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Abstract: In harsh weather conditions, the infrared modality can supplement or even replace the
visible modality. However, the lack of a large-scale dataset for infrared features hinders the generation
of a robust pre-training model. Most existing infrared object-detection algorithms rely on pre-training
models from the visible modality, which can accelerate network convergence but also limit performance
due to modality differences. In order to provide more reliable feature representation for cross-modality
object detection and enhance its performance, this paper investigates the impact of various task-
relevant features on cross-modality object detection and proposes a knowledge transfer algorithm
based on classification and localization decoupling analysis. A task-decoupled pre-training method is
introduced to adjust the attributes of various tasks learned by the pre-training model. For the training
phase, a task-relevant hyperparameter evolution method is proposed to increase the network’s
adaptability to attribute changes in pre-training weights. Our proposed method improves the accuracy
of multiple modalities in multiple datasets, with experimental results on the FLIR ADAS dataset
reaching a state-of-the-art level and surpassing most multi-spectral object-detection methods.

Keywords: cross-modality; knowledge transfer; task-decoupled pre-training; task-relevant hyperparameter
evolution

1. Introduction

The advancement of camera sensors has improved information-collecting channels
and made it feasible to gather data from several cameras with various spectra. The use of
visible and infrared modalities in downstream computer vision applications has increased
recently, particularly in the area of object detection. In dealing with complicated occasions,
infrared data based on the thermal radiation properties of the object has more advantages
and can be extremely useful. For example, there have been some related studies on object
detection paired with infrared modalities in the field of autonomous driving, as well as
open-source object-detection datasets incorporating infrared modality data [1,2]. However,
the volume of these datasets is far smaller than the existing large-scale visible modality
datasets [3,4], and there are significantly fewer open-source object-identification datasets
using infrared modalities in other application fields, such as airborne. One of the challenges
in the advancement of infrared object detection is the gathering of infrared data. The
purpose of infrared object detection is to efficiently use the limited infrared data to mine
the target’s infrared features for detection.

Researchers typically use transfer learning, image generation [5,6], and image fusion [7]
to improve network performance in order to fully utilize different modality information.
The transfer learning method initially performs fine-tuning in subsequent detection tasks
after training a pre-training model on a large-scale visible classification dataset. Such a tech-
nique can dramatically increase detection accuracy while speeding up network convergence
on a limited dataset. In order to increase the total number of infrared data in the target
domain and enhance the precision of infrared object detection, some researchers use image-
generation techniques to transform visible image data into pseudo-infrared images [8].
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In addition, image fusion methods are used by researchers to fuse visible and infrared
modalities in the network [9–11]. The network can learn better target representation and
improve the subsequent detection effect by incorporating infrared modality information
based on visible object detection. However, due to the spectral characteristic differences
between the visible and infrared modalities, it is difficult for the image-generation method
to provide reliable infrared image features, which limits network performance. Image
fusion based on multi-spectral images needs to learn effective feature representations based
on data; however, limited by the scale of training data, it is difficult for the network to
obtain robust generalization capabilities on small-batch datasets.

We research cross-modality object detection using transfer learning methods to in-
vestigate how to efficiently use limited data. The visible pre-training model is used to
initialize the majority of existing infrared object-detection algorithms. However, there are
still two barriers to establishing a good transfer effect: task-level differences and modality-
level differences. Recent research has revealed that ImageNet-based pre-training does not
improve object-detection accuracy on the COCO dataset [12]. When object classification
is the upstream task and object detection is the downstream task, the feature learned by
the pre-training model will overfit the upstream classification task, resulting in a lack of
localization-related information required by the downstream detection task and limiting the
infrared detector’s performance. Since the network’s weight initialization has a significant
impact on the training process, the modality-level difference is mainly reflected in the
difference between visible imaging and infrared imaging. Visible imaging mainly reflects
the reflection characteristics of the target, while infrared imaging reflects the radiation
characteristics of the target. The difference in imaging mechanism results in a difference in
target characteristics between visible and infrared modalities, which is primarily reflected
in the target’s details, texture, and color brightness, while the difference in edge contour
and corner information related to the target’s scale and shape is minor. These changes also
affect detector responses to distinct target features, as well as the activation of associated
convolution kernels in different modalities.

To achieve cross-modality information transfer, we use heatmaps to visualize and
compare the final output features of the visible and infrared modality network models,
including localization regression and classification features. The heatmap is a graphical
representation of the responsiveness of image features within a neural network. Figure 1
depicts the original image and related heatmaps. From the comparison diagram in the last
row, it can be clearly seen that the differences in the object texture and other information
of different modalities in the original image and the heatmaps related to object classifica-
tion are quite different, as the spatial heatmap responses of pedestrians and bicycles are
different, while the heatmaps related to localization are consistent. In other words, object
localization is less influenced since it pays more attention to regression-sensitive feature
information such as the object contour, whereas object classification is highly impacted
by the classification-sensitive feature variations in the data of different modalities. In the
field of object detection and remote sensing, some work has been optimized and improved
around the classification-sensitive feature and the regression-sensitive feature [13–15].

This finding motivates us to reconsider the current visible pre-training approaches. If
the pre-training model can be modulated, would the network be able to extract additional
useful cross-modality features from the pre-training model? We propose a task-decoupled
pre-training (TDP) method to lower the transfer barrier of cross-modality features based on
the aforementioned concepts. By decoupling the classification and localization attributes in
the pre-trained model, the TDP method aims to improve the learning of localization-related
features that are insensitive to modality changes during the training process, thereby im-
proving the transfer effect of the pre-training model in subsequent target domain tasks.
In addition, we propose a task-related hyperparameter evolution (TRHE) technique to
improve the network’s TDP accuracy even further. The TRHE method focuses on the flexi-
bility of downstream tasks to the modulated pre-training model, in contrast to standard
hyperparameter optimization methods. To prevent TDP from introducing negative transfer
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into the downstream training process, this research employs evolutionary algorithms for
classification-related and localization-related hyperparameters to improve the training pro-
cess’s adaptability to varied pre-training models. Our methods are only applicable during
the training phase; the inference phase is not adjusted compared to the baseline method, and
these methods can be easily merged with other cross-modality object-detection methods.

