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Abstract: As an effective method for image security protection, image encryption is widely used in
data hiding and content protection. This paper proposes an image encryption algorithm based on an
improved Hilbert curve with DNA coding. Firstly, the discrete wavelet transform (DWT) decomposes
the plaintext image by three-level DWT to obtain the high-frequency and low-frequency components.
Secondly, different modes of the Hilbert curve are selected to scramble the high-frequency and low-
frequency components. Then, the high-frequency and low-frequency components are reconstructed
separately using the inverse discrete wavelet transform (IDWT). Then, the bit matrix of the image
pixels is scrambled, changing the pixel value while changing the pixel position and weakening
the strong correlation between adjacent pixels to a more significant correlation. Finally, combining
dynamic DNA coding and ciphertext feedback to diffuse the pixel values improves the encryption
effect. The encryption algorithm performs the scrambling and diffusion in alternating transforma-
tions of space, frequency, and spatial domains, breaking the limitations of conventional scrambling.
The experimental simulation results and security analysis show that the encryption algorithm can
effectively resist statistical attacks and differential attacks with good security and robustness.

Keywords: image encryption; DWT; Hilbert curve; bit-level scramble; DNA coding; ciphertext
feedback

1. Introduction

With the fast development of the internet and multimedia technology, information
security is gaining more and more attention. To prevent images from being stolen during
transmission, researchers have proposed many methods for image protection, and image
encryption is a common method for securing image transmission. Early encryption meth-
ods are mainly data encryption. With continuous research, researchers have proposed new
encryption methods that address the drawbacks of early encryption algorithms, namely
low operational efficiency, small key space, and poor security [1,2].

In 1963, Lorentz [3] introduced the concept of chaos theory, which is widely used in
image encryption due to the sensitivity, ergodicity, and unpredictability of chaotic systems
to initial states and control parameters [4-7]. Xu [8] proposed a new image encryption
algorithm based on one-dimensional logistic mapping and the orthogonal Latin square,
improving ciphertext image security. The advantages of one-dimensional logistic mapping
are its simple structure, high computational efficiency, and lower level of difficulty in
implementation. However, its disadvantages are the short period window, limited range of
chaotic behavior, small generated key space, and vulnerability to attacks [9]. To address the
insufficiency of low-dimensional chaotic systems in image encryption, Gao [10] combined
two one-dimensional chaotic systems and proposed a new two-dimensional chaotic system,
which uses the chaotic sequence generated by the two-dimensional chaotic system to
displace the row and column pixels and then performs nonlinear diffusion of the pixels,
which improves the randomness of the chaotic sequence and also enhances the resistance

Entropy 2023, 25, 1178. https:/ /doi.org/10.3390/€25081178

https://www.mdpi.com/journal/entropy


https://doi.org/10.3390/e25081178
https://doi.org/10.3390/e25081178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25081178
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081178?type=check_update&version=1

Entropy 2023, 25,1178

2 of 25

of the encryption algorithm to attacks. Arthi [11] added a state variable to the three-
dimensional Lorenz chaotic system and constructed a four-dimensional hyperchaotic
system containing two positive Lyapunov exponents. It has the advantage of iterating once
to obtain multiple chaotic sequences, which is more efficient, and the system parameters
can also make the key space larger and effectively resist brute force attacks. Using iterative
chaotic sequences for image encryption improves the complexity and robustness of the
encryption algorithm.

In image encryption, scrambling and diffusion techniques are the core part of the
encryption algorithm [12]. Scramble changes the position of pixels and reduces the correla-
tion between adjacent pixels, while diffusion randomly changes the pixel values, making
the ciphertext image more chaotic. Researchers have proposed many image encryption
algorithms based on scrambling and diffusion techniques, most of which perform scram-
bling followed by diffusion [13-15]. Although this encryption algorithm has good security,
there are some problems. For example, in [16], the scrambling part uses only the Hilbert fill
curve to scramble pixels, which does not entirely break the correlation between adjacent
pixels, making it less effective and more vulnerable to brute force attacks. The single
scrambling and diffusion operations are too simple, resulting in a less secure encryption al-
gorithm [17]. In contrast, multiple scrambling and diffusion repetitions are time-consuming
and significantly reduce the encryption efficiency [18]. To address the above shortcomings,
researchers have combined scrambling and diffusion and proposed bit-level scrambling
with simultaneous scrambling and diffusion to encrypt images [19-22]. The bit-level scram-
bling divides the pixel value into eight bits, disrupting the bit positions to achieve the
simultaneous scrambling and diffusion of pixels. Xiang [23] proposed an image encryption
algorithm that encrypts only the upper four bits of the image pixel value, which improves
the encryption performance and reduces the encryption time by half. Li [24] proposed a
bit-level scrambling method based on the binary tree, simultaneously changing the pixel
position and value. Wang [25] used bit cyclic displacement in the scrambling phase, and
the algorithm performs well through security and performance analysis.

The scrambling algorithm disrupts the pixels” position and eliminates the correlation
between them; thus, to better conceal the key information of the image, further diffusion
of the pixel values is necessary. DNA coding has received great attention from more
researchers because of its low power consumption, high density, and parallelism. DNA
coding was first proposed by Clelland [26] in cryptography, and since then, cryptographic
algorithms combining DNA coding with chaotic systems have emerged [27-30]. Other
diffusion algorithms that have been proposed are the matrix half-tensor product [31], the
Feistel-like network [32], filtered convolution [33], etc. In [29], Jithin divides the color
image into three planes of RGB, converts these three planes into DNA base planes using
fixed encoding rules, and performs heteroskedastic operations with these three DNA
base planes using DNA matrices generated from chaotic sequences. In [30], Wang uses
different encoding rules to convert multiple plaintext images into multiple DNA matrices.
Nevertheless, each pixel has the same encoding rules for the same plaintext image matrix,
performs operations with the chaotic sequence-generated DNA matrix, and uses different
decoding rules. However, these DNA coding-based image encryption algorithms achieve
pixel diffusion for their purposes; they also have a significant drawback, as the fixed DNA
coding and decoding rules cannot change the bit distribution of pixels and are vulnerable
to brute force attacks [34].

