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Abstract: Person re-identification is a technology used to identify individuals across different cameras.
Existing methods involve extracting features from an input image and using a single feature for
matching. However, these features often provide a biased description of the person. To address this
limitation, this paper introduces a new method called the Dual Descriptor Feature Enhancement
(DDFE) network, which aims to emulate the multi-perspective observation abilities of humans. The
DDFE network uses two independent sub-networks to extract descriptors from the same person
image. These descriptors are subsequently combined to create a comprehensive multi-view represen-
tation, resulting in a significant improvement in recognition performance. To further enhance the
discriminative capability of the DDFE network, a carefully designed training strategy is employed.
Firstly, the CurricularFace loss is introduced to enhance the recognition accuracy of each sub-network.
Secondly, the DropPath operation is incorporated to introduce randomness during sub-network
training, promoting difference between the descriptors. Additionally, an Integration Training Module
(ITM) is devised to enhance the discriminability of the integrated features. Extensive experiments are
conducted on the Market1501 and MSMT17 datasets. On the Market1501 dataset, the DDFE network
achieves an mAP of 91.6% and a Rank1 of 96.1%; on the MSMT17 dataset, the network achieves an
mAP of 69.9% and a Rank1 of 87.5%. These outcomes outperform most SOTA methods, highlighting
the significant advancement and effectiveness of the DDFE network.

Keywords: person re-identification; dual network; face recognition; neural network

1. Introduction

In the context of an increasingly information-driven society, intelligent surveillance
facilities have assumed a critical role within social security systems. As an integral part
of computer vision tasks, person re-identification holds indispensable significance within
intelligent surveillance systems. Its primary objective lies in accurately identifying and
matching person images obtained from different cameras [1], thereby facilitating real-time
pedestrian tracking and comprehensive trajectory analysis [2]. Consequently, it serves as
a powerful tool for efficiently analyzing intelligent surveillance data, contributing to the
overall enhancement of security measures.

With the advancement of deep learning, traditional methods for person re-identification
are gradually being replaced by deep learning approaches such as convolutional neural
networks (CNN) and transformers. Currently, mainstream methods for deep pedestrian
re-identification can be categorized into representation learning-based methods and metric
learning-based methods, depending on their objectives and motivations. Representation
learning-based methods [3–5] focus on the feature extraction process, while metric learning-
based methods [6–8] concentrate on optimizing the metric space to obtain discriminative
features with small inter-class distances and large intra-class distances. These methods
adhere to a common paradigm: taking a pedestrian image as input, extracting features
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to obtain a descriptive feature descriptor that represents the image, and employing this
descriptor for image matching. This pattern recognition paradigm closely resembles how
humans observe objects. When presented with an unfamiliar person image, we initially
form a general description in our minds and then proceed to identify the person based
on that description. However, different observers may have distinct observations of the
same image. For instance, some individuals emphasize body posture while others focus on
facial features. Consequently, each observer acquires only partial descriptive information
about the person image, as depicted in Figure 1a. Therefore, by integrating the descriptions
provided by multiple observers of the same pedestrian image, as illustrated in Figure 1b, we
can gather more comprehensive information and enhance the recognition of the unfamiliar
pedestrian. Drawing upon insights and considering the influence of model size, this paper
introduces a novel approach called the Dual Descriptor Feature Enhancement (DDFE)
network. In this approach, two sub-networks act as separate observers, extracting features
from the same person image from different viewpoints and generating two descriptors.
These descriptors are subsequently integrated seamlessly to create a feature representation
that captures the multi-view information for person image matching.
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Figure 1. One observer and multiple observers. (a) One observer watches a picture. (b) multiple
observers watch a photo.

Assuming that we have obtained an integrated description of the same person image
by two observers, the key way to improve the final recognition effect is to discern the ways
to make this integrated description more comprehensive and detailed. Continuing from
the perspective of human recognition patterns, it is evident that the first step is to ensure
that each observer provides detailed and accurate descriptions of the observed subject,
as depicted by enlarging the areas of the two color ellipses in Figure 2a,b. At the same
time, efforts should be made to maximize the differences between the feature descriptions,
making them complementary to each other. This enhances the overall observations in
the final integrated description, as shown in Figure 2b,c. Building on these insights, this
paper carefully designs the training strategy for the DDFE network. Firstly, it introduces
the CurricularFace loss [9], a technique borrowed from the field of face recognition, to
effectively guide each sub-network in obtaining superior representations of the input
pedestrian images. Secondly, it incorporates the DropPath [10] operation, which introduces
randomness into the training process, thereby preventing the two sub-networks from
generating identical features and promoting greater diversity in the feature descriptors.
Finally, an Integration Training Module (ITM) is proposed to seamlessly merge the feature
descriptors from the two sub-networks. This module aims to enhance the discriminability
of the integrated features while ensuring consistency between the objectives pursued
during the model training stage and the inference stage.
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Figure 2. Illustration of how to increase the total observations by multiple observers. (a) Enhance the
information observed by each observer. (b) Enhance the variability of information observed by the
two observers. (c) The combined observations of the two observers after (a,b).

