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Abstract: Remote sensing images are important data sources for land cover mapping. As one of the
most important artificial features in remote sensing images, buildings play a critical role in many
applications, such as population estimation and urban planning. Classifying buildings quickly and
accurately ensures the reliability of the above applications. It is known that the classification accuracy
of buildings (usually indicated by a comprehensive index called F1) is greatly affected by image
quality. However, how image quality affects building classification accuracy is still unclear. In this
study, Boltzmann entropy (an index considering both compositional and configurational information,
simply called BE) is employed to describe image quality, and the potential relationships between
BE and F1 are explored based on images from two open-source building datasets (i.e., the WHU
and Inria datasets) in three cities (i.e., Christchurch, Chicago and Austin). Experimental results
show that (1) F1 fluctuates greatly in images where building proportions are small (especially in
images with building proportions smaller than 1%) and (2) BE has a negative relationship with F1
(i.e., when BE becomes larger, F1 tends to become smaller). The negative relationships are confirmed
using Spearman correlation coefficients (SCCs) and various confidence intervals via bootstrapping
(i.e., a nonparametric statistical method). Such discoveries are helpful in deepening our understanding
of how image quality affects building classification accuracy.

Keywords: image quality; image complexity; building classification; classification accuracy; Boltzmann
entropy; land cover mapping

1. Introduction

Land cover datasets are important for studies on various subjects, including climate
change [1], biodiversity conservation [2], ecosystem assessment [3] and urbanization as-
sessment [4]. In recent decades, a variety of land cover datasets have been developed
from remote sensing images with resolutions ranging from meters to kilometers, such
as FROM-GLC10 [5], GLC 30 [6], MODIS [7] and GLC-2000 [8]. As one of the most com-
mon artificial features in land cover datasets, buildings play a critical role in population
estimation [9], urban planning [10] and many other applications [11–13]. High-quality
building data ensure the reliability of such applications. Usually, land cover building data
are acquired from remote sensing images using automatic classification methods, and
the classification accuracy of buildings is greatly affected by image quality. Therefore,
some researchers have conducted a variety of studies on how image quality affects the
applications of images [14–17]. More precisely, Roberts et al. [14] point out that remote
sensing image quality plays an important role in assessing the image fusion process and
can help in exploring which fusion method incorporates more texture information while
retaining spectral information. Xia et al. [15] noticed that image quality is the key to suc-
cessful image application, which provides the basis for classification, segmentation, etc.
Li et al. [16] found that image quality assessment is widely used in applications such as im-
age denoising, image deblurring and image fusion, and they conducted factor analysis and
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cluster analysis to assess the robustness of 21 commonly used non-reference image quality
evaluation metrics in terms of accuracy, monotonicity and consistency. Bishop et al. [17]
noted that image quality can be used to assess detection and classification performance.
However, no explicit or quantitative relationships have been found between image quality
and building classification accuracy.

There are a variety of no-reference metrics describing image quality. Among them,
some metrics (e.g., root of mean square error metric (RMSE) [18], average gradient (AG) [19],
signal-to-noise ratio (SNR) [20], Shannon entropy [21]) consider compositional information,
while others (e.g., metrics based on the gray-level co-occurrence matrix [22], metrics based
on the Sobel gradient [23], Boltzmann entropy [24]) consider configurational information.
It should be explained here that the compositional information of a remote sensing image
captures the composition of the image (i.e., the permutation of pixels), while configura-
tional information captures the distribution of pixels in the image (i.e., the combination
of pixels). Recently, some studies have been conducted to explore relationships between
image properties and classification accuracy [25–28], such as those between land pattern
and accuracy. It is reported that configurational information is very important to image
quality [29]. Recently, some researchers have evaluated the existing metrics for describing
configurational information, and a mathematical model between Boltzmann entropy (sim-
ply called BE in this study) and lossless compression ratio has been constructed [30]. In fact,
Boltzmann entropy has full thermodynamic consistency [31], and it has been regarded as
the most powerful metric for describing the configurational information of remote sensing
images [32].