Image encryption methods have frequency domain encryption in addition to spa-
tial domain encryption. In [35], Shafique uses multiple S-boxes combined with wavelet
transform to encrypt images, which shortens the encryption time and solves the problem
of a weak single S-box encryption. In [36], Yan used fractional-order wavelet transform
to perform third-order fractional wavelet transform on plaintext images to obtain high-
frequency and low-frequency components, index scrambling for each component using
an index sequence generated by the chaotic sequence, and finally, diffusing the scrambled
image using a cyclic shift. The resulting ciphertext image has good robustness. In [37],



Entropy 2023, 25,1178

30f25

Qin uses dynamic wavelet decomposition and scrambling diffusion simultaneously to
combine spatial-domain and frequency-domain encryption, ensuring both the security and
robustness of the encryption algorithm.

This paper proposes an image encryption algorithm based on improved Hilbert
curve scrambling and dynamic DNA coding by combining a 4D hyperchaotic system to
summarize the above. Firstly, the hash value of the plaintext image is obtained using the
SHA-384 algorithm, and the initial value of the hyperchaotic system is calculated. Secondly,
the decomposition of the plaintext image is achieved using three-level DWT to obtain one
low-frequency component and nine high-frequency components. These ten components
are scrambled using different modes of the Hilbert curve, and the high-frequency and
low-frequency components are then reconstructed using IDWT. Then, the bit matrix of
the image pixels is position-scrambled to enhance the scrambling effect. Finally, the pixel
values are further diffused using dynamic DNA coding and ciphertext feedback to improve
the security of the encryption algorithm.

The rest of this paper is as follows: Section 2 introduces the 4D hyperchaos system,
DWT, and the Hilbert curve; Section 3 presents the proposed encryption algorithm; Section 4
shows the experimental simulation results; Section 5 is an analysis of the various security
of encryption algorithm; and Section 6 gives the conclusion.

2. Preparation
2.1. D Hyperchaotic System

Li introduced a nonlinear controller W into the chaotic system, which constitutes a
4D hyperchaotic system [38]; this is a nonlinear four-dimensional chaotic system that is
reversible and discrete and can simultaneously generate four chaotic sequences with more
complex behaviors and increased key space, enabling the encryption algorithm to effectively
resist various attacks such as known plaintext attacks and brute force attacks, compensating
for the small key space of the low-dimensional chaotic system. The expression of the 4D
hyperchaotic system is shown in Equation (1).

x =0y —x)

y=—xz+TX+py—w 1)
z=2xy—06z

w=x+¢

where J, 0, 4, T, and ¢ are the parameters that affect the behavior of the hyperchaotic
system, and ¢ € [—0.7,0.7]. When é = 36,0 = 3, y = 28, 7 = 16, and ¢ = 0.2, the
Lyapunov exponents A1 = 1.552, A, = 0.023, A3 = 0, and Ay = —12.573 of the hyperchaotic
system, which contains two positive Lyapunov exponents, has better chaotic behavior. The
computation time is somewhat shorter than the usual chaotic system.

Based on the above parameters, Figure 1 shows the phase diagrams of the hyperchaotic
system in two and three dimensions after discretization by the 4th-order Runge-Kutta
method. The phase diagram in each dimension indicates that the system has multiple at-
tractors and is a hyperchaotic system with complex variations. In this paper, the parameters
6 =236,0 =3,y =28, and T = 16 are taken to iterate the equations of the hyperchaotic
system to obtain four sequences for image encryption.
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(d)
Figure 1. Phase diagram of the 4D hyperchaotic system: (a) x-y space; (b) x—z space; (c) x—w space;
(d) x—y-z space.

2.2. Discrete Wavelet Transform

The DWT is a discretization of the scales and translations of the fundamental wavelet
that can decompose the signal at different scales and decompose the signal into components
of different frequencies. 2D-DWT is defined by Equation (2).

@

To (jo, m,n) = MxNE )L(/ 0 g x,Y) ]omn(x Y)
Tl (]'m }’l) MXNZ y 0 g(x y)qﬂmn(x ]/)

where To (jo, m, n) denotes the approximate part of the image, T4 (j, m, 1) denotes the edge
section of the image, ®;, ., (¥, y) denotes the scaling function, and ‘P} mn(X,y) denotes the
wavelet function. The 2D-IDWT is defined by Equation (3).
g(x y) — M%\:{Zm Zn T(D(]OI mln)¢]’0,m,n(x/y) . (3)
’ + 3N Li=H,V,D Lj=jy Lm 1n To (o, m,n)¥ (X, )

The advantage of DWT is that it eliminates the connection between pixels and is less
distorted than the conventional discrete cosine transform (DCT) after multilevel wavelet
decomposition. Figure 2 shows the DWT and IDWT process of the plaintext image. DWT
decomposes the image to obtain the four components LL1, HL1, LH1, and HH1. IDWT is
the column and row reconstruction of the resulting four components to obtain the original
image [39]. Figure 3 shows the one-level, two-level, and three-level DWT. In the two-level
DWT, the component LL1 continues to be decomposed into four components: LL2, HL2,
LH2, and HH2. Similarly, in the three-level DWT, the component LL2 continues to be
decomposed into four components: LL3, HL3, LH3, and HH3.

Row Column
decomposition decomposition

Row Column_
reconstruction reconstruction

Figure 2. The DWT and IDWT process.
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Figure 3. Schematic diagram of different levels of DWT: (a) One-level DWT; (b) Two-level DWT;
(c) Three-level DWT.

2.3. Hilbert Curve

The Hilbert curve is one of the classical space-filling curves [40], and similar space-
filling curves include the Z-curve [41], Gray codes [42], etc. A Hilbert curve can linearly
traverse every pixel point in the two-dimensional plane and travels each pixel point only
once, according to the properties of their own spatially filled curve. The 2D Hilbert curve is
a square divided equally into four little squares. The first iteration is completed by starting
from the center of the bottom left square up to the center of the top right square, then
right to the center of the entire right square, and then down to the center of the bottom
right square in turn. The image is divided into several 2 x 2 submatrices according to
the size of the image, and each sub-matrix is traversed by a first-order Hilbert curve with
different directions. Each sub-matrix is traversed by a One-order Hilbert curve in a different
direction, and then the first and last pixel points of each sub-matrix are connected. The
Hilbert curve can traverse the whole image. Figure 4 illustrates the different orders of the
Hilbert curve. In this paper, eight different filling modes are designed, based on the four
starting positions of the Hilbert curve and two directions: horizontal and vertical. Taking
the Two-order Hilbert curve as an example, Figure 5 shows these eight modes.