Figure 1. Visualization result of multi-modality classification and localization features from the final
output features of the network. The first row displays the prediction results of the visible modality
detector on visible data, while the second row presents the prediction results of the infrared modality
detector on infrared data. The third row provides a detailed comparison of the targets from both
modalities within the red box areas. Furthermore, the second column displays the object-width-
localization prediction heatmap, the third column presents the object-height-localization prediction
heatmap, the fourth column shows the pedestrian-category-classification response heatmap, and the
fifth column exhibits the bicycle-category-classification response heatmap. The heatmaps associated
with object classification exhibit significant differences, whereas those associated with localization are
consistent. This is evident in the comparison diagram presented in the last row.

Our contributions are summarized as follows:

• We rethink the generally used visible classification pre-training approaches and pro-
pose the TDP method by decoupling classification and localization features to obtain
a pre-training model that is more conducive to cross-modalities.

• Further, we propose the TRHE method to adjust the hyperparameters related to
classification and localization during the training process and improve the adaptability
of the network to the modulated pre-training model.

• We investigate the influence of modality changes on the detection network’s classi-
fication and localization components and validate the effectiveness of our methods
on MSOD and FLIR datasets while achieving state-of-the-art accuracy on the FLIR
dataset, surpassing most multi-spectral object-detection benchmarks.

2. Related Works
2.1. Multi-Spectral Object Detection

Object detection has advanced considerably in recent years, with visible object detec-
tion achieving great success [16–20]. Simultaneously, infrared object-detection technology
is fast evolving in order to enable object detection at night. Ghose et al. [21] use signifi-
cance detection to extract significant features from infrared data, guide the feature-learning
process, and perform well on the KAIST pedestrian detection dataset [22]. Cao et al. [23]
refined the feature fusion method that was employed on the FLIR infrared modality, which
was based on the RefineDet network. In comparison to the typical visible modality, infrared
can meet detection requirements in scenes such as nighttime and overexposure that the
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visible modality cannot. However, due to the limited number of data, the detector cannot
meet the needs of object detection in some complex weather conditions when relying on
single-spectral images. Multi-spectral object detection brings improvements by introducing
image information of objects in a multi-spectral format. The detector benefits from the
rich color information of the visible modality and may use the infrared modality infor-
mation to suit the needs of object detection at night after merging the visible modality
and long-wave infrared modality. Liu et al. [24] investigated various fusion strategies
for visible and infrared modalities using the Faster RCNN architecture. GFD-SSD [25]
adopts the Gated Fusion module to fuse the two modality branches. Zhang et al. [26]
focused on the weak alignment problem between visible and infrared modality data, which
is common in similar datasets due to cameras or alignment algorithms. Zhou et al. [27]
introduced the modality-imbalance problem between two modality data and proposed the
Differential-Modality-Aware Fusion module to solve the modality imbalance problem and
realize the fusion of different modality data.

However, there is a challenge in both non-visible modality single-spectral object
detection and multi-spectral object detection, that is, the difficulty of data acquisition. Non-
visible modality datasets are currently substantially smaller in scale than visible modality
datasets in existing public datasets, and multi-spectral object identification datasets must
handle the alignment of distinct modality data, which increases the difficulty of data
gathering. As a result, effective pre-training models for non-visual modalities from large-
scale datasets of their own modalities, such as the visible modality, are lacking. The training
process is frequently started with pre-training models of the visible modality, which limits
the detector’s performance. The pre-training model is a crucial aspect of improving the
performance of non-visible modality detectors.

2.2. Cross-Modality Knowledge Transfer Based on Pre-Training Model and Fine-Tuning

The pre-training model and fine-tuning are transfer learning methods, and they are
also the most commonly used methods for cross-modality knowledge transfer. Firstly, the
pre-training model is obtained through training on the large dataset. Then fine-tuning
is performed on the target domain dataset, transferring the knowledge learned on the
large dataset to the target domain dataset, and improving the network performance on
the target domain dataset. For computer vision tasks, the ImageNet supervised pre-
training method is a commonly used model initialization technique. However, the latest
works show that when the distance between the source domain and the target domain is
large or the target domain has sufficient training data, the supervised pre-training model
does not bring improvement [12]. The supervised pre-training method concentrates on
category-level discrimination, whereas the self-supervised pre-training method focuses on
instance-level discrimination, which can yield more discriminative features in subsequent
tasks. Zoph et al. [28] used the self-supervised pre-training method to improve object
detection and other visual tasks with strong data augmentation. However, due to the lack
of a supervision mechanism, the self-supervised pre-training method lacks the ability to
mine high-dimensional semantic features, and it can easily obtain redundant and irrelevant
features [29]. In recent years, relevant transfer learning research has focused on the transfer
obstacles created by variations between upstream and downstream tasks, as well as on
improving the transfer effect across tasks. This paper investigates the pre-training method
of multi-spectral object detection. In order to reduce the loss of transfer effect caused by
cross-tasks, we first train the pre-training model on the visible large-scale object detection
dataset and then fine-tune it on the cross-modality object-detection dataset.