In summary, this paper makes the following key contributions.

• Proposes a Dual Descriptor Feature Enhancement (DDFE) network that extracts and
integrates features from two perspectives of person images, resulting in more discrim-
inative features and improved recognition accuracy of the model;

• Designs targeted training strategies for the Dual Descriptor Feature Enhancement
network, including the incorporation of CurricularFace loss, DropPath operation, and
the Integration Training Module;

• Tests extensively on datasets Market1501 and MSMT17, demonstrating state-of-the-art
performance in person re-identification.

2. Related Work
2.1. Person Re-Identification

The current mainstream methods for person re-identification can be classified into two
categories: representation learning-based methods and metric learning-based methods.

Representation learning-based methods aim to improve the feature extraction process
of deep models by generating highly discriminative and semantically meaningful features
for more accurate pedestrian image matching. Among them, based on whether the models
utilize local images or local features during the feature extraction process, representation
learning-based methods can be further categorized into global feature-based methods and
local feature-based methods. Global feature-based methods [4,11,12] take the entire pedestrian
image as the model input and directly extract features for subsequent recognition. These
methods have clear ideas and simple model flows, but improving the discriminative power
of the model’s output features under global input becomes a key point for improving the
accuracy of such methods. Local feature-based methods focus on the local details in the image,
commonly achieved through predefined image or feature map segmentation [13–15], attention
mechanisms [16,17], or the incorporation of human pose estimation [18] or body parsing [19].
Metric learning-based methods refer to the related approaches that optimize the feature
metric space using different loss functions during model training. In the mainstream training
paradigm of pedestrian re-identification methods, cross-entropy loss is commonly used as the
classification loss, and triplet loss is employed as the metric loss. Currently, there have been
much improvement in this paradigm with various metric learning methods [6–8,20].

2.2. Face Recognition Loss Function

The cross-entropy loss function with Margin (angle penalty) is commonly used in face
recognition model training to enhance intra-class compactness and inter-class separability
of the output features. SphereFace loss [21] introduces the transformation of the face
recognition feature space into angular cosine space and applies Margin penalty to the angle
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between samples and their class centers, aiming for improved inter-class and intra-class
distances. CosFace loss [22] builds upon SphereFace by scaling unit-normalized feature
vectors onto a hypersphere with radius s and directly penalizing the cosine value of the
angle between samples and class centers, addressing SphereFace’s convergence issue.
ArcFace loss [23] further enhances the discriminative power by moving the penalty term
inside the cosine function, directly penalizing the angle between samples and class centers.
This modification improves training stability and feature discriminability. MV-Arc-Softmax
loss [24] considers misclassified samples as hard samples, assigning them higher weights
during model training to guide effective discriminative feature learning. CurricularFace
loss [9] also treats misclassified samples as hard samples but incorporates curriculum
learning into the face recognition loss function. It assigns smaller weights to the hard
samples in the early training stages, gradually increasing their weights as the model trains.
This mimics the human learning pattern of starting with easier samples and progressing
to harder ones, resulting in more discriminative features. This paper takes inspiration
from face recognition loss functions and applies them to person re-identification network
training, improving recognition accuracy.

3. Methodology

In this section, the Dual Descriptor Feature Enhancement (DDFE) network proposed
in this paper is introduced in Section 3.1, followed by a detailed explanation of the targeted
training strategy for the DDFE network in Section 3.2.