Regarding the methods for the building classification of remote sensing images, many
traditional methods are available, such as K-Nearest Neighbors (KNNs) [33], support vec-
tor machines (SVMs) [34], random forest (RF) [35], etc. However, with the improvement
in spatial resolution in remote sensing images, these traditional metrics are gradually
being replaced by deep-learning-based methods, such as U-Net [36], SegNet [37] and
DeepLabV3+ [38]. In this study, Boltzmann entropy is selected as the most appropriate
metric for image quality, while DeepLabV3+ is employed as a suitable method for build-
ing classification. In addition, F1 (i.e., a popular and widely used metric for evaluating
building classification) is employed as the accuracy index. We aim to explore the potential
relationships between the Boltzmann entropy of land cover remote sensing images and
F1. The remainder of this article is as follows. Section 2 introduces the experimental data
and metrics/methods for exploring the relationships. Section 3 presents and analyzes the
experimental results. Some discussions and conclusions are given in Section 4.

2. Experimental Data, Methods and Strategy
2.1. Building Image Datasets

Benefiting from the rapid development of remote sensing techniques and methods,
some aerial very-high-resolution (VHR) building image datasets have been developed.
Among them, four open-source datasets can be easily accessed, i.e., the Massachusetts [39],
ISPRS [40], Inria [41] and WHU [42] datasets. The Massachusetts dataset includes 151 im-
ages with a size of 1500*1500 pixels and a spatial resolution of 1 m. It has been reported
that the quality of this dataset is relatively poor (e.g., the average noise level of images
is relatively high) [43]. The ISPRS dataset is small and only covers a 13 km2 area, which
leads to few samples of buildings. The Inria and WHU datasets are newly developed ones
with a spatial resolution of around 0.3 m covering more than 400 km2. To better explore
the potential relationships between the Boltzmann entropy of images and building classi-
fication accuracy, the Massachusetts and ISPRS datasets are not employed. In this study,
building images of three cities (i.e., Christchurch, Chicago and Austin) from the WHU and
Inria datasets are employed for the experiments. An overview of the images of these four
cities is shown in Figure 1. All the large images are clipped into small images with a size of
512*512 pixels for better training and testing results.
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Figure 1. Overview of building images from WHU and Inria datasets.

2.2. Boltzmann Entropy as a Metric for Image Quality

Entropy is a notion originating from thermodynamics to describe the lack of order that
exists in a thermodynamic system [44,45], and Boltzmann proposed an explanation of en-
tropy based on statistical physics. More precisely, a quantitative relationship model between
entropy and the possible number of microstates in a system has been constructed [46]:

S = kB log(W) (1)

where S represents the Boltzmann entropy of a system; W is the possible number of
microstates; kB is the Boltzmann constant (1.38*10−23 J/K).

Although the theoretical basis for using Boltzmann entropy to describe the configura-
tional information of remote sensing images has been proven to exist, no feasible method
for calculating entropy was proposed for a long period of time. This is because macrostates
and their corresponding microstates are hard to define [47,48]. Recently, some researchers
have proposed a feasible method through a landscape mosaic represented by gradients [29].
The key objective of such a method is to determine the macrostates of images and calculate
the number of microstates.
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Before illustrating the details of macrostates and microstates, the size of the original
images should be explained. In this study, C and L are two variables representing the
height and length of images (i.e., the number of pixels in the row and column of the image).

In terms of macrostates, Gao et al. [29] gave two detailed definitions: (1) images with
reduced resolution; and (2) images with a resolution of (C − 1) ∗ (L − 1). Generally, the
macrostates of images can be described by three parameters: maximum values, minimum
values and averages. In practice, the size of a remote sensing image (i.e., C ∗ L) is large.
One solution is to separate a large image into small macroscopic units. For example, in
Figure 2a, an original image is resampled by a moving a 2*2 window, and in this way,
a variety of macroscopic units can be generated.
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Figure 2. Macrostates, microstates and macroscopic units of an example image (modified from [29]).
(a) The resampling process for acquiring macroscopic units; (b) the microstate and all possible
microstates for a macroscopic unit.