We observe the difference between classification-sensitive features and regression-
sensitive features. Classification pays more attention to classification-sensitive feature
information such as the texture and color of the object, while regression pays more attention
to regression-sensitive feature information such as the outline and corner points of the
object. Existing transfer learning approaches for downstream object detection ignore the
distinction between the two types of information. Regression-sensitive features, such
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as contours and corners, can be better retained in source- and target-domain data than
classification-sensitive features, such as color and brightness. Therefore, in order to allow
the pre-training model to learn more effective features in the target domain, we propose
the task-decoupled pre-training (TDP) method to modulate the pre-training model during
training in order to retain more regression-sensitive features of the source domain and
thus improve the pre-training method’s effectiveness. Compared with previous work, the
new method is optimized based on classification-sensitive features and regression-sensitive
features, which is more direct and effective than self-supervised pre-training methods.

2.3. Hyperparameter Optimization

Hyperparameter optimization (HPO) is a well-known black-box optimization issue.
With the increasing scale of neural networks and the increasing number of hyperparameters,
HPO methods have become popular. The overall concept of HPO is to first determine
the hyperparameters that need to be searched, as well as the search range, and then
conduct iterative training to evaluate the performance of the model after the combination
of different hyperparameters, and finally, to find the most effective combination [30]. In
order to improve the accuracy of object detection, researchers often consider optimizing
hyperparameters to improve the effectiveness of the training process. Ma et al. [31] used
the HPO method to optimize the setting parameters of the anchor box of the detector and
obtained a robust detection effect. In order to improve the effect of pedestrian detection,
Gagneja et al. [32] optimized some hyperparameters of FPN based on the HPO method
and studied the influence of different network parameters. The above work employed
HPO to improve network adaptation to datasets and achieved promising results. However,
HPO approaches are infrequently applied in existing work to increase the generalization
performance of cross-domain object-detection tasks.

The subsequent training process of the network is unstable in cross-modality detection
tasks that are affected by the modality difference between the upstream and downstream
tasks. As a result, the hyperparameters acquired by typical HPO methods after a lengthy
search are not acceptable sub-optimal solutions. To address this issue, we modify the
existing HPO method and propose the TRHE method, which is based on the existing
hyperparameter evolution method. The major goal of the TRHE approach is to enhance
the network’s adaptability to the modulated pre-training model while also reducing the
time required for hyperparameter evolution in order to obtain an acceptable sub-optimal
solution under the aforementioned premise. The goal is achieved by only searching for task-
related hyperparameters and reducing the number of hyperparameter search iterations.

3. Method

The cross-domain process uses the features learned in the visible source domain, such
as infrared, in the target domain to improve the accuracy of the network in the target
domain. To effectively exploit the visible pre-training model and reduce the model’s
accuracy limitation, we proposed the task-decoupled pre-training (TDP) method and the
task-related hyperparameter evolution (TRHE) method. The main goal of the method
proposed in this paper is to make hyperparameter adjustments to the network’s pre-
training model and training process based on the concept of feature decoupling, which
primarily adjusts the gain values related to the classification task and the regression task
in the loss function so that the network can obtain more effective cross-domain features
from the pre-training model and improve the network’s adaptability to feature changes.
The algorithm flow is shown in Figure 2. The final model is trained on the basis of the
pre-training model obtained using the TDP method and the hyperparameters obtained
using the TRHE method.
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Figure 2. An overview of the algorithms proposed in this paper.

3.1. Overview

Firstly, we will describe the method and some definitions of the network training
process. We set the data of the source domain and target domain to DS and DT , the default
hyperparameters and pre-training model to θD and PD, the hyperparameters adjusted
using the TDP method, and the pre-training model obtained using the TDP method to θTDP
and PTDP, the hyperparameters initialized of the TRHE method and obtained using the
TRHE method to θI and θTRHE. The object-detection network used and the corresponding
loss function are Ψ and L, respectively, and the initialized model weight is ωinit. The
task-related hyperparameter evolution function is T, and the fitness function used in the
evolution process is f . The general object-detection training process seeks to minimize the
value of L(ω):

min
ω
L(ω) = { 1

n

n

∑
i=1

L(Ψ(xi, θD, ωinit), yi)},

s.t. ωinit = PD, xi ∈ DT

(1)

In Equation (1), L(Ψ(xi, θD, ωinit), yi) is the loss after each iteration, where xi and yi
are the training samples and labels, respectively; Ψ and θD denote the detection network
and default hyperparameters mentioned above; and the model uses the default pre-training
model PD to initialize the weight ωinit. The training data come from the target domain data
DT , and the pre-training model PD is trained on a large visible dataset from the source
domain based on the default hyperparameters. The final training process of our method is
the same as the general training process, but the pre-training model and training hyperpa-
rameters are obtained using the TDP method and the TRHE method, respectively. The three
stages of the process, the TDP method, the TRHE method, and the final training, are shown
in Figure 2, and our final training process is shown in Equation (2). Some of the notations
used in this equation are consistent with those in Equation (1). However, Equation (2) uses
the pre-training model PTDP obtained using the TDP method, the hyperparameter θTRHE
obtained using the TRHE method, and the target domain data DT . After the pre-training
model and task-related hyperparameters are adjusted in the training process, the network
model can obtain a more robust performance.

min
ω
L(ω) = { 1

n

n

∑
i=1

L(Ψ(xi, θTRHE, ωinit), yi)},

s.t. ωinit = PTDP, xi ∈ DT

(2)
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3.2. Task-Decoupled Pre-Training

The typical ImageNet-based pre-training method would fail due to large domain
gaps in downstream object-detection tasks, particularly in multi-spectral object-detection
tasks, where variances across different modality objects raise the domain gap even further.
Despite the fact that the pre-training model was trained on the COCO dataset, there are still
differences in cross-modality characteristics. To reduce the impact of feature differences
between modalities, we adjust the gain values GC and GR of the classification part and
regression part in the training loss function based on the task decoupling idea so that the
pre-training model can learn more regression-sensitive features, thereby improving the
transfer ability of the pre-training model. Typically, the network loss function consists of
three parts, namely, the classification loss Lcls used to constrain the anchor category, the
regression loss Lreg used to constrain the anchor position localization, and the objectness
loss Lobj used to constrain the anchor confidence. The loss function is modulated using the
TDP method as shown below:

L = GO × Lobj + GC × Lcls + GR × Lreg (3)

min
ω
LTDP(ω) = { 1

n

n

∑
i=1

L(Ψ(xi, θTDP, ωinit), yi)},

s.t. ωinit = ωrand, xi ∈ DS

(4)

After the TDP method is used, the loss function is formed of classification loss, regres-
sion loss, and objectness loss multiplied by the associated gain, as shown in Equation (3).
During the training of the pre-training model, we increase the weight of the regression
part in the loss function and then improve the regression-sensitive features learned by the
pre-training model. Equation (4) depicts the training procedure. PTDP is trained on the
source domain dataset DS using the hyperparameter θTDP adjusted by the TDP method.
Since the pre-training model is trained on the large-scale visible dataset COCO, the train-
ing process directly adopts the parameter random initialization strategy to train from
scratch. Experiments show that the modulated pre-training model can greatly improve the
network’s detection accuracy on the target domain.

3.3. Task-Related Hyperparameter Evolution

Hyperparameter evolution is a kind of hyperparameter-optimization method, which
is based on a genetic algorithm for hyperparameter mutation. The parent sample selection
method includes the random selection and best-sample selection, and the mutation is
realized depending on the parent sample. It should be noted that the best-sample-selection
method only selects a single sample as the parent sample to increase the sampling rate
of the algorithm around the best sample. After obtaining the mutated hyperparameters,
the network is trained based on the pre-training model PTDP, and the fitness function f
is utilized to evaluate the results of multiple iterations and steer the next optimization
direction. The fitness function is constructed based on the object-detection evaluation
metric mAP, and the definitions of mAP and fitness function are as follows:

mAPIoU =
1
C

C

∑
j

APIoU
j (5)

f = λ1 ×mAP + λ2 ×mAP50 (6)

In Equation (5), the mAP of different Intersections over Union (IoUs) is obtained by
calculating the mean AP [33] value of each type of object under different IoU conditions, and
C is the number of categories. The mAP in this paper is the evaluation metric of the COCO
object detection dataset [3], and the mAP50 is calculated when the IoU is 0.5. Equation (6) is
the definition of the fitness function f . In order to balance the accuracy of mAP and mAP50,
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the fitness function multiplies the weights of the two metrics with λ1 and λ2 and sums
them up. Experience shows that when λ1 is 0.9 and λ2 is 0.1, hyperparameter evolution
works better [34]. The mutation process of the parent sample is shown in Equation (7),
where p is the mutation probability of a single hyperparameter in the parent sample; v
is the magnitude of the mutation; r1 and r2 are the random numbers participating in the
mutation, which follow the normal distribution and uniform distribution, respectively;
θbest

i−1 is the hyperparameter with the best fitness in the previous iteration process; and θmut
i

is the mutation result of the hyperparameter in this iteration.

θmut
i = θbest

i−1 × (1 + p× r1 × r2 × v),

s.t. r1 ∼ N(0, 1), r2 ∼ U(0, 1)
(7)

θTRHE = T(θmut), s.t. GC, GR ∈ θmut (8)

T(θ) = arg max
θ

f (Ψ(x, θ, ωinit)),

s.t. ωinit = PTDP, x ∈ DS

(9)

During the experiment, we set the mutation probability p to 0.8 and the variation
magnitude v to 0.04 according to experience [34]. Equation (8) depicts the formula for
task-related hyperparameter evolution. The parent sample is chosen based on the fitness
function f in each iteration process, and the parameters of the following iteration are
acquired using the mutation algorithm. After multiple iterations of training, the final hyper-
parameter θTRHE is obtained. The formula for a single iteration is shown in Equation (9).
By optimizing the hyperparameters based on PTDP on the small dataset of the infrared
modality in the target domain, compared with using the default hyperparameter θD, the
training process improves the adaptability of the network to the pre-training model after
modulation, which is further improved on the basis of the TDP method. Meanwhile, due to
the modality difference between the knowledge distribution in the pre-training model and
the target domain’s data distribution, the training process is unstable, which may result
in an unacceptable suboptimal solution. Experiments have found that the randomness of
the GC and GR, the gain values of classification, and the regression loss in the loss function
can easily lead to a decrease in the final accuracy. In order to obtain a more stable result,
we further propose a binding mode of TRHE to maintain the ratio of classification and
regression loss gains with the value α, as shown in Equation (10).

GR = αGC (10)

The experimental results show that more stable results can be obtained by locking the ra-
tio of classification and regression gains during the evolution of task-related hyperparameters.

3.4. The Algorithm Combining TDP and TRHE Methods

In order to show our proposed algorithm more intuitively, Algorithm 1 shows the
whole process of combining the TDP and TRHE methods.

The three main processes described in each line are as follows:

• Line 1: Modulate the training process of the pre-training model based on the TDP
method, and the source domain data come from a large visible detection dataset.

• Lines 2–15: The TRHE method is used to obtain effective hyperparameters, and the
training is performed on the target domain dataset using the pre-training model
obtained in the previous process. In the method with N iterations, the initial hyperpa-
rameters are changed using the genetic mutation algorithm and evaluated using the
fitness functions. Finally, better hyperparameters are produced.