3.1. Dual Descriptor Feature Enhancement (DDFE) Network

The overall architecture of the proposed DDFE network is depicted in Figure 3. It
comprises two sub-networks with identical structures, which generate distinct descriptors
for a given pedestrian image. In detail, the specific pipeline is as follows: First, a person
image is inputted and the ConvNeXt V2 Tiny [25] feature extractors in both sub-networks
perform feature extraction on the input image, resulting in feature maps. Second, the feature
maps are passed through the generalized-mean pooling (GeM pooling) [26] layer with
shared weights to obtain the feature vectors f 1

t and f 2
t . Then, they are further processed

via the batch normalization (BN) layer with shared parameters to yield the descriptors f 1
i

and f 2
i . Third, the descriptors f 1

i and f 2
i are element-wise added together to obtain the

final integrated feature f . Finally, the Euclidean distance between the integrated features
f of different person images is computed for image matching. It is worth noting that
sharing the weight parameters in the GeM pooling layer and the BN layer aims to align
the features extracted via the two sub-networks into a common distribution, ensuring
that the differences observed in the descriptors originate solely from the variations in the
“observers” performing feature extraction.

Among them, the ConvNeXt V2 Tiny model predominantly comprises 18 Block struc-
tures, as illustrated in Figure 4. These 18 Blocks are stacked in four layers with a distribution
of [3, 3, 9, 3]. The Block also incorporates Global Response Normalization (GRN), which fos-
ters competition among the channels for enhanced feature representation, as demonstrated
in Equation (1).

Xi = γ× Xi × NXi + β + Xi

NXi =
‖Xi‖

∑j=1,...,C‖Xj‖
(1)

where X ∈ RC×H×W represents the feature map before Global Response Normalization
(GRN), with a total of C channels. Xi ∈ RH×W denotes the i-th channel feature map of X.
‖Xi‖ represents the L2 norm of Xi. γ and β are learnable parameters. Xi represents the i-th
channel feature map after GRN.
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3.2. Training of the DDFE Network

In this subsection, a general overview of the whole training stage of the DDFE network
is given in Section 3.2.1, then the main parts of the training strategy, including DropPath,
Integration Training Module (ITM) and CurricularFace loss, are described in detail in
Sections 3.2.2–3.2.4, and finally in Section 3.2.5 the total loss for the training is introduced.
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3.2.1. Overview

To enhance the representational capacity of the DDFE network, this paper focuses
on three aspects during the training stage. Firstly, it aims to enhance the recognition
accuracy of each sub-network. Secondly, it aims to increase the differences between the
output features of the sub-networks to enhance the information content in the integrated
feature. Lastly, it aims to improve the discriminability of the integrated features of the two
sub-networks while aligning the training objective with the inference objective.

Based on the above, the specific pipeline of the training stage of the DDFE network is
shown in Figure 5. Firstly, DropPath [10] operations are introduced in the ConvNeXt V2
Tiny model to introduce randomness and diversity between the sub-networks. Next, the
feature vectors f 1

t and f 2
t are fed into the Integration Training Module, where the integration

loss LossIntegration is computed to enhance the discriminability of the integrated features.
Lastly, the Weighted Regularization Triplet (WRT) loss [2] is calculated for the feature
vectors f 1

t and f 2
t to optimize the inter-class and intra-class distances in the Euclidean space.

Moreover, the CurricularFace loss is computed for the descriptors f 1
i and f 2

i obtained after
the BN layer to optimize the feature distances in the cosine space.
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3.2.2. DropPath

During the model training stage, DropPath [10] is introduced into ConvNeXt V2 Tiny,
randomly deactivating each Block in ConvNeXt V2 Tiny. However, during the model
inference stage, DropPath operations are not applied.

As shown in Figure 6, the specific implementation of DropPath is as follows: Firstly,
we set an initial DropPath probability for the model as P. Then, the DropPath probability
for each Block is calculated based on P. Specifically, the DropPath probability for the i-th
Block, denoted as Pi, is calculated as Pi = P/i. Lastly, for each Block, the structures within
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it are either discarded with a probability of Pi or retained with a probability of 1− Pi. This
means that when an input enters a Block, it has a probability of Pi to be directly outputted
without any computation. With a probability of 1− Pi, the input passes through all the
structures within the Block, undergoes a rescale operation (divided by 1− Pi), and is then
outputted after being connected with the input through a residual connection.
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The use of DropPath serves two main purposes. Firstly, it acts as a regularization
technique for each sub-network, preventing overfitting during the training process. Sec-
ondly, by randomly deactivating the Blocks in both sub-networks, it significantly increases
the differences between them. This ensures that the two sub-networks do not generate
identical features, leading to a more comprehensive description of the input image in the
final integrated feature.