Under a macroscopic unit, a macrostate can be generated via upscaling, and then
various microstates can be acquired via downscaling (see Figure 2b). In the example shown
in Figure 2b, two multisets of microstates with the same maximum value, minimum value
and average (i.e., 5, 2 and 15/4) can be generated via downscaling. Of all these microstates,
only one has the same macroscopic unit. The details of determining multisets and the
corresponding permutations for each multiset can be found in the paper by Gao et al. [29].

The total number of microstates for an original image (W) is the product of the numbers
of microstates (Wu) for all individual macroscopic units:

Wimage =
n

∏
j=1

Wu,j (2)

where Wu,j is the Wu calculated for the jth macroscopic unit. The formula for the calculation
of Wu is as follows:

Wu =
k

∑
i=1

Mi (3)
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where k is the number of multisets for a given microstate; Mi is the number of permutations
for each multiset. Therefore, the calculation formula of Boltzmann entropy for remote
sensing images is as follows:

S = kB log10
(
Wimage

)
(4)

where S is the relative Boltzmann entropy. In this study, the values of Boltzmann entropy
refer to relative values, also called configurational entropy by Cushman [49].

2.3. DeepLabV3+ and F1 for the Classification of Buildings

DeepLabV3+ is a semantic segmentation model based on a convolutional neural
network proposed by Google Brain [38]. This model improves segmentation accuracy
and calculation efficiency by introducing new modules and techniques (e.g., encoder–
decoder structure and conditional randomness) when retaining the dilated convolution
and multi-scale feature fusion of the original DeepLab series models (see Figure 3).
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In terms of specific implementation, DeepLabV3+ uses deep neural networks such
as ResNet as its encoding part, and uses the ASPP (Atrous Spatial Pyramid Pooling)
module to further improve the receptive field. In the decoder part, DeepLabV3+ uses
a series of deconvolution layers and bilinear interpolation layers combined with skip
connection to fuse multi-scale features. In addition, DeepLabV3+ also uses conditional
random fields to further optimize the segmentation results, resulting in more accurate
pixel-level segmentation results. The main contribution of DeepLab V3+ is an efficient
and accurate semantic segmentation model. The design of its hollow convolution and
encoder–decoder structure enables the model to understand the semantic information of
the image, and the innovations made in the deconvolution and bilinear interpolation allow
the model to better incorporate multi-scale features.

F1 is a comprehensive index commonly used in classification models which compre-
hensively considers the “precision” and “recall rate” of the model. In the binary classifica-
tion problem, “precision” (p) refers to the proportion of the number of positive samples
correctly classified to the number of all positive samples predicted by the model, while
“recall rate” (r) refers to the proportion of the number of positive samples correctly clas-
sified to the total number of actual positive samples. The formula for calculating F1 is as
follows [50]:

F1 = 2 × p × r
p + r

(5)



Entropy 2023, 25, 1182 6 of 14

2.4. A Strategy for Exploring the Potential Relationships between Boltzmann Entropy and F1
of Images

F1 for building classification is mainly affected by the differences within the build-
ings themselves (intra-class differences) and the differences between buildings and non-
buildings (inter-class differences). Intra-class differences are mainly due to the diverse
spectrum and texture, various scales and complex spatial structures of buildings. For exam-
ple, building roofs have a variety of colors and shapes and are covered by water towers,
signal stations, vegetation and other objects. Inter-class differences refer to the spectral and
spatial structure differences between buildings and non-buildings, such as the relatively
regular shape of buildings compared with natural features. When the proportion of build-
ings in an image is low, the spectral and spatial structure difference inside buildings is small,
which means that the classification accuracy is more affected by inter-class differences (see
Figure 4a). When the proportion of buildings in an image is high, the classification accuracy
is more affected by intra-class differences. Overall, when exploring potential relationships
between the Boltzmann entropy of images and F1, the proportions of buildings in images
should be considered.
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Figure 4. Two example images with different proportions of buildings. (a) The proportion of buildings
is 2%; (b) the proportion of buildings is 27%.