• Line 16: The final detector is trained on the target domain dataset using the modulated
pre-training model and hyperparameters obtained in the previous two processes.
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Algorithm 1: Complete algorithm with TDP and TRHE.
Input: Source domain data DS, target domain data DT , hyperparameter θTDP used by TDP

method, TRHE method initialization hyperparameter θTRHE
Required: Detection network Ψ, the iterations number of the TRHE method N and the

fitness function of the TRHE method f
Output: The final detector

1 Train detection network Ψ based on source domain data DS and hyperparameter θTDP, and
obtain the pre-training model PTDP

2 for i in range(N) do
3 Train detection network Ψ based on target domain data DT , pre-training model PTDP

and hyperparameter θI
4 Use the fitness function to evaluate the trained model and obtain the result Fi
5 if i = 0 then
6 θTRHE = θi
7 Fbest = Fi
8 end
9 if Fbest < Fi then

10 θTRHE = θi
11 Fbest = Fi
12 end
13 Use the genetic mutation algorithm on θTRHE to obtain the mutation result θmut

i
14 θI = θmut

i
15 end
16 The final detector is obtained using the target domain data DT , the pre-training model PTDP

and the hyperparameter θTRHE training detection network Ψ

4. Experiments

In this section, we first verify the effectiveness of the task-decoupled pre-training
(TDP) method on the MSOD dataset and the FLIR dataset, then explore the influence of
the pre-training model after the modulation of different hyperparameters on the training
results of subsequent detection tasks, and further verify the effectiveness of the task-related
hyperparameter evolution (TRHE) method.

4.1. Experimental Configuration
4.1.1. Datasets

Multi-spectral Object Detection Dataset. MSOD dataset [2] comprises image data of
four different modalities, namely visible, near-infrared, mid-wave infrared, and long-wave
infrared. The dataset contains 7521 unaligned image pairs and 2999 aligned image pairs.
Visible and long-wave infrared images have a resolution of 640× 480, while near-infrared
and mid-wave infrared images have a resolution of 320× 256. Three common objects,
person, car, and bike, were used in the experiment. In our experiments, we used the MSOD
dataset to test the transferability of our method on multiple modality data. To investigate
the impact of our method on multi-spectral object detection when the training and test
sets are significantly different, we selected 738 pairs of images from all unaligned data
according to different scenes during the day and night as the testing set, and the remaining
6783 pairs of images were used as the training set.

FLIR Dataset. The FLIR dataset [1] comprises two modalities of images: visible with
a resolution of 1280× 1024 and long-wave infrared with a resolution of 640× 512. The
researchers selected the original FLIR dataset and rearranged it into a multi-spectral object-
detection dataset with good alignment [35]. The new alignment dataset contains 5142 pairs
of well-aligned images, with 4129 pairs in the training set and 1013 pairs in the testing
set. The FLIR-aligned dataset contains three types of objects, namely pedestrian, car, and
bicycle. In our experiments, we used the FLIR-aligned dataset to evaluate our method on
infrared and mixed-modality data.
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4.1.2. Implementation Details

We conducted various experiments using the two scale networks, YOLOm and YOLOx,
within the YOLOv5 framework [34], to test the performance of our method under medium-
and large-scale backbone networks. We used the default configuration for training the
COCO dataset as the hyperparameter initialization for training. The network was optimized
using SGD optimization, with an initial learning rate of 0.01, a momentum value of 0.937,
and a weight decay of 0.0005. To mitigate the impact of network convergence randomness
on our experiment, we averaged the indicators of three repeated instances of training to
obtain the results presented in this paper.

In this paper, we obtained the pre-training model by training on the COCO dataset.
Due to the large size of the COCO dataset, we chose to train from scratch when preparing
the pre-training model. All pre-training models trained 30 epochs on the COCO dataset
rather than training the network to complete convergence. On the one hand, we discovered
through simple tests that the incompletely converged pre-training model can achieve or
even exceed the transferability of the fully converged pre-training model on cross-modality
datasets. On the other hand, when the hyperparameters are adjusted, the network cannot
converge entirely under specific parameter-setting conditions.

In our experiment, the regN model represents the pre-training model trained with GR
of N and GC of 0.5, while the clsN model represents the pre-training model trained with
GR of 0.05 and GC of N. More experimental details of the guided hyperparameter sweep
and the TRHE method are presented in the following ablation experiments.

4.2. Main Results

To verify the effectiveness of our method, we compared it with several existing state-of-
the-art methods, as described in this subsection, using the FLIR dataset for all experimental
results. These methods mainly include image fusion methods [35–39], image enhance-
ment [23], and image generation [8]. From Table 1, we can draw several conclusions:
(1) The performance of the two detection networks based on image-enhancement or image-
generation methods is slightly inferior to that of the image fusion method. However, our
method can achieve the accuracy level of the image fusion method while only using in-
frared modality data during the test phase. (2) The optimization of the pre-training model
allows our method to improve even when using a large backbone network. YOLOx further
improved by 1.57% compared to YOLOm. (3) Compared with the ProbEn method, which
achieves the highest accuracy in the multi-spectral method, our method is slightly worse in
the category of pedestrians and better in the category of cars. The results based on yolox
can achieve more than 0.64% improvement on mAP50.

Table 1. Comparison between the proposed method and the multi-spectral and single-spectral
state-of-the-art methods; the best result is in bold, and the second best is underlined.

Method Data Person Bicycle Car mAP50

MMTOD-UNIT [36] RGB + Thermal 64.5 49.4 70.8 61.5
CFR [35] RGB + Thermal 74.49 55.77 84.91 72.39

SSTN101 [37] RGB + Thermal - - - 77.57
GAFF [38] RGB + Thermal - - - 72.90

ProbEn [39] RGB + Thermal 87.65 73.49 90.14 83.76
ThermalDet [23] Thermal 78.24 60.04 85.52 74.60

GANb−→a [8] Thermal 78.24 60.04 85.52 74.60
Ours(yolom) Thermal 86.23 71.78 90.5 82.83
Ours(yolox) Thermal 86.93 75.05 91.2 84.4

Image fusion methods require multi-spectral data during both the training and testing
phases. With effective fusion strategies, these methods can fully leverage the diverse
properties of multiple spectra. ProbEn is based on effective late fusion in the above manner
to achieve the highest accuracy among current fusion methods. However, effective fusion
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frequently requires the extraction of effective features in the latter half of the network to
avoid the loss of multiple types of modality information, which leads to a huge network
volume and a long inference time. In contrast, transfer learning methods only require
single-spectral data during the testing phase, reducing the need for multi-modality data.
Despite the lack of multi-spectral feature information in the inference stage network, the
network’s performance on a single modality can be mined using pre-training methods or
image-enhancement and image-generation methods, and a state-of-the-art level of accuracy
can also be obtained. Our method outperforms most image-fusion methods while achieving
the best result among single-spectral methods. The approach achieves the highest accuracy
using the yolox model.