3.2.3. Integration Training Module (ITM)

As the inference stage of the model involves integrating the output feature descriptors
from both sub-networks to match person images, it is crucial to also integrate the output
features of the sub-networks during the model training stage. This ensures consistency be-
tween the training and inference stages, thereby enhancing the discriminability of the final
integrated feature during inference. To address this, this paper introduces an Integration
Training Module (ITM), as depicted in Figure 7.
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The ITM follows a step-by-step procedure: First, the feature vector f 1
t from sub-

network 1 and the feature vector f 2
t from sub-network 2 are concatenated. Then, they

pass through a fully connected layer to integrate the two feature vectors, resulting in
the integrated feature fIntegration. The Weighted Regularization Triplet (WRT) loss [2] is
computed to optimize the relative distances of the integrated features in the Euclidean
space. Finally, the integrated feature fIntegration undergoes through a BN layer (with weight
parameters shared with the BN layers in the sub-networks) and another fully connected
layer to obtain the Logits vector. The SoftMax function is applied to the Logits vector to
calculate the cross-entropy loss.

The total loss of the Integration Training Module is the sum of the WRT loss and the
cross-entropy loss, as shown in Equation (2), where the WRT loss is shown in Equation (3).

LossIntegration = LossWRT + λ1LossCross−Entropy (2)

where LossWRT is the WRT loss, LossCross−Entropy is the cross-entropy loss, and λ1 is the
weight hyper-parameter.

Losswrt =
1
N ∑N

i=1 log
(

1 + exp
(

∑ij wp
ijd

p
ij −∑ik wn

ikdn
ik

))
wp

ij =
exp

(
dp

ij

)
∑dp

ij∈Pi
exp

(
dp

ij

) , wn
ik =

exp(−dn
ik)

∑dn
ik∈Ni

exp(−dn
ik)

(3)

where i is any training sample; j denotes any positive sample of i; k denotes any negative
sample of sample i; Pi denotes the set of positive samples of i; Ni denotes the set of negative
samples of i; dp

ij denotes the Euclidean distance between i and any positive sample; dn
ik

denotes the Euclidean distance between i and any negative sample; N denotes the number
of samples within a training batch; ∑ij wp

ijd
p
ij denotes the weighted sum of all positive

sample distances of i; and ∑ik wn
ikdn

ik denotes the weighted sum of all negative sample
distances of i.

3.2.4. CurricularFace Loss

CurricularFace loss [9] is a metric loss function proposed in the field of face recogni-
tion. This loss function mimics the learning process of humans, where easier samples are
given higher weights during the initial stages of training, while harder samples are given
higher weights in the later stages of model training. This approach allows the model to
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achieve better local optima and produce more discriminative features. The formula for
CurricularFace loss is shown as Equation (4).

LossCurrilarFace = − log es cos(θyi +m)

es cos(θyi +m)
+∑n

j=1,j 6=yi
esN(t(k) ,cos θj)

N(t, cos θj) =

{
cos θj, cos(θyi + m)− cos θj ≥ 0

cos θj(t + cos θj), cos(θyi + m)− cos θj < 0
t(k) = αr(k) + (1− α)t(k−1)

(4)

where s is the value of the rescaled modal length of the feature vector in cosine space
(hyper-spherical radius); m is the angle penalty term; θyi is the angle between the feature
vector in cosine space and its corresponding yi category center; θj is the angle between the
feature vector and the other category centers j; the relationship between cos(θyi + m) and
cos θj is used to define easy and hard samples, respectively; n is the number of category
centers; r(k) is the average cosine similarity between the feature vectors of the current
training batch (batch k) and their corresponding class centers, which increases as the model
is trained; t(k) is the exponential moving average of r(k); and α is the momentum parameter
of 0.99. At the beginning of training, t(0) = 0 is initialized as 0, as the model trains, t
increases and gradually approaches 1, which is used to characterize the training process of
the model (early and late).

3.2.5. Total Loss

The total loss during the model training stage, denoted as LossTotal, is composed
of three components: the loss of sub-network 1 (LossNetwork1), the loss of sub-network
2 (LossNetwork2), and the loss of the ITM (LossIntegration), as shown in Equation (5). Each
sub-network loss is further composed of the WRT loss and the CurricularFace loss, as
illustrated in Equation (6).