*_XLJﬁ* [ﬁLJr] [ﬁLJr]
1| [ | [
‘FJ [ ]| Lj‘
¥_} f4 LJF F] [T TLJ
[ ]
| = el Bisa T
(a) (b) (c)

Figure 4. The Hilbert curve of different orders: (a) One-order Hilbert curve; (b) Two-order Hilbert
curve; (c) Three-order Hilbert curve.
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Figure 5. Schematic diagram of the eight modes of the Two-order Hilbert curve: (a) Model; (b) Mode2;
(c) Mode3; (d) Mode4; (e) Mode5; (f) Mode6; (g) Mode7; (h) Mode8.
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3. Encryption Algorithm
3.1. Secret Key Generation

The parameters of the chaotic system are calculated by the intermediate variable g;
to make the encryption algorithm dependent on the key. Assuming that the size of the
plaintext image is M x N, and P;; is the pixel value of the plaintext, then i € [1, N] and
j € [1, M], and the parameter ¢ of the hyperchaotic system is calculated by Equations (4)

and (5).
= flood (Y- 12]112 mod (P, ;,256) x M§N>
ay = flood Z ’] NN mod(P1],256 X MiN)
7
4
M
a3 = flood z’ M]+1; mod (P;;,256) x MM,)
M,j=N
ay = flood Z’ Mil] mod(Pl],256) MiN)
1. T
¢ = 5sin (mod((a1 —ap+az—ay), E)) (5)

where the intermediate variables [a1, a3, a3, a4] are obtained by the calculation of Equation (4),
flood is the downward rounding function, and the mod is the mod function.

The plaintext image is input into the SHA-384 algorithm, which outputs a 384-bit
binary, H. The H binary is divided into 48 groups of binary sequences of 8 bits each, i.e.,
Hy = ky, kp, k3, - - - kag, and the initial values xo, vo, zg, wo of the hyperchaotic system are
calculated by Equations (6) and (7). The generated parameters ¢ and the initial values
X0, Yo, 20, and wy are substituted into the hyperchaotic system for 1000 + 4M x N times,
and the first 1000 times are rounded off to eliminate the transient effect and to obtain the
four chaotic sequences SX, SY, SZ, and SW. The four chaotic sequences are processed
using Equation (8) to obtain the sequences X, Y, Z, and W that are used in the encryption
algorithm.

_ mod(Q1+Qr+0Q3+Q4,256)

X 256

y(] _ mod(Q3+Q4+Q5+Q6,256)
z

w

256 ®)
_ mOd(Q5+Q62J5r6Q7+Q3,256)

_ mod(Qa+Q4+Qs+Qs,256)

- 256

Qi = kwi—5 P kowi—a P kexi—3 EP kowi—2 D kexi—1 € kexi 7)

where [Q1 ~ Qgs] is the intermediate variable, 1 <i < 8, and & is the XOR operation.

X (i) = mod (SX(i) x 10'2,256)

Y(i) = (i) x 10'2,256 .

Z(i) = odESZ( i) x 1012,256)) lsisdMxN ®
W (i) = mod (SW (i) x 10'2,256)

3.2. Pixel Scrambling
3.2.1. Hilbert Curve Scrambling

To completely disrupt the image pixel location distribution, a pixel-level scrambling
method is proposed. DWT is used to decompose the plaintext image into four components—
LLy, HLy, LHq, and HHi—and the results are shown in Equation (9).

DWT(P) = [LLy, HL,, LH,, HH,] )

where P is the plaintext, and LL, is the low-frequency component. HL,, LH1, and HH;
are the high-frequency components. To reduce the redundancy and encryption time, only
the low-frequency components need to be scrambled with complex behavior. LL; is used
as the new matrix for two-level DWT to obtain four components—LLy, HL;, LH», and
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HH,;. Decomposition of LL; is continued for three-level DWT, and the result is shown in
Equation (10).
{ DWT(LL,) = [LLy, HLp, LHy, HH,)| (10)

DWT(LLy) = [LL3, HL3, LH3, HH3]

The plaintext image P is decomposed by three-level DWT to obtain the low-frequency
component LL3 and nine high-frequency components, HL;, LHy, HHy, HL,, LH>, HH»,
HL3, LH3, and HHj3. The sequence FX is obtained by intercepting the first 3M elements
of the sequence X, and then the sequence FX is processed by using Equation (11). The
sequence DX is divided into three sub-sequences, DX, DX5, DX3, and the high-frequency
components HL1, LH1, and HH; are scanned for scrambling with the sub-sequence DX,
to select different modes of a[ (log, M) — 1]-order Hilbert curve. The sub-sequence DX is
used to select different modes of a [ (log, M) — 2]-order Hilbert curve to scan for scrambling
of the high-frequency components HL,, LH, and HHy; then, the sub-sequence D X3 is used
to select different modes of a [ (log, M) — 3]-order Hilbert curve to scan for the scrambling
of the components HL3, LH3, HH3, and LL3. The pixels on the scan path are arranged into
two-dimensional matrices by rows to obtain the scrambled matrices Shly, Slhy, Shhy, Shis,
Slhy, Shhy, Shls, Slhs, Shhs, and Sll3. Finally, the ten scrambled matrices are reconstructed
by Equation (12) to obtain the scrambled matrix P’. Assuming that the size of the low-
frequency component LL; is 8 x 8, Figure 6 shows the Hilbert curve scrambling process.

DX = mod(FX,8) +1 (11)

Sll, = IDWT(SIl3, Shls, Slhs, Shhs)
Sll; = IDWT(Slly, Shly, Slhy, Shhs) (12)
P’ = IDWT(SIly, Shly, Slhy, Shhy)

2 2 4 & o
1{2]3]|4|5]6]|7]8 AEanandlEananih;
9 10| 11| 12]13]14]15]16 N S0 WAJZ 'L}# 1546
1718|1920 | 21| 22|23 24 g #ﬁo %42 P
2502627282930/ 31]32 D | o] | Biseld | n

WT
33|34 |35|36| 3738|3940 |px[6[4[1]7 w3 |3 ]s | [3]as [ 40
738 | 39
41| 42|43 | 44| 45|46 |47 48 st do | dsdaa| [ ds| deldr | ds
49 |50 | 51| 52|53 |54|55]56 d|sot51| 2 3154 | 35196
5715805960 |61|62]63| 64 37158 | 90160 | | 6112 | 631
LL,

St

Figure 6. Schematic diagram of Hilbert curve scrambling process.