4.3. Ablation Study

As described in the implementation details in Section 4.1.2, in this section, we con-
ducted a series of ablation experiments on the TDP and TRHE methods to investigate their
effects on the FLIR and MSOD datasets.

4.3.1. Results and Discussion of the TDP Method

We conducted experiments on the MSOD dataset’s multiple modalities, along with
the FLIR dataset’s infrared modality and mixed modality, to investigate the effectiveness of
the TDP method. Table 2 shows the results of fine-tuning based on the pre-training model
constrained by different regression attributes on the MSOD long-wave infrared modality.
Table 3 presents the results of fine-tuning based on the pre-training model constrained
by different classification attributes. We also conducted tests on the near-infrared and
medium-wave infrared modalities of the MSOD dataset, with the experimental results
shown in Figure 3.

Table 2. The results of fine tuning based on the pre-training model constrained by different regression
attributes on the MSOD long-wave infrared dataset.

GC GR mAP50 Person Car Bike Improvement

0.5 0 67.47 83.87 61.5 57.07 −0.4
0.5 0.05 67.87 83.87 62.3 57.43 -
0.5 0.2 68.77 84.17 61.93 60.17 0.9
0.5 0.4 69.17 84.67 63.03 59.73 1.3
0.5 0.5 68.97 84.8 60.97 61.23 1.1
0.5 0.6 69.53 85.53 61.67 60.23 1.66
0.5 0.7 71.17 85.43 66.27 61.8 3.3
0.5 0.8 69.27 86.53 60.67 60.63 1.4
0.5 1.0 67.9 85.07 62.83 55.93 0.03
0.5 5.0 66.83 84.93 61.57 54 −1.04

Table 3. The results of fine tuning based on the pre-training model constrained by different classifica-
tion attributes on the MSOD long-wave infrared dataset.

GC GR mAP50 Person Car Bike Improvement

0 0.05 68.43 84.07 62.4 58.77 0.56
0.1 0.05 67.87 84.2 61.23 58.23 0
0.2 0.05 69.23 84.6 62.33 60.8 1.36
0.5 0.05 67.87 83.87 62.3 57.43 -
1.0 0.05 67.53 83.08 61.48 58.08 −0.34
1.5 0.05 66.27 81.33 62.1 55.27 −1.6
2.0 0.05 65.4 80.73 61.77 53.67 −2.47
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Figure 3. The results of various pre-training models on the MSOD dataset’s multiple modalities,
with the black dotted line representing the baseline. The orange table represents the result of the
near-infrared modality, the green table represents the result of the medium-wave modality, and the
blue table represents the result of the long-wave infrared modality. The GC of reg models is 0.5, and
the GR of cls models is 0.05.

On the MSOD long-wave infrared dataset, increasing the regression attribute con-
straints of the pre-training model results in a 3.3% improvement over the pre-training model
using the default hyperparameters. Similarly, on both the near-infrared and mid-wave
infrared modalities of the MSOD dataset, the pre-training model with a larger regression
gain constraint improves by 1.39% on the near-infrared modality and 1.26% on the mid-
wave modality compared to the pre-training model with the default hyperparameters. It
should be noted that increasing the classification gain constraint on the long-wave infrared
modality may result in a significant decrease in accuracy while improving accuracy on the
near-infrared and medium-wave infrared modalities. We believe that this is due to the
higher classification-sensitive feature similarity between the near-infrared and mid-wave
infrared modalities and the visible modality.

On the FLIR dataset, we also investigate the effects of the TDP method on long-wave
infrared and mixed modality. We performed channel-level interaction directly on visible
and long-wave infrared data to obtain mixed modality data for testing. First, we used the
default pre-training model to test different mixing methods. Since the annotations of the
FLIR dataset are based on infrared images, there is a misalignment issue between visible
features and labels. As a result, the more visible features in the mixed image, the lower the
final accuracy. The experimental results are shown in Table 4.

Table 4. Channel-mixing result of visible and infrared modality on the FLIR dataset.

Image Type mAP50 Person Bicycle Car

RGB 67.2 67 52.6 82
IR 78.1 82.4 62.1 89.9

RGT 76.1 80.6 58.9 88.9
RTB 77.5 83.4 59.4 89.6
TGB 76.7 81.8 59.7 88.6
RTT 79.5 84.1 63.9 90.5
TGT 78.6 82 64.5 89.3
TTB 81 83.3 69.4 90.2

To achieve the best results, we performed the mixed-modality experiment on the TTB
modality, which had the highest accuracy. The experimental results of two groups of differ-
ent gain value constraints on the infrared modality are shown in Tables 5 and 6. Figure 4
shows the effect of different pre-training models on the infrared and mixed-modality data.
On the FLIR infrared dataset, increasing the regression attribute constraints of the pre-
training model resulted in a 3.03% improvement compared to the pre-training model using
the default hyperparameters. The mixed modality also showed a 2.22% improvement.
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Figure 4. The results of various pre-training models on the FLIR dataset’s infrared and mixed
modalities, with the black dotted line representing the baseline. The orange table shows the results
on the infrared modality and the blue table shows the results on the mixed modality. The GC of reg
models is 0.5, and the GR of the cls models is 0.05.

Table 5. The results of fine tuning based on the pre-training model constrained by different regression
attributes on the FLIR infrared dataset.

