain the classical game, i.e., the Eisert quantum game for a one-parameter set of strategies,
whose strategy operator is (4). The expression corresponding to pay-offs is

Πk(θA, θB, µ) = ηk
1{

1
2

c2
Ac2

B[1 + W(µ)] +
1
2

s2
As2

B[1−W(µ)]}

+ ηk
2{

1
2

c2
As2

B[1 + W(µ)] +
1
2

s2
Ac2

B[1−W(µ)]}+ ηk
3{

1
2

c2
As2

B[1−W(µ)] +
1
2

s2
Ac2

B[1 + W(µ)]}

+ ηk
4{

1
2

c2
Ac2

B[1−W(µ)] +
1
2

s2
As2

B[1 + W(µ)]}. (7)

We have thus obtained in (7) the Eisert quantum game with noise played with classical
strategies when using the strategy operator (4) for k = A, B and µ ∈ [0, 1]. Where W(µ) is a
function corresponding to noise in a classical game, which is defined as

W(µ) ≡ (1− µ)4. (8)

Equations (5) and (7) correspond to two versions of Eisert’s quantum games with noise,
according to the set of strategies that players use either: classical strategies, i.e., a one-
parameter set of strategies or quantum strategies, i.e., a two-parameter set of strategies).

3. Non-Factorizable Probabilities for Quantum Games with Noise

Quantum games and joint probabilities establish a connection with the game scheme
proposed by [18]. In the previous work, they use pay-off relations that describe the
factorizability of joint probabilities through a set of equations that connect player strategies
with a probability distribution of player pay-offs. In this way, a quantum game can then be
described as a game in which non-factorizable probabilities are the norm [6]. The pay-offs
are obtained from the joint probabilities. In order to obtain this description of the quantum
game, the pay-offs that describe the factorizability of the joint probabilities are used through
a set of equations that connect the player ’strategies with a probability distribution of the
players’ pay-offs. In this way, from the joint probabilities, we have a set of joint probabilities
that may not be factorizable. Thus, a quantum game can be described as a game in which
non-factorizable probabilities are allowed.

In this section, we propose a scheme based on non-factorizable probabilities for
quantum games with noise, inspired by the work of reference [18]. We introduce the noise
parameter µ so that when this parameter is null, we recover the expressions derived in [18].

A bimatrix description of the game is considered [6],

Bob
S′1 S′2

Alice
S1 (ηA

1 , ηB
1 ) (ηA

2 , ηB
2 )

S2 (ηA
3 , ηB

3 ) (ηA
4 , ηB

4 )

(9)

where Alice and Bob are the players, with their strategies S1, S2 and S′1, S′2, respectively, and
ηk

1, ηk
2, ηk

3, ηk
4 where k ∈ A, B, corresponding to pay-offs for each strategy of the players. For

this bimatrix (9), if Alice and Bob take one strategy, e.g., (S2, S′1), their pay-offs are (ηA
3 , ηB

3 ),
similarly, it happens for the other strategies.

The pay-offs for a QG with two-player noise are written as

Πk(P, Q, µ) = ηk
1εR

1 (P, Q, µ) + ηk
2εR

2 (P, Q, µ) + ηk
3εR

3 (P, Q, µ) + ηk
4εR

4 (P, Q, µ) (10)
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where k ∈ A, B and µ ∈ [0, 1]. In addition, we define εR
i (P, Q, µ) for 1 ≤ i ≤ 4 as

εR
1 (P, Q, µ) ≡ |〈S1S′1|ψ f 〉|2 ; εR

2 (P, Q, µ) ≡ |〈S1S′2|ψ f 〉|2

εR
3 (P, Q, µ) ≡ |〈S2S′1|ψ f 〉|2 ; εR

4 (P, Q, µ) ≡ |〈S2S′2|ψ f 〉|2

 (11)

These four quantum probabilities are obtained using the quantum probability rule. The
probabilities εi(P, Q, µ) are normalized

4

∑
i=1

εR
i (P, Q, µ) = 1. (12)

The strategies of the players P and Q in the terms of the probabilities εR
i (P, Q, µ) can be

expressed as

PR ≡ εR
1 (P, Q, µ) + εR

2 (P, Q, µ),

QR ≡ εR
1 (P, Q, µ) + εR

3 (P, Q, µ). (13)

Using the expressions (11), we can write the previous expressions as

PR = |〈S1S′1|ψ f 〉|2 + |〈S1S′2|ψ f 〉|2

QR = |〈S1S′1|ψ f 〉|2 + |〈S2S′1|ψ f 〉|2 (14)

where PR and QR we will call the probabilities of the game. On the other hand, each player
has the freedom to play the P and Q strategies, as these are considered independent of each
other. Thus, for the pay-offs (10), the strategies of the players are P, Q ∈ [0, 1] and not the
unitary transformations UA and UB. In addition, the pay-offs of the two players are linked
to each other through the function εR

1 = εR
1 (P, Q, µ). As seen in [18], a classical game is one

where ε1 = PQ. However, for a game with noise, this restriction is not satisfied, and we
say that the game is a non-factorizable game or a game that allows for non-factorizable
probabilities. This type of game is called a quantum game since non-factorizability is an
essential feature of an information system with an EPR configuration [16,17].