LossTotal = LossNetwork1 + LossNetwork2 + LossIntegration (5)

LossNetwork1 or 2 = LossWRT + λ2LossCurrilarFace (6)

where λ2 is the weight hyper-parameter for CurricularFace loss.

4. Experiments and Analysis
4.1. Datasets and Evaluation Metric

The proposed method was experimented and evaluated on two publicly available
person re-identification datasets: Market1501 [27] and MSMT17 [28]. The specific details of
these two datasets are presented in Table 1.

Table 1. Introduction to the datasets.

Dataset Number of
Cameras

Training Set Test Set

Number of
Persons

Number of
Images

Number of
Persons

Number of
Images

Market1501 6 751 12,936 750 19,732
MSMT17 15 1040 32,621 3010 82,161

The Market1501 dataset includes 32,668 images of 1501 individuals from a shopping
center, captured via six cameras. It has a training set of 12,936 images of 751 persons and a
testing set of 19,732 images of 750 persons.

The MSMT17 dataset consists of 126,441 images of 4101 pedestrians captured via
15 cameras, 12 outdoor and 3 indoor cameras. The training set has 32,621 images of
1041 persons and the testing set includes 82,161 images of 3010 persons.
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The evaluation metrics used are Rank-k, mAP (mean average precision), and mINP
(mean inverse negative penalty) [2]. The Rank-k metric assesses a model’s capability to
accurately identify correct samples within the top k positions of the Rank List. In this
paper, Rank1 is employed as the evaluation metric, specifically measuring the model’s
accuracy in correctly identifying the samples at the first position in the Rank List. The mAP
metric measures the recognition accuracy of the model, with higher mAP values indicating
superior model performance. The mINP is a metric that quantifies the cost associated with
locating the most challenging matching correct sample. In essence, it signifies that the
deeper the last correct sample is ranked within the Rank List, the higher the cost of manual
scrutiny and intervention. A lower mINP value indicates inferior model performance, as
demonstrated in Equation (7).

mINP =
1
n

n

∑
i=1

|Gi|
Rhard

i
(7)

where |Gi| denotes the number of all correct samples of Query i, Rhard
i denotes the position

of the last correct sample of Query i in the Rank List, and n denotes the number of Query
in the test set.

4.2. Experimental Settings

The experiments were conducted using the PyTorch deep learning framework ver-
sion 1.4.0. The training was performed on a single machine with dual GPUs, specifically a
Nvidia Titan V and a Nvidia GeForce RTX 2080. During model training, the input person
images were resized to 256 × 128, and were subjected to random cropping, random erasing
(with a probability of 0.5), and random horizontal flipping. No data augmentation was ap-
plied during the inference stage of the model. During training on the Market1501, the initial
DropPath probability P was 0.1, weight hyper-parameter λ1 in the LossIntegration was 0.05,
m and s in the CurricularFace loss were 0.4 and 30, respectively, weight hyper-parameter
of the CurricularFace loss λ2 was 0.05; during training on the MSMT17 dataset, the initial
DropPath probability P was 0.2, λ1 was 1, m and s were 0.3 and 45, respectively, and λ2 was
0.01. The ConvNeXt V2 Tiny model is initialized with pre-trained weights from ImageNet,
and the stride of the final downsampling convolutional layer in it is adjusted to 1 to enhance
the resolution of the resulting feature map. The number of epochs for model training was
120, and the size of each training batch was 64, containing 16 persons with 4 images each.
The initial learning rate was set to 0.0105 using the Adam optimizer, and it was fine-tuned
with the WarmUp strategy. As is shown in Equation (8), the WarmUp strategy gradually
increases the learning rate during the early stages of training and gradually decreases it as
training progresses. This approach aims to enhance the model’s stability and convergence
throughout the training process.

lr(epoch) =


0.0105× epoch+1

10 , epoch < 10
0.0105, 10 ≤ epoch < 40

0.00105, 40 ≤ epoch < 70
0.000105, epoch ≥ 70

(8)

4.3. Comparison with Existing Methods

On the Market1501 and MSMT17 datasets, the Dual Descriptor Feature Enhancement
(DDFE) network was compared with state-of-the-art methods including CF-ReID [29],
PGANet-152 [30], CAL [17], TransReID [5], TMP [15], DCAL [31], LTReID [32], UniHCP [33],
CLIP-ReID [34], and DC-Former [35]. The comparison results are shown in Table 2.
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Table 2. Comparison with existing methods.