3.2.2. Bit-Level Scrambling

Although random pixel positions are scrambled, the pixel values are not changed,
and the statistical attack can still obtain valid information in plaintext to resist statistical
attacks. To resist statistical attacks and prevent an encrypted image from being cracked,
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each pixel value needs to be changed. To solve this problem, this paper uses the main-
diagonal extraction model to scramble the position of the pixel’s bits and thus change each
pixel value.

The Sarrus rule is a standard method to expand second-order and third-order deter-
minants in linear algebra theory. In the determinant, the elements on the main-diagonal
from the upper left corner to the lower right corner are called main-diagonal elements. The
sub-diagonal is from the upper right corner to the lower left corner, and the elements on the
sub-diagonal are called sub-diagonal elements. Since the calculation method is the product
of the main-diagonal elements minus the development of the sub-diagonal elements, it is
also called the diagonal rule. Taking the third-order determinant as an example, Figure 7
shows the expansion of the third-order determinant.

Figure 7. Third-order determinant expansion.

Based on the connection of the three favorable terms of the main-diagonal in the third-
order determinant, this connection can be extended to the eighth-order to create a model of
the eighth-order main-diagonal extraction, and the specific transformation process is shown
in Figure 8. This matrix is partitioned into two upper and lower triangles according to the
main-diagonal, and the upper triangle is extracted in the direction of the main-diagonal. In
comparison, the lower triangle is removed in the opposite direction of the main-diagonal.
By connecting the elements with the same color in the order of an upper triangle and then a
lower triangle, eight one-dimensional sequences of length eight can be obtained, and these
eight one-dimensional sequences are arranged in order in rows to form an 8 x 8 bit matrix.
This model can scramble the bit matrix of image pixels.

Figure 8. Main-diagonal extraction model.

The pixels of an image matrix P of size M x N are arranged in rows to form a one-
dimensional sequence P’, and the intercept of the last M x N elements of the sequence X is
used to obtain the sequence LX. The sequence LX is then arranged in ascending order to
obtain its index sequence ILX. This ILX index sequence is used to randomly selected eight
pixels in the sequence P’ and convert them into binary form, and each binary sequence is
then arranged in order by rows to obtain the 8 x 8 bit matrix Bp. Then, the main-diagonal
extraction model is used to scramble the bit matrix Bp to obtain the bit matrix B'p. The
scrambled bit matrix B’p is converted into a decimal by rows, and this process is repeated
M x N/8 times until all the bits of pixels have been scrambled to obtain the scrambled
matrix P”. Figure 9 shows the process of the bit-level scrambling for any eight pixels.
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28 101
00011100 | 01100101

15 49
00001111 | 00110001

41 72
01010001 | 01001000

33 165
00100001 | 10100101

116 240
01110100 | 11110000

250 166
11111010 | 10100110

136 55
10001000 | 00110111

124 76
01111100| 01001100

Figure 9. Example of the bit-level scrambling process.

3.3. Pixel Diffusion
3.3.1. Dynamic DNA Coding

In biology, DNA consists of four bases: A (adenine), C (cytosine), G (guanine), and T
(thymine). A and T as well as C and G are complementary. In binary, 00 and 11 and 01 and
10 are also complementary. Therefore, the four bases A, G, C, and T can be used to represent
00, 01, 10, and 11. There are 24 coding rules, of which only 8 satisfy the Watson—Crick
complementarity rule [43], as Table 1 shows.

Table 1. DNA coding rule.

Rule 1 2 3 4 5 6 7 8
00 A A T T C C G G
01 G C G C T A T A
10 C G C G A T A T
11 T T A A G G C C

Pixel diffusion is an algorithm that changes the pixel value of an image, and it plays a
crucial role in combating differential attacks. Coding a binary sequence using any DNA
coding rule and decoding it using a different DNA decoding rule can change the pixel
value. However, such fixed coding and decoding rules are poorly randomized, vulnerable
to attacks, and lack security. Meanwhile, if fixed DNA coding rules are used for binary
sequences containing consecutive ‘0" or “1” values, consecutive identical bases will occur,
posing a significant security risk. To overcome this drawback and to further improve the
security of ciphertext images, the binary sequences with different pixel-value bit crossovers
and various DNA coding and decoding rules are randomly selected in combination with
chaotic sequences, thus changing each pixel value. Dynamic DNA coding for diffusion is
more random and has a better diffusion effect.

Four pixels are selected in the image matrix using Equation (13) to form a 2 x 2
sub-block, and a total of M x N/4 sub-blocks can be selected. The four pixels in a sub-
block are converted into a binary sequence, and the binary sequence of pixels P(i, j) and
P(i,N +1 — j) are concatenated in the first row, followed by concatenation of the binary
sequence of pixels P(M +1 —1i,j) and P(M +1 — i, +1 — j) in the second row. The bits of
these two rows of binary sequences crossover to perform an information fusion and hide
the detailed information of the pixels. The sequences Y and Z are then processed with
Equation (14) to obtain the sequences DY and DZ, which are coded by the sequence DY
with randomly selected DNA coding rules for bit crossover pairs, and then decoded by
the sequence DZ with randomly selected DNA decoding rules. Lastly, the decoded binary
sequence is converted into decimal form. The specific process is shown in Figure 10.

P(i, ]) P(i,N+1—j) 1<i<M

P(M+1—-1i,j) P(M+1—i+1—j)] 1<j<N (13)
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{ DY = mod(Y,8) +1 (14)

DZ =mod(Z,8) +1
137
- 10001001

71
01000111

pv|e|3[s[a]s]3]s][7]s]2]7][s]1]6]4]3]

c,6, T,A,G,C,G, T, A,C, T, G, T, C,C,A

oz [8]als[a]7]2]s]1]2]7]3[ale][3]7]1]

19
00010011

172
10101100

Figure 10. Dynamic DNA coding process.

3.3.2. Two-Way Ciphertext Diffusion

To further improve the diffusion effect, a slight change is diffused to each pixel value
of the ciphertext. We use ciphertext diffusion to modify each pixel value. Sequences FW
and LW are obtained by intercepting the first and last M x N values of the sequence W,
respectively. The sequences FW and LW are converted into the two-dimensional matrices
U and V with M rows and N columns, respectively.

Positive diffusion:

mod((P;+Pux), 256) @ Uy; i=1,j=1
i =1 mod((P;+Eij1),256) @ Ui j#1 (15)
mod((P;+E;1n), 256) @Uy; i£1, j=1

Reverse diffusion:

mod((E ;+Ei1),256)@V;; i=M,j=N
Cij =4 mod((E,;+Ciji1), 256) B Vi jA1 (16)
mod((E ;; + cl-+1,1), 256)@DVij i#£M,j=N

where i is the row, and j is the column, P is the plaintext, E represents the result of forward
diffusion, and C is the ciphertext.