From this perspective, an immediate question for the pay-offs (10), is: what are the
restrictions on the functions εR

1 (P, Q, µ)? To determine this, one notices that the allowable
ranges of player pay-offs in [18], necessarily must be met, i.e., ∑4

i=1 εi(P, Q) = 1, for this
case is satisfied, since P, Q, µ ∈ [0, 1]. We still have to know what the restrictions are for
εR

1 (P, Q, µ). To this end, it is required that

εR
1 (P, Q, µ) ≤ PR ; εR

1 (P, Q, µ) ≤ QR ; εR
1 (P, Q, µ) ≤ PR + QR. (15)

Then, the pay-offs (10) are equivalent to those of the quantum game in reference [18],
for µ = 0. Referring to the expressions (10), we obtain that for given P, Q ∈ [0, 1] as
independent player strategies, the function εR

1 (P, Q, µ) gives a value in [0, 1], the functions
εR

2 (P, Q, µ), εR
3 (P, Q, µ) and εR

4 (P, Q, µ) which are defined as

εR
2 (P, Q, µ) ≡ PR − εR

1 (P, Q, µ);

εR
3 (P, Q, µ) ≡ QR − εR

1 (P, Q, µ) (16)

and
εR

4 (P, Q, µ) ≡ 1− [(PR + QR)− εR
1 (P, Q, µ)]. (17)

When restrictions (15) hold, the functions εR
2 (P, Q, µ), εR

3 (P, Q, µ) and εR
4 (P, Q, µ) produce

values within the range [0, 1] and when µ = 0, the non-factorizable probabilities for
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quantum games are retrieved, In view of the above, for a non-factorizable game with noise,
it is required that εR

1 (P, Q, µ), is restricted by (15) and by the condition

εR
1 (P, Q, µ) ≤ PQ. (18)

Therefore, the condition that guarantees the non-factorizability of a game with noise is
limited by that of a game without noise since the restrictions are the same [6,18].

4. Joint Probabilities for Quantum Games with Noise

In the previous section, we developed the joint probabilities approach to Eisert
QG [2,3], now including noise for the first time. For this purpose, we wrote the parameters
εR

i , the game probabilities (23), and we determined the NE inequalities for Eisert QG with
noise, where the pay-offs are associated with two versions of the game (5) and (7), which
we wrote according to the set of strategies that players use as Noise quantum game with classic
strategies (correspond to a one-parameter set of strategies) and Noise quantum game with
quantum strategies (correspond to a two-parameter set of strategies), where the super-index
? represents the quantum strategies. Also, we determine the restrictions to which the Nash
equilibrium is subject.

Based on the expression obtained in (7), for noise quantum games with classic strate-
gies, we have the parameters εR

i written as

εR
1 =

1
2
(c2

Ac2
B + s2

As2
B) +

1
2
(c2

Ac2
B − s2

As2
B)W(µ); (19)

εR
2 =

1
2
(c2

As2
B + s2

Ac2
B) +

1
2
(c2

As2
B − s2

Ac2
B)W(µ), (20)

εR
3 =

1
2
(c2

As2
B + s2

Ac2
B)−

1
2
(c2

As2
B − s2

Ac2
B)W(µ); (21)

εR
4 =

1
2
(c2

Ac2
B + s2

As2
B)−

1
2
(c2

Ac2
B − s2

As2
B)W(µ), (22)

where the game probabilities are

PR = εR
1 + εR

2 ; QR = εR
1 + εR

3 , (23)

defining the probabilities [6,18],

p ≡ cos2
(

θA
2

)
= c2

A ; q ≡ cos2
(

θB
2

)
= c2

B, (24)

where p, q ∈ [0, 1]. Therefore, using these definitions in (19) and (21), we have

εR
1 =

1
2
(2pq− p− q + 1) +

1
2
(p + q− 1)W(µ); (25)

εR
2 =

1
2
(p + q− 2pq) +

1
2
(p− q)W(µ), (26)

εR
3 =

1
2
(p + q− 2pq)− 1

2
(p− q)W(µ); (27)

εR
4 =

1
2
(2pq− p− q + 1)− 1

2
(p + q− 1)W(µ). (28)

The game probabilities are obtained by entering the appropriate expressions in (23)

PR =
1
2
[1 + (2p− 1)W(µ)] , QR =

1
2
[1 + (2q− 1)W(µ)]. (29)

In the expression (25), we see that the joint probabilities in the parameter εR
1 are a linear

combination of the probabilities for a classical game, plus the presence of W(µ) which is a
function of noise. Therefore, the QG with classical strategies, when incorporating the noise,
ceases to behave as a classical game from the point of view of pay-offs since correlations
can be enhanced, which makes the joint probabilities in εR

1 non-factorizable.
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By means of the approach of the previous section, we obtain a specific description
of the noisy QG with quantum strategies. Taking the expression (5), we identify the
parameters ε?R

i and using the trigonometric identities cos(2x) = 2 cos2(x)− 1 y sin(xy) =
sin(x) cos(y) sin(y) cos(x), we have

ε?R
1 = ε?1 N(µ) +

1
2
(c2

Ac2
B + s2

As2
B)(1− N(µ)), (30)

ε?R
2 =

1
2

c2
Ac2

B

[
1 + N(µ)(2 cos2 φA − 1)