Methods Venue Backbone during the Inference
Stage (Params)

Training Cost
Market1501 MSMT17

mAP Rank1 mAP Rank1

CF-ReID [29] CVPR2021 ResNet50 (25.5 M) - 87.7 94.8 - -
PGANet-152 [30] ACM MM2021 ResNet152 (60.2 M) - 89.3 95.4 - -

CAL [17] ICCV2021 ResNet101 (44.6 M) - 89.5 95.5 64 84.2
TransReID [5] ICCV2021 ViT-Base (86 M) Nvidia Tesla V100 88.9 95.2 67.4 85.3

TMP [15] ICCV2021 ResNet101 (44.6 M) 4 × Nvidia Tesla V100 90.3 96 62.7 82.9
DCAL [31] CVPR2022 ViT-Base (86 M) Nvidia Tesla V100 87.5 94.7 64 83.1

LTReID [32] TMM2022 ResNet50 (25.5 M) 4 × GeForce GTX 1080
Ti 89 95.9 58.6 81

UniHCP [33] CVPR2023 ViT-Base (86 M) - 90.3 - 67.3 -
CLIP-ReID [34] AAAI2023 ViT-Base (86 M) - 90.5 95.4 75.8 89.7
DC-Former [35] AAAI2023 ViT-Base (86 M) 4 × Nvidia Tesla V100 90.4 96 69.8 86.2

DDFE Ours ConvNeXt v2 Tiny × 2 (57.2 M) Nvidia Titan V + Nvidia
GeForce RTX 2080 91.6 96.1 69.9 87.5

Based on the analysis of “Backbone during the inference stage (Params)” and “Training
cost” in Table 2, it is evident that the proposed DDFE network, despite employing two
sub-networks simultaneously, falls between ResNet101 [36] and ViT-Base [37] in terms of
model size and parameter count. Additionally, the training cost of the DDFE network is
also positioned within the middle range compared to the other methods.

In terms of recognition performance, the DDFE network achieves outstanding results.
On the Market1501 dataset, it surpasses all other methods with an mAP of 91.6% and a
Rank1 accuracy of 96.1%. Similarly, on the MSMT17 dataset, it outperforms all the methods,
except CLIP-ReID, achieving an mAP of 69.9% and a Rank1 accuracy of 87.5%.

These comparative results indicate that the proposed DDFE network effectively en-
hances the model’s recognition performance while maintaining a moderate parameter count
and training cost. This provides strong evidence for the effectiveness and advancement of
the proposed method.

4.4. Ablation Study
4.4.1. Performance Comparison: Sub-Network Descriptors vs. Integrated Feature

During the inference stage of the DDFE network, the recognition performance of
the descriptor f 1

i from sub-network 1, the descriptor f 2
i from sub-network 2, and the

integrated feature f were tested on the Market1501 dataset. This analysis aims to validate
the effectiveness of integrating the descriptors from the two sub-networks for image
matching, as shown in Table 3.

Table 3. Performance comparison: sub-network descriptors vs. integrated feature.

Feature mAP Rank1 mINP

f 1
i (sub-network 1) 91.3 96.1 73.9

f 2
i (sub-network 2) 91.4 96.2 73.9

f (integrated feature) 91.6 96.1 75.1

From Table 3, it is evident that integrating the descriptors from both sub-networks
significantly enhances the network’s mAP and mINP values, while the Rank1 value re-
mains unchanged. The lack of improvement in the Rank1 value can be attributed to its
representation of the model’s performance on simple samples. For the Market1501 dataset,
both the sub-network features and integrated features effectively capture information from
simple person images, resulting in a performance bottleneck for Rank1. On the other hand,
the mAP value reflects the model’s retrieval capability for both simple and challenging
samples, while the mINP value signifies its ability to handle the most difficult samples.
Utilizing the integrated features for person image matching provides a more comprehen-
sive description from various perspectives, particularly benefiting challenging samples and
significantly improving the mAP and mINP values of the network.
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4.4.2. Component Ablation Experiments of the Training Strategy

In order to assess the impact of each component of the training strategy designed
for the DDFE network on the network’s recognition performance during the inference
stage, a series of ablation experiments were conducted and trained and tested on the
Market1501 dataset. The results are summarized in Table 4, where “

√
” indicates the

inclusion of DropPath, Integration Training Module (ITM), or CurricularFace loss during
model training.

Table 4. Component ablation experiments of the training strategy.