Based on this, a strategy is proposed here by us:

(1) Analyzing the effects of building proportions on F1;
(2) Exploring relationships between Boltzmann entropy and F1.

3. Exploring Relationships between Boltzmann Entropy and F1
3.1. Analyzing Effects of Buildings Proportions on F1

Based on images of three cities (i.e., Christchurch, Chicago and Austin) from the WHU
and Inria datasets, the image frequencies by building proportions are shown in Figure 5. It
is found that most images have small building proportions (<=35%), while those with large
building proportions are few. This is because buildings are often found around artificial
and natural elements. In downtown areas, buildings are often separated by roads and other
facilities (e.g., greenbelts), while in the suburbs, farmlands and forests dominate.

In Figure 6, the relationships between building proportions and F1 are given. It is
found that when the proportions are small, the fluctuation in F1 is between 0 and 1. With
the gradual increase in building proportion, the gap of fluctuation becomes smaller quickly.
In particular, when the proportion is larger than 20%, the F1 of images is larger than 0.8. In
fact, some factors (e.g., image classifier performance and inaccurate image labeling) will
lead to the misclassification of buildings. Regardless of whether the proportion of buildings
in an image is large or small, pixels incorrectly classified by these factors exist. In those
images with small building proportions, the total numbers of building pixels are small,
indicating these incorrectly classified pixels have more impact on F1.
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Therefore, to better explore potential relationships between Boltzmann entropy and F1,
obvious fluctuation in F1 in images with a specific building proportion should be avoided.
To solve this problem, images with very small building proportions are abandoned in the
subsequent experiments for exploring potential relationships. The analysis of how images



Entropy 2023, 25, 1182 8 of 14

with small building proportions affect the relationships between BE and F1 is presented in
Section 4.2.

3.2. Relationships between Boltzmann Entropy and F1: Experimental Results

All the scattered data between Boltzmann entropy and F1 based on images of three cities
are given in Figure 7. Just as we mentioned in Section 3.1, building proportions have effects
on F1. To better analyze the relationships, the trends between Boltzmann entropy and F1
under different building proportions are highlighted in different colors in Figure 7.
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Correlation analysis is employed to analyze the overall trends, and it is found that
the values of Spearman’s correlation coefficients (SCCs) between BE and F1 in three cities
are −0.448, −0.259 and −0.252, respectively. As the pairs (BE, F1) are not independent
observations, statistical tests are not suitable for this study. To further confirm the possible
relationships, various confidence intervals of SCCs are calculated using bootstrapping
(i.e., a nonparametric statistical method). It should be noted that when calculating confi-
dence intervals, the number of iterations is set as 1000 (i.e., 1000 sets of paired resamples
are generated from the original paired observations), and the size of paired resamples is
the same as that of the original paired observations. In addition, the extracted elements are
replaced after each sampling. The results of confidence intervals are presented in Table 1.
The width of a confidence interval can reflect the degree of uncertainty in our estimate of
the Spearman’s correlation coefficient. We can see that the calculated confidence intervals
are not very wide (the maximum width is around 0.1), and all the lower and upper bounds
of confidence intervals are negative. Such results imply that BE does have a negative
relationship with F1.
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Table 1. Confidence intervals of SCCs calculated using bootstrapping.