]
+

1
2

s2
Ac2

B

[
1− N(µ)(2 cos2 φB − 1)

]
− sAcAsBcB M(µ) cos φA sin φB, (31)

ε?R
3 =

1
2

c2
Ac2

B

[
1− N(µ)(2 cos2 φA − 1)

]
+

1
2

s2
Ac2

B

[
1 + N(µ)(2 cos2 φB − 1)

]
− sAcAsBcB M(µ) sin φA cos φB, (32)

ε?R
4 =

1
2
(c2

Ac2
B + s2

As2
B)(1 + N(µ))− ε?1 N(µ)

+ sAcAsBcB M(µ)(sin φA cos φB + cos φA sin φB). (33)

where ε?1 = (1− 2u)2w2 (see [6]), the game probabilities are given by the expressions

P?R = ε?R
1 + ε?R

2 ; Q?R = ε?R
1 + ε?R

3 (34)

defining the probabilities [6],

p? ≡ cos2 φA ; q? ≡ cos2 φB, (35)

where evidently to p?, q? ∈ [0, 1]. Using the definitions (24) and (35) in expressions (30) to
(33), we have the parameters ε?R

i written in terms of probabilities, as follows

ε?R
1 =

1
2
(2pq− p− q + 1)− 1

2
(2pq− p− q + 1− 2ε?1)N(µ), (36)

ε?R
2 =

1
2
(p + q− 2pq) + (p? − q?)N(µ)−

√
pq(1− p)(1− q)p?(1− q?)M(µ), (37)

ε?R
3 =

1
2
(p + q− 2pq)− (p? − q?)N(µ)−

√
pq(1− p)(1− q)p?(1− q?)M(µ), (38)

ε?R
4 =

1
2
(2pq− p− q + 1) +

1
2
(2pq− p− q + 1− 2ε?1)N(µ)

+
√

pq(1− p)(1− q)
[√

p?(1− q?) +
√
(1− p?)q?

]
M(µ), (39)

and the game probabilities are written as

P?R = 1
2 + 1

2 [2(p? − q?)−2pq + p + q− 1 + 2ε?1 ]N(µ)

−
√

pq(1− p)(1− q)p?(1− q?)M(µ),
(40)

Q?R = 1
2 + 1

2 [2(q
? − p?)−2pq + p + q− 1 + 2ε?1 ]N(µ)

−
√

pq(1− p)(1− q)(1− p?)q?M(µ).
(41)

Evaluating the probability values at the Pareto and Nash equilibria, i.e., when the
proposed probabilities p, q, p? and q? are equal [6], we have

p = q ≡ w ; p? = q? ≡ u. (42)

so that the ε?R
i
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ε?R
1 =

1
2
[1− 2w(1− w)]− 1

2
[1− 2w(1− w)− 2ε?1 ]N(µ), (43)

ε?R
2 = ε?R

3 = w(1− w)

[
1−

√
u(1− u)M(µ)

]
, (44)

ε?R
4 =

1
2
[1− 2w(1− w)] +

1
2
[1− 2w(1− w)− 2ε?1 ]N(µ)

+ 2w(1− w)
√

u(1− u)M(µ). (45)

and the game probabilities are

P?R =
1
2
+

1
2
[2w(1− w) + 2ε?1 − 1]− w(1− w)

√
u(1− u)M(µ), (46)

Q?R =
1
2
+

1
2
[2w(1− w) + 2ε?1 − 1]− w(1− w)

√
u(1− u)M(µ). (47)

From the parameter, ε?R
1 pointed out at (43), we conclude that the noise does not destroy

the non-factorizable nature of the joint probabilities for QG (the term ε?1 remains), that is,
noise does not destroy entanglement. On the other hand, It’s easy to see when there is no
presence of noise at (43), that is µ = 0, we obtain ε?1 , which is consistent with the result
obtained in [6]. Furthermore, a new relationship associated with noise appears through the
presence of the function N(µ). Thus, a noise quantum game with quantum strategies is
still a QG since quantum correlations are not lost in the joint probabilities.

4.1. Nash Equilibrium in Joint Probabilities for Quantum Games with Noise

In order to obtain a complete description of QG with noise through their joint proba-
bilities, it is necessary to determine the NE inequalities with noise corresponding to our
approach. For this purpose, we follow the formulation of inequalities proposed in [18] for
NE. In general, the NE for a QG with noise must satisfy the following inequalities

ΠA(PNE, QNE, µ)−ΠA(P, QNE, µ) ≥ 0; ΠB(PNE, QNE, µ)−ΠB(PNE, Q, µ) ≥ 0, (48)

for the expressions (10), where the strategy (PNE, QNE) defines NE. On the other hand,
when µ = 0, the NE inequalities for the scheme without noise [6,18] are obtained. In this
way, we determine that the NE inequalities must satisfy (48), for the proposed scheme of
joint probabilities with classical and quantum strategies.