GC GR mAP50 Person Bicycle Car Improvement

0.5 0 79.07 82.4 65.2 89.7 −0.4
0.5 0.05 79.47 83.73 64.63 90.33 -
0.5 0.2 81.43 85.6 68.3 90.33 1.96
0.5 0.4 82.5 85.9 71 90.63 3.03
0.5 0.5 81.67 85.5 68.83 90.77 2.2
0.5 0.6 80.67 85.3 66.23 90.5 1.2
0.5 0.7 81.1 85.43 67.37 90.47 1.63
0.5 0.8 80.87 84.83 67.3 90.6 1.4
0.5 1.0 81.3 85.53 67.6 90.77 1.83
0.5 5.0 78.6 84.87 61.2 89.7 −0.87
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Table 6. The results of fine tuning based on the pre-training model constrained by different classifica-
tion attributes on the FLIR infrared dataset.

GC GR mAP50 Person Bicycle Car Improvement

0 0.05 78.27 84.17 60.3 90.47 −1.36
0.1 0.05 79.7 84.5 64.63 89.97 0.07
0.1 0.05 80.17 83.13 67.47 89.9 0.54
0.2 0.05 79.03 83.47 63.33 90.27 −0.6
0.5 0.05 79.47 83.73 64.63 90.33 -
1.0 0.05 80.67 83.67 68.1 90.17 1.04
1.5 0.05 79.43 83.03 65.13 90.07 −0.2
2.0 0.05 79.47 83 65.5 89.87 −0.16

The experimental results on the two datasets confirm the effectiveness of the TDP
method. Regression attribute features may have a better transfer effect than classification
attribute features in cross-modality transfer learning. The reasonable addition of regression
attribute features in the pre-training model can improve the transfer effect and improve the
accuracy of the network in the target domain. However, the experiment also demonstrates
that in order to obtain the best generalization impact on different datasets, the modulation
parameters of the classification and regression attributes in the pre-training model must
be variable, and fixed modulation values cannot adapt to any training set. Therefore, we
introduced the TRHE method on top of the TDP method during network training to search
for hyperparameters related to classification and regression tasks, thereby improving the
network’s adaptability during the training phase.

4.3.2. Comparison of Different Pre-Training Models and Hyperparameter Training Results

Before delving into the TRHE method, we investigate the impact of hyperparameters
on final training results on the MSOD long-wave infrared dataset using the hyperparameter
sweep method under different attributes’ pre-training model conditions. The experiment
employed two groups of comparative experiments, which were carried out on two example
pre-training models, the Reg0.7 model, with a GR of 0.7 and a GC of 0.5, and the Cls1.0
model, with a GR of 0.05 and a GC of 1.0. The sweep method simply modifies the loss
classification and regression gain values in the hyperparameters, leaving the other hyperpa-
rameters unchanged. The search method is based on a random search, with each iteration
training 10 epochs and each group of experiments iterating 100 times. The visualization
results of the guided hyperparameter sweep are shown in Figure 5. The picture depicts
many hyperparameters, as well as the matching accuracy chromaticity bars. The darker the
hue of the curve is, the less effective the hyperparameters are. The optimal classification
gain value and regression gain value of the Reg0.7 pre-training model are 0.165 and 0.0215,
and the optimal classification gain value and regression gain value of the Cls1.0 pre-training
model are 0.2566 and 0.02875.

The figure shows that when the pre-training model has more classification-sensitive
features in the left column, the network is more adaptable to a larger regression gain value,
and a larger classification gain value results in a darker color of the upper half of the curve
in the second left figure and poor training results. The network is more adaptable to the
large classification gain value when the right column’s pre-training model contains more
regression-sensitive features, and the larger regression gain value results in darker curves
in the upper half of the first right figure and inferior training results. This demonstrates
that when there are more regression-sensitive features in the pre-training model, a bigger
regression gain value decreases accuracy; when there are more classification-sensitive
features in the pre-training model, a larger classification gain value decreases accuracy.
Simultaneously, the more effective range of the hyperparameter search may be determined:
the effective classification gain value should be less than 1.0, and the effective regression
gain value should be less than 0.1. Experiments have verified the sensitivity of network
training results to changes in task-related hyperparameters after fixing the pre-training
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model and task-independent hyperparameters, which further reflects the importance of
the TRHE method.

Figure 5. Visualization of guided hyperparameter sweep results for two example pre-training models.
The results of the regression and classification attribute hyperparameter sweep based on the Cls1.0
pre-training model are shown in the left column, and the results of the regression and classification
attribute hyperparameter sweep based on the Reg0.7 pre-training model are shown in the right
column. There are four subplots, and each subplot contains three vertical axes: the cls axis for the
value of GC, the box axis for the value of GR, and the metric axis for the final training accuracy. Each
curve connects a point on each of the three vertical axes, corresponding to the values of GC and GR

and the resulting mAP accuracy for single experiments.

4.3.3. Results and Discussion of the TRHE Method

We employed the TRHE method to adapt the network training process to changes in
the pre-training model’s characteristics, resulting in greater accuracy. The experiment was
carried out on the long-wave infrared modality of the FLIR dataset. In order to explore
the effect of hyperparameter evolution in more conventional scenarios, we randomly
chose the pre-training model Reg0.5 with greater regression attribute characteristics to
conduct the TRHE experiments. The initial value of the hyperparameter had a significant
impact on the effect of the TRHE method. We experimented with different initial values
of the hyperparameter. The TRHE algorithm’s parent-sample-selection methods include
random selection and best-sample selection; we also conducted related experiments on
different selection methods. In the experiments, the α of the binding TRHE method is
set to 0.1, which is consistent with the initial value ratio. Each training iteration trains
25 epochs, and each group of experiments iterates 20 times. It should be mentioned
that the number of iterations and training times change depending on the goal of the
experiment. The guided hyperparameter sweep is to explore the variations in the training
process of different pre-training models. Observing the trend necessitates the use of
multiple sets of hyperparameters. The goal of the TRHE approach is to produce more
effective hyperparameters than the initial hyperparameters, which necessitates more in-
depth training and evaluation of each set of hyperparameters. The experimental results are
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shown in Table 7. Three groups of different initial values are each compared using four
methods, namely, baseline, TRHE method with random parent sample selection, TRHE
method with best parent sample selection, and the binding TRHE method with best parent
sample selection (TRHE*).