Confidence Interval

Christchurch
(Image Number: 2114

SCC = −0.448)

Chicago
(Image Number: 1269

SCC = −0.259)

Austin
(Image Number: 1245

SCC = −0.252)

95% (−0.485, −0.407) (−0.313, −0.207) (−0.307, −0.196)

90% (−0.479, −0.413) (−0.304, −0.218) (−0.297, −0.206)

85% (−0.475, −0.417) (−0.298, −0.222) (−0.293, −0.213)

80% (−0.473, −0.422) (−0.295, −0.226) (−0.288, −0.218)

75% (−0.470, −0.425) (−0.292, −0.229) (−0.284, −0.222)

70% (−0.468, −0.427) (−0.288, −0.232) (−0.282, −0.225)

65% (−0.466, −0.429) (−0.285, −0.235) (−0.279, −0.229)

60% (−0.464, −0.431) (−0.282, −0.237) (−0.276, −0.231)

55% (−0.463, −0.433) (−0.280, −0.239) (−0.273, −0.233)

50% (−0.461, −0.435) (−0.278, −0.241) (−0.271, −0.235)

45% (−0.460, −0.436) (−0.275, −0.243) (−0.269, −0.237)

40% (−0.458, −0.438) (−0.273, −0.245) (−0.267, −0.238)

35% (−0.456, −0.440) (−0.271, −0.247) (−0.266, −0.240)

30% (−0.455, −0.441) (−0.269, −0.248) (−0.264, −0.242)

25% (−0.454, −0.442) (−0.268, −0.250) (−0.262, −0.244)

20% (−0.452, −0.443) (−0.266, −0.252) (−0.260, −0.245)

15% (−0.452, −0.444) (−0.264, −0.254) (−0.258, −0.247)

10% (−0.450, −0.445) (−0.262, −0.255) (−0.256, −0.249)

5% (−0.449, −0.446) (−0.261, −0.257) (−0.254, −0.251)

4. Discussion
4.1. Possible Upper and Lower Limits of Modeled Relations

Recently, some researchers have found that the relationships between Boltzmann en-
tropy and the compression ratio of images can be described by upper and lower limits [30].
The modeled relationships between Boltzmann entropy and the compression ratio are
shown in Figure 8a. Naturally, we wonder whether upper and lower limits are appropriate
in this study for describing the potential relationships of remote sensing images with
entropy and F1. In Figure 8b–d, the modeled relationships with upper and lower limits in
three cities are presented. These upper and lower limits are fitted using scatter points near
the edges.

We can see that although these limits are different in Christchurch, Chicago and Austin,
the modeled lines can basically depict the boundary. Such a result indicates that upper and
lower limits are applicable. In fact, because of the lack of data, the scattered points in these
figures do not match well with the limits. This means that if we have adequate data, the
modeled relationships in these cities may have the same upper and lower limits. In the
future, by using more open-source high-resolution remote sensing building datasets, the
potential upper and lower limits can be better confirmed.
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Figure 8. Comparison of modeled relationships based on Boltzmann entropy. (a) Relationships
between Boltzmann entropy according to resampling (SR) and compression ratio (CR) [30]; (b) rela-
tionships between BE and F1 (Christchurch); (c) relationships between BE and F1 (Chicago); (d) rela-
tionships between BE and F1 (Austin).

4.2. Effects of Neglecting Images with Small Building Proportions

The scattered data of images with very small building proportions (i.e., smaller than
1%) are shown in Figure 9, and the SCCs and various confidence intervals are calculated
(see Table 2). In terms of SCCs presenting the overall trends, it is found that SCCs change
from −0.395, −0.217 and −0.221 to −0.448, −0.259 and −0.252 in three cities if images
with building proportions smaller than 1% are removed. In fact, the change is not very
large, and in both two situations, negative relationships are all found under various
confidence intervals.

Table 2. Results for SCCs and various confidence intervals of images with building proportions
smaller than 1%.

Confidence Interval

Christchurch
(Image Number: 2415,
Including 301 Images

with Building
Proportions Smaller

than 1%
SCC = −0.395)

Chicago
(Image Number: 1311,
Including 42 Images

with Building
Proportions Smaller

than 1%
SCC = −0.217)

Austin
(Image Number: 1301,
Including 56 Images

with Building
Proportions Smaller

than 1%
SCC = −0.221)

95% (−0.434, −0.356) (−0.269, −0.164) (−0.276, −0.168)

90% (−0.426, −0.364) (−0.260, −0.170) (−0.266, −0.176)

85% (−0.423, −0.366) (−0.256, −0.176) (−0.260, −0.182)
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Table 2. Cont.