Now, we write the pay-offs for Alice and Bob with classical strategies. Starting from
the parameters εi of the Equations (25) and (27), we have

Πk(p, q, µ) =
ηk

1
2
(2pq− p− q + 1) +

ηk
1

2
(p + q− 1)W(µ) +

ηk
2

2
(p + q− 2pq)

+
ηk

2
2
(p− q)W(µ) +

ηk
3

2
(p + q− 2pq)−

ηk
3

2
(p− q)W(µ)

+
η2

4
2
(2pq− p− q + 1)−

ηk
4

2
(p + q− 1)W(µ), (49)

From the expressions indicated in (48) and using the pay-off (49), we obtain the following
expressions

[(ηA
1 − ηA

2 − ηA
3 + ηA

4 )(2qNE − 1) + (ηA
1 + ηA

2 − ηA
3 − ηA

4 )W(µ)](pNE − p) ≥ 0, (50)

[(ηB
1 − ηB

2 − ηB
3 + ηB

4 )(2pNE − 1) + (ηB
1 − ηB

2 + ηB
3 − ηB

4 )W(µ)](qNE − q) ≥ 0. (51)

These inequalities are what the Nash equilibrium must satisfy when the chosen strategy
corresponds is (pNE, qNE).

Analogous to the classical case, we use Equations (43)–(45), to compute the pay-offs
for both Alice and Bob as
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Π?
k (w, u, µ) =

ηk
1

2
[1− 2w(1− w)]−

ηk
1

2
[1− 2w(1− w)− 2ε?1 ]N(µ)

+ (ηk
2 + ηk

3)w(1− w)

[
1−

√
u(1− u)M(µ)

]
+

ηk
4

2
[1− 2w(1− w)]

+
ηk

4
2
[1− 2w(1− w)− 2ε?1 ]N(µ) + 2ηk

4w(1− w)
√

u(1− u)M(µ). (52)

Using the NE conditions (48) and the pay-offs (52), we obtain the following equations{
(ηA

1 + ηA
4 )(wNE + w− 1) + (ηA

1 − ηA
4 )
[
(1− wNE − w) + (1− 2uNE)2(wNE + w)

]
N(µ)

+ (1− wNE − w)(ηA
2 + ηA

3 )
}
(wNE − w)

−(1− wNE − w)(ηA
2 + ηA

3 − 2ηA
4 )
√

uNE(1− uNE)M(µ)(wNE − w) ≥ 0, (53)

4(ηA
1 − ηA

4 )(uNE − u)(uNE + u− 1)(wNE)2N(µ)

+ (ηB
2 + ηB

3 − 2ηB
4 )w

NE(1− wNE)

[√
u(1− u)−

√
uNE(1− uNE)

]
M(µ) ≥ 0. (54)

The above inequalities must be satisfied for (wNE, uNE) for the quantum strategies.

4.2. Quantum Games with Noise and Their Nash Equilibria

At this point, we determine the restrictions imposed by the NE on the games: the Pris-
oner’s Dilemma, the Chicken Game, and the Battle of the Sexes, using the expressions (50),
(51) and (53), (54), which correspond to the classical and quantum strategies, respectively,
for the probability values corresponding to the strategies that generate the said equilibrium
in the absence of noise Table 1. The restrictions imposed by the NE on three games are
shown in Table 2.

In Table 1, the probability values for which NE is achieved in the three games are
shown. As we see, the NE for the Prisoner’s Dilemma and the Chicken Game are obtained
for the same probability value, i.e., when quantum strategies are employed [2,3]. In contrast,
for the Battle of the Sexes, there are infinite Nash equilibria when quantum strategies are
considered [27]. Among these equilibria is the one that corresponds to the values associated
with the parameters θA = θB = π and φA = φB = π/4, equivalent to the probability values
(wN

3 , uN
3 ) = (0, 1/2).

Table 1. Nash equilibria in joint probabilities.

Games Classic Strategies Quantum Strategies

Prisoner’s Dilemma (pN
1 , qN

1 ) (wN
1 , uN

1 ) ∨ (wN
2 , uN

2 )

Chicken Game (pN
2 , qN

2 ) ∧ (pN
3 , qN

3 ) (wN
1 , uN

1 ) ∨ (wN
2 , uN

2 )

Battle of the Sexes (pN
1 , qN

1 ) ∧ (pN
4 , qN

4 ) (wN
3 , uN

3 )

Table 2. Restrictions on Nash equilibrium with noise.

Games Classical Strategies Quantum Strategies

Prisoner’s Dilemma 0 ≤ µ(DP) ≤ 1− 4
√

1
3 0 ≤ µ?(DP) ≤ 1− 1

4√2

Chicken Game No restrictions 0 ≤ µ?(JP) ≤ 4
√

2
3

Battle of the Sexes No restrictions No restrictions
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Where the probability values for NE’s are (pN
1 , qN

1 ) = (0, 0), (pN
2 , qN

2 ) = (1, 0),
(pN

3 , qN
3 ) = (0, 1), (pN

4 , qN
4 ) = (1, 1) and (wN

1 , uN
1 ) = (1, 0), (wN

2 , uN
2 ) = (1, 1), (wN

3 , uN
3 ) =

(0, 1/2), for classical and quantum strategies, respectively [6].
From Table 2, conditions were obtained on the parameter µ that limits the NE. For the

Prisoner’s Dilemma the values of µ = 1− 4
√

1
3 ∼ 0, 2 and µ = 1− 1

4√2
∼ 0, 2. We note, for

the approach we take in this work, our results differ from those obtained by [23], for the NE
of the Prisoner’s Dilemma, because we take a unique parameter for noise (µA = µB = µ),
which is different to the approach taken in Ref. [23], that takes different parameters for
noise to the players (µA 6= µB).