Table 7. Results of task-related hyperparameter evolution experiments.

Method Initial GC Initial GR Final GC Final GR Parents Select mAP50 mAP Fitness

Baseline 0.2 0.02 0.2 0.02 - 82.4 42 46.04
TRHE 0.2 0.02 0.22955 0.02101 Random 82.4 41.97 46.013
TRHE 0.2 0.02 0.2042 0.02216 Best 81.87 42.5 46.437
TRHE* 0.2 0.02 0.24544 0.02454 Best 81.87 42.5 46.437

Baseline 0.5 0.05 0.5 0.05 - 81.935 42.285 46.25
TRHE 0.5 0.05 0.5 0.05 Random 81.2 42.97 46.793
TRHE 0.5 0.05 0.47716 0.05937 Best 81.97 42.03 46.024
TRHE* 0.5 0.05 0.48879 0.04888 Best 82 43.27 47.143

Baseline 0.8 0.08 0.8 0.08 - 81.55 42.15 46.09
TRHE 0.8 0.08 0.8 0.08 Random 81.4 42.9 46.75
TRHE 0.8 0.08 0.8 0.08 Best 82.2 42.97 46.893
TRHE* 0.8 0.08 0.8 0.08 Best 81.5 42.5 46.4

The experimental results show that when the initial values of the classification gain
GC and regression gain GR are 0.5 and 0.05, respectively; the adaptability of the TRHE
method is higher; and the performance of the metrics is such that the values of mAP and
mAP50 are relatively high. At the same time, the experiment also reflects the randomness
in the optimization of the TRHE method. The two parent-sample-selection methods of
the random and best selection in the TRHE method may have the possibility of negative
optimization because of the randomness in the optimization process. The hyperparameters
of the proposed binding TRHE method (TRHE*) have less random variation and frequently
obtain more stable optimization results, resulting in more stable network results. In the
experiment, the best fitness optimization result is obtained based on TRHE*.

4.3.4. Ablation Experiments on the TDP and TRHE Methods

We conducted ablation experiments on the infrared modalities of the FLIR and MSOD
datasets in order to investigate the respective effects of the two methods. The experimental
results are shown in Table 8. Experiments show that when the two methods are used on
the two datasets, both of them can bring improvement, although the improvement brought
about by the TRHE method is limited. When the TDP method is used combined with the
TRHE method, the network can be further improved.

Table 8. Results of ablation experiments.

Method MSOD Dataset FLIR Dataset

TDP TRHE mAP50 Improvement mAP Fitness mAP50 Improvement mAP Fitness

67.87 - 37.8 40.807 79.47 - 40.67 44.55√
71.17 3.3 39.67 42.82 82.5 3.03 42.53 46.527√
69.57 1.7 39.3 42.327 79.67 0.2 42.03 45.794√ √
71.33 3.46 40.2 43.313 82.83 3.36 42.78 46.785

On the FLIR dataset, the improvement obtained by using only the TRHE method is
minimal, while on the basis of the TDP method, the improvement brought about by using
TRHE is greater. Although the TRHE method does not improve significantly on the basis
of the TDP method, it can make network training accuracy more stable. When the optimal
pre-training model cannot be determined, it can provide a supplement to the TDP method,
allowing the network to be more adaptable to any pre-training model. At the same time,
the experiment confirmed that the pre-training method has a larger impact on network
accuracy than the post-tuning method, which also reflects the importance of optimizing
the pre-training model in the cross-modality detection task.
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4.4. Discussion of the Idea of Task Decoupling

Through the visualization of the classification attribute features and regression at-
tribute features, we obtained a prior that the responsiveness of regression attribute fea-
tures is similar among different modality features. On this basis, we designed a task-
decoupling method to improve the performance of pre-trained models in cross-modality
object-detection tasks. Thanks to the convenience of Equation (3), we can achieve the
decoupling of classification and regression features by adjusting the coefficients in the
equation. In extreme cases, the pre-trained model can learn only single-task attribute
features (when GC is 0 or GR is 0). However, experimental results show that completely
removing either classification or regression loss may lead to a decrease in the performance
of the pre-training model. We hypothesize that when the coefficient of a certain task is too
small or too large, it may cause an imbalance in the learning of model features, leading
to a decrease in performance. Therefore, the coefficients should be adjusted within an
appropriate range to obtain a better pre-training model. Furthermore, based on the prior
and the expected experimental results, we believe that by adjusting the loss function of
the pre-training model, the pre-training model can learn richer regression features and
improve its performance in downstream cross-modality object-detection tasks.

5. Conclusions

In this research, we investigated the cross-modality object detection pre-training
method, optimized it based on classification-sensitive and regression-sensitive features,
and improved the transfer effect of the pre-training model using the task-decoupled pre-
training (TDP) method. During the training process, the task-related hyperparameter
evolution (TRHE) method was further used to obtain more effective hyperparameters to
improve the adaptability of the training process to the pre-training model. Our method
achieved considerable improvement on small single spectral datasets, particularly in the
infrared modality, where it achieved state-of-the-art accuracy without increasing the burden
of the inference process. However, the method still has some limitations; that is, when the
number of target domain data is enough, the transfer learning method based on pre-training
is less effective. In future research, we will explore more effective cross-domain pre-training
methods and combine them with image fusion methods to address the limitations of our
current approach.
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