3.4. Encryption Algorithm

This encryption algorithm encrypts a square image; if the input image is non-square,
it needs to be filled with “0” to make it a square with maximum side length.

The encryption algorithm proposed first obtains the key to the chaotic system using
the plaintext image and the SHA-384 algorithm. A three-level DWT on the plaintext image
and a Hilbert curve with different modes are randomly selected to scramble the pixels of
each component locally, and then all components are reconstructed by IDWT. After that,
the main-diagonal extraction model combined with the index sequence is used to scramble
and diffuse each pixel simultaneously to achieve global scrambling. Finally, the scrambling
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matrix is modified by dynamic DNA coding and two-way ciphertext diffusion for each
pixel value to obtain the ciphertext image. The encryption steps are as follows:

Input: Plaintext image P.

Output: Ciphertext image C.

Step 1: Input a plaintext image P of size M X N.

Step 2: The hash value H of the plaintext image P is calculated using the SHA-
384 algorithm, and the parameters ¢ of the chaotic system are computed according to
Equations (4) and (5). The initial values xo, yo, zo, and wyp of the chaotic system are
computed according to Equations (6) and (7).

Step 3: Substitute the parameters and initial values into the hyperchaotic system for
4M x N + 1000 iterations and remove the first 1000 values. Obtain four chaotic sequences
5X,SY,SZ,and SW, which are processed according to Equation (9) to obtain the sequences
X,Y,Z,and W.

Step 4: The three-level DWT is performed on the plaintext image P to obtain the
low-frequency component LL3 and nine high-frequency components: HL;, LH;, HH{,
HL,, LHy, HHy, HL3, LH3, and HH3. The pixels of these ten components are scrambled
according to the Hilbert curve scramble in Section 3.2.1 to obtain ten scrambled matrices:
Shly, Slhy, Shhq, Shl,, Slhy, Shhy, Shls, Slhs, Shhs, and Sll3. IDWT reconstructs these to
obtain the scrambled matrix P;.

Step 5: Arrange the pixels in the matrix P; by rows into a one-dimensional sequence
SP;. According to the bit-level scramble method in Section 3.2.2, use the index sequence
ILX in the sequence SP; to randomly select eight pixels at a time for the bit-level scramble,
repeating this M x N /8 times to obtain the scrambled matrix P,.

Step 6: According to the dynamic DNA coding method in Section 3.3.1, four pixels in
the matrix P, are first selected and converted into two binary sequences and allowed to
undergo a bit crossover. Code the two bits of crossover with the sequence DY to obtain a
DNA base sequence, which is then decoded with sequence DZ to obtain a binary sequence.
This is then turned into a decimal form. Repeat M x N /4 times to obtain the diffusion
matrix Ps.

Step 7: Diffusion methods are as described in Section 3.3.2. The matrix Ps and the
matrices U and V are globally diffused using Equations (15) and (16) to obtain the ciphertext
image C.

Figure 11 shows the complete steps of the encryption algorithm.

Image Bit-level
—_—
sequence SP; scramblmg
Hilbert bcurve

Image
e F MI:;TE;
2
scrambling

: l : S111 Shi Sthy  Shh, DNA

SHA-384 Sthy  Shh, di
LL, HL, LH, HH,
L I I L
v [ I I 1

— Sil, Shly  Sth,  Shh

Key stream Image DNA
Hilbert curve %f Matrix P3 decoding
scrambling

—

L I
[ I I 1 ¢ ¢
Sthy Shh; Sil3 Shi3 Sths Shhs
Hyper-chaotic A A A A
Chen system
¥ LL; — HLy — LHy — HH; ——> Hsgrgmnbc;;g

Two-way
ciphertext ———»
- - - - diffus{on

Figure 11. Encryption algorithm flow chart.
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4. Experimental Simulation Results

Simulation of plaintext images of Lena, Jokul, Bridge, Bank, and Peppers was per-
formed using the proposed encryption algorithm in the MATLAB experimental platform,
and the simulation results are shown in Figure 12. It is obvious that the ciphertext image
loses the feature information, and the image cannot be recognized. The decrypted image
can be fully recovered without distortion, which proves that the algorithm encrypts very
well and has high security.

Figure 12. Simulation results: (a) Lena plaintext image; (b) Lena ciphertext image; (c) Lena decrypted
image; (d) Jokul plaintext image; (e) Jokul ciphertext image; (f) Jokul decrypted image; (g) Bridge
plaintext image; (h) Bridge ciphertext image; (i) Bridge decrypted image; (j) Bank plaintext image;
(k) Bank ciphertext image; (1) Bank decrypted image; (m) Peppers plaintext image; (n) Peppers
ciphertext image; (0) Peppers decrypted image.
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5. Security Analysis

The feasibility of an encryption algorithm cannot be judged by the degree of blurring of
the ciphertext image alone but also by more refined experimental analyses. To test whether
the proposed encryption algorithm can withstand malicious attacks by unscrupulous
elements, this section compares tests in terms of key, histogram, Chi-square, correlation,
information entropy, local information entropy, homogeneity, contrast, energy, PSNR, MES,
and robustness.

5.1. Key Space Analysis

To illegally obtain some valuable information, unscrupulous people often use brute
force attacks to decrypt the images being transmitted. The key space is the set of keys for the
image, which is a direct criterion to judge whether an encryption algorithm has the ability
to resist malicious attacks and ensure that data information is not compromised. In general,
an encryption algorithm has a key space of not less than 2!%°. The encryption algorithm'’s
security becomes stronger as the key space increases. In the encryption algorithm proposed,
SHA-384 is used to generate a key with a length of 384 bits, and its key space KS; = 212,
The initial values xg, yo, zo, and wy are calculated with a precision of 10'%, and its keyspace
KSy = 10%. The total keyspace KS = KS; x KS; ~ 6.28 x 107, i.e., KS > 2190, 50 the
encryption algorithm proposed is sufficient to resist various violent attacks.

5.2. Key Sensitivity Analysis

A secure image encryption algorithm with ample space for the key should also have
strong sensitivity. During sensitivity testing of the key, only minor changes are made
to the original key, which is then used to decrypt the encrypted image. The greater the
difference between the plaintext image and the ciphertext image, the stronger the sensitivity
of the key.