For the Chicken Game, the NE inequalities do hold µ = 4
√

2
3 ∼ 0, 1 as the threshold

value of noise for quantum strategies, again in contrast to the case of the Battle of the Sexes
where there are no restrictions for both strategies.

5. The Symmetry of Joint Probabilities in Quantum Games with Noise

In this section, we obtain the parameters εR
i and the probabilities for the games

considered. From the terms εR
1 and ε?R

1 , the non-factorizability of the joint probabilities
for these games remains. To show this, we use the equations corresponding to the joint
probabilities of the previous section for each of the games the Prisoner’s Dilemma, the
Chicken Game, and the Battle of the Sexes, as well as the corresponding pay-off matrix for
each one (see Appendix A). Depending on the pay-off values corresponding to each game,
we indicate the presence of the parameter εR

i by one and its absence by zero in the equations
for pay-offs. In addition, the super-index ? represents the use of quantum strategies. The
results for the games are shown in Tables 3 and 4.

For the Prisoner’s Dilemma, we see the anti-symmetry, under the exchange of players,
in the game probabilities in Table 4. The game probabilities for the value of PR(DP) for
Alice is equal to the value of QR(DP) for Bob. The same occurs for the value of QR(DP) for
Alice with the value of P(DP) for Bob. Likewise, for the value of ε

R(DP)
2 = 0 for Alice and

ε
R(DP)
3 = 0 for Bob (see Table 3). The same occurs for the quantum case. With the Chicken

Game, you have the symmetry of the game odds for Alice and Bob in Table 4. Also, the terms
ε

R(CG)
4 and ε

?R(CG)
4 are null for both players (see Table 3). The aforementioned symmetry is

due to the fact that the rest of the game’s parameters are the same for both players.
An important fact for classical strategies is that each player’s game probabilities

will differ since they are obtained from the expressions (29). This is the opposite of when
quantum strategies are used since the probabilities for each player are equal and correspond
to the expressions obtained in (46) and (47). This is because the correlations of the joint
probabilities are due to entanglement. The symmetry discussed above will be called a weak
symmetry of the game probabilities because they are the same for quantum strategies and
different for classical strategies. Looking at the Battle of the Sexes in Table 4, we see that the
probabilities, besides being symmetrical, are the same game probabilities for the players,
that is, PR(BS) = QR(BS) and P?R(BS) = Q?R(BS), in particular, this strong symmetry is
because there is an absence of the parameters ε

R(BS)
2 , ε

R(BS)
3 and ε

?R(BS)
2 , ε

?R(BS)
3 since these

are null as we see in the Table 3. In the same way, when focusing on classical strategies, since
the same reasoning is valid for quantum strategies, the game probabilities are determined
only by the term ε

R(BS)
1 , that is to say, PR(BS) = QR(BS) = ε

R(BS)
1 . We consider this symmetry

a strong symmetry of the game probabilities since the game probabilities are the same for
both strategies. For the three games, in addition to having analyzed the parameters εR

i and
how these affect the symmetry and antisymmetry of the game probabilities, we obtained
that the joint probabilities for the games are non-factorizable, since the terms εR

1 and ε?R
1 ,

are present as we see in Table 3.
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Table 3. Parameters of the Games with noise.

Games Players εR
1 εR

2 εR
3 εR

4 ε?R
1 ε?R

2 ε?R
3 ε?R

4

Prisoner’s Dilemma Alice 1 0 1 1 1 0 1 1
Bob 1 1 0 1 1 1 0 1

Chicken Game Alice 1 1 1 0 1 1 1 0
Bob 1 1 1 0 1 1 1 0

Battle of the Sexes Alice 1 0 0 1 1 0 0 1
Bob 1 0 0 1 1 0 0 1

Table 4. Probabilities of quantum games with noise.

Games Players PR QR P?R Q?R

εR
1 εR

2 εR
1 εR

3 ε?R
1 ε?R

2 ε?R
1 ε?R

3

Prisoner’s Dilemma Alice 1 0 1 1 1 0 1 1
Bob 1 1 1 0 1 1 1 0

Chicken Game Alice 1 1 1 1 1 1 1 1
Bob 1 1 1 1 1 1 1 1

Battle of the Sexes Alice 1 0 1 0 1 0 1 0
Bob 1 0 1 0 1 0 1 0

6. Correlation Measure from Joint Probabilities and Entanglement in Quantum Games

The measure of entanglement in different physical contexts is still a current problem [28–33].
Different types of entanglement measures have been proposed [19–21], for different ap-
proaches to quantifying entanglement [21], such as (i) computing a correlation that con-
tradicts the theory of elements of reality, (ii) evaluating the global structure of the wave
function, (iii) sensitivity to interference with secure communication, (iv) application of
positive maps in physics, and (v) quantifying a correlation that is stronger than any clas-
sical correlations. Nevertheless, an entanglement measure has not been devised, to our
knowledge, for quantum games. Throughout this work, we have discussed how we under-
stand entanglement as strong correlations of the joint probabilities. From this fact, we can
quantify the entanglement in our game approach through a correlation measure.