Confidence Interval

Christchurch
(Image Number: 2415,
Including 301 Images

with Building
Proportions Smaller

than 1%
SCC = −0.395)

Chicago
(Image Number: 1311,
Including 42 Images

with Building
Proportions Smaller

than 1%
SCC = −0.217)

Austin
(Image Number: 1301,
Including 56 Images

with Building
Proportions Smaller

than 1%
SCC = −0.221)

80% (−0.421, −0.369) (−0.252, −0.180) (−0.255, −0.187)

75% (−0.418, −0.372) (−0.248, −0.184) (−0.253, −0.190)

70% (−0.416, −0.374) (−0.246, −0.187) (−0.250, −0.194)

65% (−0.414, −0.376) (−0.243, −0.191) (−0.247, −0.197)

60% (−0.411, −0.378) (−0.241, −0.192) (−0.245, −0.199)

55% (−0.410, −0.380) (−0.238, −0.195) (−0.243, −0.202)

50% (−0.408, −0.382) (−0.235, −0.198) (−0.240, −0.203)

45% (−0.407, −0.384) (−0.233, −0.201) (−0.238, −0.205)

40% (−0.405, −0.386) (−0.231, −0.202) (−0.235, −0.207)

35% (−0.404, −0.387) (−0.230, −0.205) (−0.234, −0.209)

30% (−0.403, −0.389) (−0.229, −0.207) (−0.232, −0.211)

25% (−0.402, −0.390) (−0.227, −0.209) (−0.231, −0.213)

20% (−0.400, −0.391) (−0.225, −0.210) (−0.228, −0.215)

15% (−0.399, −0.393) (−0.223, −0.212) (−0.226, −0.216)

10% (−0.398, −0.393) (−0.222, −0.215) (−0.225, −0.218)

5% (−0.397, −0.395) (−0.220, −0.217) (−0.223, −0.220)
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5. Conclusions

Buildings are important artificial features in remote sensing images and play important
roles in many applications. Classifying buildings quickly and accurately is the first step for
detailed applications. It has been noticed by many researchers that building classification
accuracy is greatly affected by image quality. However, the potential relationships between
image quality and building classification accuracy have not been modeled.

In this study, remote sensing images from two open-source datasets (i.e., WHU and
Inria) in three cities (i.e., Christchurch, Chicago and Austin) are employed, and potential
relationships between Boltzmann entropy (an image quality index considering both com-
positional and configurational information) and F1 (a comprehensive metric considering
both precision and recall rate) are explored. Experimental results show that F1 fluctuates
greatly in images with small building proportions (especially in images with building
proportions smaller than 1%). In addition, negative relationships between BE and F1 are
found using correlation analysis (the SCCs are −0.448, −0.259 and −0.252, respectively, in
the three cities). Such negative relationships are confirmed by various confidence intervals
calculated using bootstrapping in both situations (i.e., with and without images that have
building proportions smaller than 1%). The maximum width of all confidence intervals is
around 0.1, and all lower and upper bounds of confidence intervals are negative. From the
above results, we may conclude that the Boltzmann entropy of remote sensing images does
have a negative relationship with F1 (i.e., when BE becomes larger, the F1 tends to become
smaller). These discoveries are helpful to improve our understanding of how image quality
affects building classification accuracy.

There are some limitations of this study. The first is that the employed images are only
very-high-resolution ones, and the image object type is restricted to buildings. Thus, we
cannot conclude whether potential relationships exist for images with different resolutions
and objects (e.g., roads). Secondly, the effects of the size of clipped images on the classifica-
tion are not considered in this study. In fact, this may have impacts on the exploration of
subsequent relationships.
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