Key sensitivity test with the Lena image: The initial parameters xo, yo, zo, and wy are
slightly changed and decrypted with the changed initial parameters. Figure 13 shows the
test results, and it is apparent from Figure 13c—f that the decrypted images are entirely
different, even though only minor changes were made to the key. Also, Figure 13g-1 show
no difference between any two decrypted images in Figure 13c—f, thus indicating that the
algorithm is susceptible to the key.

Figure 13. Cont.
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(i) V) (k) O
Figure 13. Key sensitivity test: (a) Lena; (b) Lena ciphertext; (c) xg + 10712; (d) Yo + 10712
(e) zo + 10712, (f) wy + 1012; (g) Difference between (c,d); (h) Difference between (c,e); (i) Difference
between (c,f); (j) Difference between (d,e); (k) Difference between (d,f); (1) Difference between (e, f).

5.3. Histogram Analysis

The distribution of the image pixels can be reflected visually from the histogram. All
characteristic statistical attacks break the image by analyzing a histogram with a com-
paratively uneven distribution. The highly secure encryption algorithm resists statistical
attacks and completely breaks up the image pixels, making the histogram more uniform.
The histograms of different images are shown in Figure 14. It is not difficult to see that
the distribution of ciphertext image pixels is more uniform than that of plaintext image
pixels, which better hides the image information and proves that the encryption algorithm
proposed can resist statistical attacks well.

5.4. Chi-Square Test

The intuitive histogram is only a rough assessment of the homogeneity of the image;
to accurately quantify the uniformity of the histogram, a numerical operation using the
difference square formula is required, which is defined by Equation (17):

2 = LZSS (fl - g)z (17)
2565 g

where s? represents the Chi-square, f; is the appearance rate of this gray-level pixel value
in the histogram of the ciphertext image, and g is the theoretical rate of appearances of
the pixel value at that gray level in the histogram, denoted as g = (M x N)/256. The
significance level « is chosen to be 0.05, s3 s = 293.24783. When the Chi-square of the test
ciphertext image is less than this, i.e., s> < s3 5, the histogram is approximately uniformly
distributed. Table 2 shows the Chi-square test results. By comparison, the ciphertext image
has a much lower Chi-square value than the plaintext image, suggesting that ciphertext
images have uniform pixel values.

Table 2. Chi-square test results.

Images Lena Jokul Bridge Bank Peppers
plaintext 39,387 18,649 27,574 18,569 31,602
ciphertext 226.4821 234.8416 252.1406 267.2613 255.4587
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Figure 14. Histogram results: (a) Lena histogram; (b) Lena ciphertext histogram; (c) Jokul histogram;

(d) Jokul ciphertext histogram; (e) Bridge histogram; (f) Bridge ciphertext histogram; (g) Bank
histogram; (h) Bank ciphertext histogram; (i) Peppers histogram, (j) Peppers ciphertext histogram.
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5.5. Correlation Analysis

Adjacent pixels in all directions are highly correlated, and if a piece of information is
compromised, statistical attacks can decipher other information based on this information,
causing a chain reaction. To ensure that the image is not cracked, successfully reducing
the correlation between adjacent pixels becomes the key to the encryption algorithm. The
correlation coefficient is calculated using Equation (18).

 cov(ny)
" = /D)D) 19

The formula for each parameter in Equation (18) is as follows in Equation (19).

(19)

where ry, is the correlation coefficient, x and y are a pair of pixel values, E(x) is the
expectation of x, D(x) is the variance of x, cov(x,y) is the covariance, and N is the total
number of pixels in the image. From plaintext and ciphertext images, 5000 pairs of pixels
are randomly selected, and their correlation coefficients in each direction are calculated
separately. The results are shown in Table 3, which shows that the correlation coefficient of
the ciphertext images tends to be 0. This shows that the proposed encryption algorithm
can effectively weaken the pixel correlation. Figure 15 also shows that the correlation
between adjacent pixels of the ciphertext image is broken. Meanwhile, the comparison of
the correlation under different encryption algorithms is shown in Table 4. The results show
that the proposed encryption algorithm in this paper is more destructive to the correlation
of the plaintext image compared with other encryption algorithms.

Table 3. Correlation coefficients.

Images Horizontal Vertical Diagonal
8 Direction Direction Direction

L plaintext 0.9663 0.9249 0.9194
ena ciphertext 0.0013 0.0021 —0.0028
okl plaintext 0.9777 0.9795 0.9635
ciphertext 0.0024 —0.0035 —0.0029

Bridee plaintext 0.9205 0.9402 0.8903
& ciphertext —0.0016 0.0043 —0.0027
Bank plaintext 0.9385 0.9235 0.8955
an ciphertext 0.0102 —0.0061 0.0054
Penpers plaintext 0.9686 0.9651 0.9357
PP ciphertext 0.0048 —0.0036 —0.0014

Table 4. Correlation coefficient comparison.

Images Algorithms Horizontal Vertical Diagonal
Direction Direction Direction

Proposed 0.0013 0.0021 —0.0028

[44] —0.0059 —0.0046 —0.0003

Lena [14] 0.0060 0.0021 —0.005
[45] 0.0015 —0.0090 —0.0120

[46] 0.0058 —0.0051 —0.0030
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Table 4. Cont.

Images Algorithms Horizontal Vertical Diagonal
Direction Direction Direction
Proposed 0.0048 —0.0036 —0.0014
[44] —0.0026 —0.0012 —0.0050
Peppers [14] —0.0025 —0.0040 —0.0015
[45] —0.0083 0.0081 —0.0142
[46] —0.0011 —0.0073 —0.0019
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Figure 15. Correlation coefficients of Lena: (a) Horizontal correlation of the Lena plaintext image;

(b) Horizontal correlation of the Lena ciphertext image; (c) Vertical correlation of the Lena plaintext

image; (d) Vertical correlation of the Lena ciphertext image; (e) Diagonal correlation of the Lena

plaintext image; (f) Diagonal correlation of the Lena ciphertext image.