Here, we propose a correlation measure based on the joint probabilities and the infor-
mation of the games. The measure proposed is determined from the information quantified
by the term εα

1 since this term characterizes classical and quantum games depending on
whether their joint probabilities are factorizable or not. Therefore, we name it: entanglement
parameter probability.

The correlation measure that we propose is defined as

γ ≡ ΛJ (εα
1) = lim

w,u→wγ ,uγ
H(εα

1), (55)

where α represents the strategies to consider, either classical or quantum. The quantum
strategies are represented by the super-index ? and the classical without the super-index.
In this way, we name ε?1 the entanglement probability. Also, wγ and uγ are defined as the
values where the entanglement produces an upper bound of information, that is, the values
for which the information is a maximum for the term ε?4 (see [6]). Since the latter term
shows the correlation of the input and output information of the game, then, being H(ε?4) a
maximum, it reflects the complete influence of entanglement in the game when one uses
quantum strategies. The values for wγ and uγ are obtained from

Φ ≡ max
wγ ,uγ

J (ε?4) = max
wγ ,uγ

H
[
[1 + 4u(1− u)]w2 + 1− 2w + 4w(1− w)

√
u(1− u)

]
= 1, (56)

whose values of probabilities are wγ
(1) = 1; uγ

(1) =
1
2 (1+

1√
2
) or wγ

(2) = 1; uγ
(2) =

1
2 (1−

1√
2
).
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Two consequences of incorporating entropy as the correlation measure are (55): First,
we have a measure that uses the nature of joint probabilities to determine the correlation
in quantum games which closely related to entanglement. Second, we naturally obtain a
normalized measure, that is, 0 ≤ γ ≤ 1. Therefore, we have the values that represent the
minimum and maximum correlation for our definition (55).

With this in mind, we proceed to determine the correlation measure for classical and
quantum strategies. For these, it does not matter which of the values use for solutions of
wγ and uγ since the same results ensue.

Thus, the correlation measure for classical and quantum strategies are as follows

γ = ΛJ (ε1) = lim
w,u→wγ ,uγ

H(w2) = 0, (57)

γ = ΛJ (ε?1) = lim
w,u→wγ ,uγ

H
[
(1− 2u)2w2

]
= 1. (58)

In this way, we determine that the correlation for quantum games is a maximum (58) due
to the fact that the correlation of the probability is maximum, which is closely related to
entanglement because it is consistent with Eisert’s quantum game approach [2,3], where
maximum entanglement states are used. We also show the robustness of our definition
(55), determining that the correlation in the classical games does not exist (57) but the
entanglement if it exists because the initial state is maximally entangled [2,3]. Finally, we
see that the strong correlations of the joint probabilities are contained in the entanglement
probability parameter that reflects the entanglement quantified through the definition (55)
in our game approach for players the use quantum strategies.

7. Correlation Measure from Joint Probabilities and Entanglement in the Quantum
Games with Noise

The quantification of entanglement for different types of entanglement measures has
been proposed [19–21]. In this work, we understand entanglement as strong correlations
of the joint probabilities as in [6]. In this direction, we can quantify the entanglement for
quantum games with noise through a correlation measure.

The proposal of a correlation measure based on the joint probabilities and the informa-
tion of the games in [6] is determined from the information measure of the term εα

1 since
this term characterizes and therefore classifies the games classical or quantum. If their
joint probabilities are factorizable, it will be classical; otherwise, it will be quantum. For
quantum games with noise, the relevant term is εαR

1 . Then, the entanglement measure is
defined as

γ ≡ ΛJ (εαR
1 ) = lim

w,u→wγ ,uγ
H(εαR

1 ). (59)

We have that α represents the strategies to consider, either classical or quantum. The
quantum strategies are represented by the super-index ? and the classical without super-
index. Also, wγ and uγ are defined as the values where the entanglement produces an
upper bound of information. These values of the probabilities are the same for quantum
games with noise. Because we require consistency, when µ = 0, therefore, values of
probabilities are wγ

(1) = 1; uγ
(1) =

1
2 (1

1√
2
) or wγ

(2) = 1; uγ
(2) =

1
2 (1−

1√
2
).

As a consequence of incorporating entropy in the correlation measure (59), we natu-
rally obtain a normalized measure, that is, 0 ≤ γ ≤ 1, the values represent the minimum
and maximum correlation for our definition (59). In this way, we proceed to determine the
correlation measure for classical and quantum strategies for quantum games with noise.
For these, it does not matter which of the values one uses for the solutions of wγ and uγ

since the same results are obtained. Thus, the correlation measure for classical and quantum
strategies are as follows:
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γ = ΛJ (εR
1 ) = lim

w,u→wγ ,uγ
H[

1
2
(2w2 − 2w + 1) +

1
2
(2w− 1)W(µ)] = H[

1
2
(1 + W(µ))], (60)

γ = ΛJ (ε?R
1 ) = lim

w,u→wγ ,uγ
H[

1
2
[1− 2w(1− w)]− 1

2
[1− 2w(1− w)− 2ε?1 ]N(µ)] = 1, (61)

where W(µ) = (1 − µ)4 and ε?1 = (1 − 2u)2w2. From the above expressions for the
correlation measure, we determined that the correlation for quantum games with noise
is maximum (61), which is consistent with the obtained (58). This result is closely related
to Eisert’s quantum game approach with noise [22,23], where the states are maximally
entangled. We also show the robustness of our definition (59). However, the correlations
that emerge (60) in contrast with the classical games without noise (57) have interesting
behavior. Apparently, incorporating the noise in quantum games with classical strategies
can generate stronger correlations that are similar to quantum strategies.

Until now, we have seen that strong correlations of the joint probabilities reflect the
entanglement that we have quantified through the definition (59) in our game approach.
In such terms, with the purpose of dispelling any uncertainty regarding the correlation
measure (60), we have determined the behavior for both expressions (60) and (61), which is
depicted in Figure 1.

Figure 1. Entanglement measure for quantum games with noise from joint probabilities. Correspond-
ing to the classical strategies (red) and quantum strategies (blue).

As the noise increases in the classical strategies, the correlations generated approximate
the behavior produced by a game with quantum strategies Figure 1. In other words, the
noise produces correlations that we can understand as players use quantum strategies in
the classical game without the need to saturate the system with the maximum value of
noise as we see in Figure 1 for our game approach.

8. Summary and Conclusions

We addressed the Eisert formulation of quantum games with noise. We proposed a for-
malism in terms of non-factorizable probabilities inspired by the proposal of reference [18].
From this formalism, quantum games with noise are connected to the description in terms
of joint probabilities. In the same way, games are characterized by the nature of their joint
probabilities; if these are factorizable, they are a classical game, and if they are not, they
have a quantum component [17], and non-factorizability is connected to entanglement.

Our results show two interesting general facts; the first is that the presence of noise in
the game does not destroy entanglement, and second, the presence of noise in a QG with
classical strategies can introduce correlations in the joint probabilities that, in our approach,
resemble QG with quantum strategies since the joint probabilities are not factorizable. This
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does not violate any principles since the QG deal in quantum amplitudes, and increased
correlations come from an interplay of quantum behavior and noise.

Regarding the Nash equilibrium in the presence of noise, we find that NE can be
disrupted by noise depending on the game analyzed. While for the Prisoner’s dilemma, the
NE is disrupted for both quantum and classical strategies beyond a threshold value of noise,
for the Chicken game no disruption occurs for classical strategies, while a threshold appears
for the quantum strategies. Interestingly the Battle of the sexes suffers no disruption from
the noise of either strategy. We computed exact values for the threshold when they occur in
the quantum games analyzed. We tracked down the different behaviors mentioned to the
symmetries in the game probabilities that can be strategy-dependent (classical or quantum).
Also, we produced a classification in terms of the strength of these symmetries (strong or
weak) so that they are able not to be disrupted by disorder.

On the other hand, we propose a correlation measure from previous work [6] for
quantum games (55). This correlation measure is applied to quantum games with noise
from their joint probabilities (59). We obtain that for quantum strategies, the maximum
correlation, due to the noise, does not affect the entanglement (61). However, when classical
strategies are used, we find that our model of disorder generates correlations that emulate
a quantum game with maximum correlation; in other words, the incorporation of noise
into quantum games with classical strategies generates correlations similar to those used
by the players with quantum strategies into the classical game without the need to saturate
the system with the maximum value of noise.

In addition to the realm of noise quantum games, we explored the potential of con-
ceiving noisy quantum games as practical information channels endowed with a specific
channel capacity. This notion was initially hinted at in our prior work [6], wherein we
introduced the concept of an information capacity for quantum games from joint probabili-
ties. Within this framework, quantum games from joint probabilities are cast as distinct
information channels, with each individual game assuming the role of a unique channel.

In the context of the work in reference [6], we demonstrated that strategic approaches
that effectively mitigate dilemmas in scenarios like the Battle of the Sexes exhibit a notably
superior capacity compared to the Flip channel. Consequently, this novel approach may
serve as a promising avenue toward the development of high-capacity information channels
that exhibit resilience against noise. Importantly, the capacity of such a channel directly
correlates with its ability to withstand the influence of noise and decoherence.

It is worth highlighting that the amalgamation of the formalism proposed for quan-
tum games, incorporating noise from joint probabilities, with the information capacity
framework delineated in [6], presents a compelling and innovative avenue for advancing
the transmission of information within the realm of quantum information channels.

Other applications for games with joint probabilities are related to infinitely repeated
quantum games and the efficiency of these strategies with respect to their simple counter-
part, also showing the Quantum Folk Theorem [34]. Likewise, the basis for many important
game theoretical models in economics are the games of extensive form in their quantum
version. A recent application of these games is the quantization of the Angel problem [35].
Another interesting application is related to single qubit games with graphical analysis;
one notices that the curves representing the players’ gains display a behavior similar to the
curves that give rise to a phase transition in thermodynamics [36]. These transitions are
associated with optimal strategy changes and occur in the absence of entanglement and
interaction between the players.

Finally, quantum games with noise propose mapping game concepts to statistical
mechanics describing thermalization processes using classical games [37]. Exploring the
quantum game counterpart could be illuminating for identifying decoherence processes
understood through quantum game equilibria as described here and in reference [6].
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Appendix A. Some Classical Games

Here, we describe the pay-off matrix for three games and briefly review each one.