5.6. Information Entropy and Local Information Entropy

Information entropy is a key metric for detecting the randomness of image pixels
and for quantifying the average amount of information in the image. In images with high
information entropy, pixels are distributed more uniformly; the stronger the randomness,
the less it is likely to be cracked. Information entropy is calculated by Equation (20):

H(m) = =Y 0" P(m;)log, P(m;)

(20)
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where L is the image’s gray level. When L = 256, its information entropy in the ideal
state is 8. m; is the ith pixel value of the image, and P(m;) is the chance of occurrence
of the corresponding pixel value. In the information entropy test, five different images
are converted into ciphertext images separately using the proposed encryption algorithm.
Then, their information entropy is obtained, and the test results are displayed in Table 5. All
ciphertext images have an information entropy value close to 8. Meanwhile, the comparison
with other algorithms in Table 6 also visually proves that the proposed encryption algorithm
has high security.

Table 5. Information entropy.

Information

Entropy Lena Jokul Bridge Bank Peppers
Plaintext 7.4539 7.5209 7.4236 7.3841 7.5794
Ciphertext 7.9987 7.9985 7.9982 7.9977 7.9981

Table 6. Comparison of information entropy.

Images Algorithms Plaintext Ciphertext
Proposed 7.4539 7.9987
[44] 7.4492 7.9971
Lena [14] 7.4446 7.9974
[45] 7.3875 7.9939
[46] 7.4446 7.9974
Proposed 7.5794 7.9981
[44] 7.3576 7.9967
Peppers [14] 7.3800 7.9972
[45] 7.5697 7.9973
[46] 7.5327 7.9967

For ciphertext images with uniform pixel distribution, the calculated results are accu-
rate, but some ciphertext images may have an uneven local pixel distribution. To overcome
this drawback of information entropy and to further improve the accuracy of this evalua-
tion criterion, Wu proposed the calculation method of local information entropy [47], as
shown in Equation (21).

k
H1y)(5) = 21 H(kS,) 1)
i=

where S; is the ciphertext information entropy, k is the number of selected groups, and Tp
is the number of pixels in each group. The ideal range of the local information entropy is
obtained when k is chosen to be 3, T is 1936, and the significance level « is 0.05 in the field
[7.901515698, 7.903422936]. If the test result is within this range, it means that the ciphertext
image passes the test. In this test section, five different images are converted into ciphertext
images using the proposed encryption algorithm; then, their local information entropy is
obtained, and the test results are in Table 7. All the ciphertext images pass the test.

Table 7. Local information entropy.

Images Lena Jokul Bridge Bank Peppers
Local information entropy 7.9021 7.9023 7.9019 7.9031 7.9026
Pass or fail Pass Pass Pass Pass Pass

5.7. Homogeneity Analysis

The gray level co-occurrence matrix (GLCM) represents the various combinations
of pixel luminance. Homogeneity analysis quantifies the distribution of elements in the
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GLCM and further determines how similar they are to the diagonal. The homogeneity
value decreases as the distance of the elements from the diagonal becomes more prominent
in the range of [0, 1], and the smaller the homogeneity value is, the more efficient the
encryption algorithm is. It is calculated as shown in Equation (22) [48].

Homogeneity =) Y M (22)

i 1+ ‘l -] |

where i and j are two horizontally adjacent gray values, and P(i, j) is the element’s value in
the normalized GLCM. The homogeneity values of different plaintext images and ciphertext
images are calculated, and the results are shown in Table 8. From Table 8, it can be seen
that the homogeneity value of the ciphertext image is at a shallow level. Also, in Table 9,
by comparing with other algorithms, the ciphertext image in this paper has the lowest

homogeneity value, which shows that the encryption algorithm strongly resists statistical
attacks.

Table 8. Homogeneity.

Images Lena Jokul Bridge Bank Peppers
Plaintext 0.8456 0.8857 0.8237 0.8810 0.9002
Ciphertext 0.3895 0.3892 0.3877 0.3893 0.3907

Table 9. Comparison of homogeneity, contrast, and energy.

Algorithm Homogeneity Contrast Energy
Proposed 0.3895 10.5331 0.0156
[49] 0.3896 10.4968 0.0156
[50] 0.3901 10.5324 0.0156
[51] 0.3887 10.5325 0.0156
[52] 0.4633 10.3011 0.0152

5.8. Contrast Analysis

The contrast is usually measured for the intensity between an image pixel and its
neighboring pixels. Generally, the contrast value of plaintext images is shallow, while the
contrast value of ciphertext images is high. The higher the contrast value, the higher the
randomness of the ciphertext image and the more resistant the encryption algorithm is to
statistical attacks. The contrast value is calculated as shown in Equation (23) [48].

Contrast =) . o Pijx (i = i) (23)

where i and j are two horizontally adjacent gray values, and P(i, j) is the element’s value in
the normalized GLCM. The contrast values of plaintext and ciphertext images are shown
in Table 10, from which it can be seen that the ciphertext image has a higher contrast
value than the plaintext image. It can also be seen in the comparison in Table 9 that
the ciphertext image of this paper has the highest contrast value, which shows that the
encryption algorithm is effective against statistical attacks.

Table 10. Contrast.

Images Lena Jokul Bridge Bank Peppers

Plaintext 0.5591 0.2997 0.4602 0.6230 0.2980
Ciphertext 10.5331 10.3813 10.3729 10.4099 10.4157
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5.9. Energy Analysis

The energy is the cumulative sum of the squares of all elements in the GLCM and rep-
resents how much image information is contained. The larger the energy value of an image,
the more information it contains, and the easier it is to be cracked by a statistical attack.
An encryption algorithm with strong resistance to statistical attacks should have very low
energy for the ciphertext image. The energy is calculated as shown in Equation (24) [48].

Energy = Y. )_P(i,j)® (24)
T

where i and j are two horizontally adjacent gray values, and P(i, j) is the element’s value in
the normalized GLCM. The energy values of the plaintext image and the ciphertext image
are shown in Table 11, from which it can be seen that the ciphertext image has a shallow
energy value. The results of comparing the energy values of this encryption algorithm with
other algorithms are shown in Table 9. It is easy to see that the energy value of the ciphertext
image of this encryption algorithm is one of the lowest, which shows that this encryption
algorithm has a certain degree of security in terms of resistance to statistical attacks.

Table 11. Energy.

Images Lena Jokul Bridge Bank Peppers
Plaintext 0.0786 0.0946 0.0838 0.0971 0.1135
Ciphertext 0.0156 0.0156 0.0156 0.0156 0.0156

5.10. MES and PSNR Analyses

PSNR (Peak Signal Noise Ratio) and MSE (Mean Square Error) are two objective
metrics used to evaluate image quality. The more significant the PSNR value, the smaller
the image distortion; the more precise the image, the worse the encryption effect. As a
result, higher MSE values indicate a better encryption performance when testing plaintext
and ciphertext images. They are calculated according Equations (25) and (26).

1 My 2
L2

where P is the plaintext, C is the ciphertext, M x N is the size of the images, and L is the
pixel gray level. The MSE and PSNR values of different images after encryption and the
comparison with other algorithms are shown in Table 12. From this, we can see that the
PSNR of the ciphertext image is very small, and it also outperforms other algorithms when
compared and analyzed against different algorithms, which indicates the high performance
of this encryption algorithm.

Table 12. Comparison of MSE and PSNR values.

Algorithms Images MSE PSNR
Jokul 8395.9526 8.8901

Bridge 7730.2871 9.2488

Proposed Bank 9505.5392 8.3510
Peppers 8312.6971 8.9334

Lena 10,659.0009 7.8536
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Table 12. Cont.

Algorithms Images MSE PSNR
[45] Lena 7752.6 9.2363
[53] Lena 9056.1634 8.5613
[54] Lena 7802.1 9.2087
[55] Lena 7797.7 9.2111

5.11. Differential Attack Analysis

The differential attack mainly involves making a small change to a pixel value of the
plaintext image, then encrypting the two plaintext images using an encryption algorithm,
and finally comparing and analyzing the two ciphertext images to discover their connection,
from which the images can be cracked.

There are two extremely critical factors in evaluating differential attacks. One is the
rate of change of pixel values, NPCR, and the other is the uniform average change intensity,
UACI, and these are calculated as shown in Equation (27):

D(l,]) _ 0 Cl(l/]) = CZ(Z./].)
1 Gi(i,)) # Ca(ir))
NPCR = E20) 5 1009
UACI = mzw Ci(i,j) — Ca(i, j)| x 100%

(27)

where M X N is the scale size of the ciphertext, C; and C, are the two ciphertexts to be
compared, and D(i, j) is used to discriminate C; and Cp.Under ideal conditions, the values
of NPCR and UACI were 99.6049% and 33.4635%, respectively. With the key unchanged, the
two plaintext images are converted into ciphertext images with the encryption algorithm.
Tables 13 and 14 show the calculated NPCR and UACI values and the comparison results
with different algorithms. Compared with other algorithms, this algorithm’s NPCR and
UACI values are closer to the theoretical values than most of them.

5.12. Noise Attack Analysis

Ciphertext is vulnerable to noise attacks during data transmission. The typical noise
attacks are gaussian noise and pepper noise, and the noise attacks can damage the ciphertext
image and reduce the clarity. Since pepper noise has more impact on ciphertext images
than other noise, in this study, different strengths of pepper noise were included for testing.
While keeping the key unchanged, we added pepper noise with intensities of 0.01, 0.05,
0.1, and 0.15 to interfere with the Lena image and encrypted and decrypted it using the
encryption algorithm proposed. Figure 16 shows the ciphertext and decrypted images. It is
evident that even when the noise intensity reached 0.15, the decrypted image could still be
recognized, indicating that the encryption algorithm resists noise attacks.

Table 13. NPCR and UACI values.

Size Images NPCR (%) UACI (%)

Lena 99.6073 33.4682

Jokul 99.6154 33.4557

256 x 256 Bridge 99.5886 33.4564
Bank 99.6012 33.4623

Peppers 99.5979 33.4708

Lena 99.6023 33.4658

Jokul 99.6135 33.4717

512 x 512 Bridge 99.5963 33.4576
Bank 99.6155 33.4698

Peppers

99.6004

33.4618
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Table 14. Comparison of NPCR and UACI values.

Size Algorithm NPCR (%) UACI (%)

Proposed 99.6073 33.4682

[44] 99.6197 33.0443

Lena (256 x 256) [14] 90.6047 33.4719
[45] 99.6185 33.4561

[46] 99.6085 33.4633

Proposed 99.6023 33.4618

[45] 99.6044 33.4117

Lena (512 x 512) [56] 99.6101 33.4945
[57] 99.6002 33.5079

[58] 99.6140 31.4646

5.13. Cropping Attack Analysis

If the decryption algorithm is not robust against cropping attacks, the decryption will
fail due to the missing information in the decryption process. If the decryption algorithm
can restore the plaintext image to a large extent, the encryption algorithm is highly resistant
to cropping attacks. In the test, the Lena ciphertext image was decrypted after cropping
attacks of 1/64,1/16, 1/4, and 1/2, respectively, and the results are shown in Figure 17.
The Lena ciphertext image can still be seen as the basic outline of the original image after
decryption with the addition of different degrees of cropping attacks, which indicates that
the encryption algorithm strongly resists a cropping attack.

@

(8) (h)

Figure 16. Noise attack experiment results: (a) 0.01 intensity ciphertext image; (b) 0.05 intensity cipher-
text image; (c) 0.1 intensity ciphertext image; (d) 0.15 intensity ciphertext image; (e) 0.01 intensity de-

crypted image (f) 0.05 intensity decrypted image; (g) 0.1 intensity decrypted image; (h) 0.15 intensity
decrypted image.
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(a) (b) | () (d)
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Figure 17. Cropping attacks experiment results: (a) 1/64 cropping; (b) 1/16 cropping; (c) 1/4 crop-
ping; (d) 1/2 cropping; (e) Decrypted image of (a); (f) Decrypted image of (b); (g) Decrypted image
of (c); (h) Decrypted image of (d).

6. Conclusions

In this paper, an image encryption algorithm based on improved Hilbert curve scram-
bling and dynamic DNA coding is proposed. First, the image matrix is divided into ten
component matrices by using three-level DWT of the plaintext image, and the chaotic
sequence generated by iterating with the hyperchaotic system randomly selects one of the
eight Hilbert curve modes and scrambles each of the ten component matrices. The scram-
bled component matrices are then reconstructed with IDWT to obtain the scrambled image
matrix. Next, eight pixels at a time are randomly selected with a chaotic sequence and
bit-level scrambled using the main-diagonal extraction model until all pixels are scrambled.
Then, bit crossover is performed between different pixels, and the pixel values are modi-
fied using dynamic DNA coding. Finally, the pixels are globally diffused using two-way
ciphertext feedback to obtain the ciphertext image.

Simulation experiments and theoretical analysis verify the effectiveness of this en-
cryption algorithm against chosen plaintext attacks, violent attacks, statistical attacks,
differential attacks, noise attacks, and cropping attacks. Therefore, the encryption algo-
rithm proposed in this paper has good security performance.
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