Prisoner’s Dilemma
C D

C (3,3) (0,5)
D (5,0) (1,1)

Chicken Game
C D

C (3,3) (1,4)
D (4,1) (0,0)

Battle of the Sexes
O T

O (2,1) (0,0)
T (0,0) (1,2)

(A1)

The Prisoner’s Dilemma illustrates the situation where suspects (players) who have com-
mitted a crime together are interrogated in separate cells. The two possible moves for
each player are to cooperate (C); that is, to not confess the crime, or defect (D); that is,
confess the crime. These moves must be decided without any communication between
the players. As of (A1), we have that D is the dominant strategy for players. Therefore,
thinking rationally, players are forced to play D. This means that (D, D) is the NE of the
game of (1, 1). But players could have a better outcome if they played C instead of D. This
is the dilemma of the game. In addition, (C, C) is the Pareto equilibrium.

For the Chicken Game, the two players drive their cars toward each other. The first
one to turn away in order to avoid the collision is the loser (chicken), and the one who
does not avoid the collision is the winner. The two possible strategies for each player are
to cooperate (C) (to avoid) and defect (D) no avoidance. There is no dominant strategy
in this game. There are two NE (C, D) and (D, C). The first is advantageous for Bob, and
the second for Alice. The dilemma of the game is that the optimal strategy, the Pareto
equilibrium (C, C) is not an NE.

Finally, the usual exposition of Battle of the Sexes is that Alice is fond of opera, while
Bob wants to watch TV, but they just want to spend the night together. In the absence of
communication, they have a dilemma and choose their strategies. In the game matrix, O
and T represent Opera and TV, respectively. There are two NE (O, T) and (T, O). The first
is advantageous for Alice, and the second for Bob.

Appendix B. The Pay-Offs for Quantum Games with Noise in General

For the quantum games with noise in [22], they used the subscript k to indicate the
parameters of the two players, Alice and Bob, we have c2

k = cos2(θk/2) and s2
k = sin2(θk/2)

for k = A, B and µA, µB ∈ [0, 1]. The pay-offs for the players are written, most generally as
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Πk(θA, φA, βA, µA, θB, φB, βB, µB) = ηk
1{

1
2

c2
Ac2

B[1 + (1− µA)
2(1− µB)

2 cos 2(φA + φB)]

+
1
2

s2
As2

B[1− (1− µA)
2(1− µB)

2 cos 2(βA + βB)]

− sAcAsBcB[(1− µA)
2 sin(φA + φB − βA − βB)− (1− µB)

2 sin(φA + φB + βA + βB)]}

+ ηk
2{

1
2

c2
As2

B[1− (1− µA)
2(1− µB)

2 cos 2(φA − βB)]

+
1
2

s2
Ac2

B[1 + (1− µA)
2(1− µB)

2 cos 2(φA − βB)]

+ sAcAsBcB[(1− µA)
2 sin(φA + φB − βA − βB)

+ (1− µB)
2 sin(φA − φB + βA − βB)]}+ ηk

3{
1
2

c2
As2

B[1 + (1− µA)
2(1− µB)

2 cos 2(φA − βB)]

+
1
2

s2
Ac2

B[1− (1− µA)
2(1− µB)

2 cos 2(φA − βB)]

+ sAcAsBcB[(1− µA)
2 sin(φA + φB − βA − βB)− (1− µB)

2 sin(φA − φB + βA − βB)]}

+ ηk
4{

1
2

c2
Ac2

B[1− (1− µA)
2(1− µB)

2 cos 2(φA + φB)]

+
1
2

s2
As2

B[1 + (1− µA)
2(1− µB)

2 cos 2(βA + βB)]

− sAcAsBcB[(1− µA)
2 sin(φA + φB − βA − βB)

+ (1− µB)
2 sin(φA + φB + βA + βB)]}. (A2)

Let us lower the number of parameters in this general model to control noise through a
single parameter for both players. We choose to evaluate the latter expression for µA =
µB = µ. Making use of the identities sin(x− y)− sin(x + y) = −2 sin(y) cos(x) y sin(x−
y) + sin(x + y) = 2 sin(x) cos(y), Πk can be written as

Πk(θA, φA, βA, θB, φB, βB, µ) =

ηk
1{

1
2

c2
Ac2

B[1 + (1− µ)4 cos 2(φA + φB)] +
1
2

s2
As2

B[1− (1− µ)4 cos 2(βA + βB)]

+ 2sAcAsBcB(1− µ)2 cos(φA + φB) sin(βA + βB)}

+ ηk
2{

1
2

c2
As2

B[1− (1− µ)4 cos 2(φA − βB)] +
1
2

s2
Ac2

B[1 + (1− µ)4 cos 2(φA − βB)]

+ sAcAsBcB(1− µ)2[sin(φA + φB − βA − βB) + sin(φA − φB + βA − βB)]}

+ ηk
3{

1
2

c2
As2

B[1 + (1− µ)4 cos 2(φA − βB)] +
1
2

s2
Ac2

B[1− (1− µ)4 cos 2(φA − βB)]

+ sAcAsBcB(1− µ)2[sin(φA + φB − βA − βB)− sin(φA − φB + βA − βB)]}

+ ηk
4{

1
2

c2
Ac2

B[1− (1− µ)4 cos 2(φA + φB)] +
1
2

s2
As2

B[1 + (1− µ)4 cos 2(βA + βB)]

− 2sAcAsBcB(1− µ)2 sin(φA + φB) cos(βA + βB)} (A3)
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