Number DropPath ITM CurricularFace mAP Rank1 mINP

1 - - - 89.3 95.2 69.1
2

√
- - 89.7 95.7 69.7

3
√ √

- 90.4 96 71.3
4

√ √ √
91.6 96.1 75.1

In the Table 4, Experiment 1 involves constructing a person re-identification model
using two sub-networks. During the training stage, DropPath is not utilized, and the Cur-
ricularFace loss is replaced with cross-entropy loss. In the inference stage, the descriptors
generated via the two sub-networks are summed and employed for person image matching.
Experiments 2 to 4 expand upon Experiment 1 by gradually introducing additional training
components, such as DropPath, Integration Training Module (ITM), and the CurricularFace
loss. Notably, Experiment 4 represents the DDFE network proposed in this paper.

Based on the results presented in Table 4, it is evident that each training component
significantly enhances the model’s recognition performance during the inference stage.
The utilization of DropPath, the ITM, and CurricularFace leads to the highest recognition
performance, with an mAP of 91.6%, Rank1 of 96.1%, and mINP of 75.1%. These outcomes
from the ablation experiments effectively showcase the effectiveness of each component
within the training strategy of the proposed DDFE network.

4.4.3. Generalizability Analysis

Various convolutional backbone networks, including ResNet-50 [36], MogaNet-T [38],
and HorNet-T (GF) [39], as feature extractors, are used to assess the generalization of
the proposed dual descriptor enhancement paradigm and model training strategy. The
experimental results are presented in Table 5. In these experiments, the “Single Network”
configuration utilized a single backbone network as the feature extractor for both model
training and inference. DropPath operation was excluded during the training stage and
the CurricularFace loss was replaced with cross-entropy loss. The “Dual Network” in-
volves utilizing the feature extraction network to construct the proposed DDFE network,
incorporating DropPath, CurricularFace loss, and the ITM during the training stage. All
experiments were conducted without any fine-tuning. From the results in Table 5, it is
evident that the proposed dual descriptor enhancement paradigm and model training
strategy significantly enhance the recognition performance of person re-identification mod-
els across different backbone networks, thereby demonstrating the generalizability of the
proposed approach.

4.4.4. Parameter Analysis

For all hyper-parameters in the DDFE network, including the initial DropPath probabil-
ity P, the weight hyper-parameter λ1 in the LossIntegration, the m and s in the CurricularFace
loss, as well as the weight of the CurricularFace loss λ2, an analysis was conducted. The
experimental details and results are presented in Figures 8 and 9. From Figure 8, it can
be observed that for the Market1501 dataset, the optimal hyper-parameters are m = 0.4,
s = 30, λ1 = 0.05, λ2 = 0.05, and P = 0.1. Similarly, from Figure 9, it can be seen that for the
MSMT17 dataset, the optimal parameters are m = 0.3, s = 45, λ1 = 1, λ2= 0.01, and P = 0.2.
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Table 5. Generalizability analysis experiments.

Feature Extractor Year Parameters Configuration mAP Rank1 mINP

ResNet-50 [36] 2015 25.5 M
Single

Network 86.5 94.3 60.6

Dual Network 89.2 95.7 67.8

MogaNet-T [38] 2022 5.5 M
Single

Network 85.9 93.8 61.6

Dual Network 86.8 94.4 62.4

HorNet-T (GF) [39] 2022 23 M
Single

Network 86.9 94.4 63.3

Dual Network 88.8 95.6 66.6
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4.5. Visualization Analysis
4.5.1. Attention Heatmap Analysis of Each Sub-Network

To gain a comprehensive understanding of how sub-network 1 and sub-network
2 focus on person images in the DDFE network, we employed Grad-Cam [40] to visualize
the attention heatmaps of the last convolutional layer’s feature maps for each sub-network.
The visualizations are depicted in Figure 10. From the heatmaps in Figure 10, it is evident
that the two sub-networks exhibit distinct areas of focus for the same input image. By
integrating the output features of both sub-networks, a more comprehensive description can
be obtained from two different attention perspectives, leading to an improved recognition
accuracy for the person re-identification model.
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4.5.2. Visualization and Analysis of the Training Strategy

To better understand the impact of the designed training strategy on the recognition
performance of the DDFE network, we randomly selected a person image from the test
set of the Market1501 dataset as the query. The recognition results of each experimental
model in the “Section 4.4.2 Ablation Experiments for Training Strategy” are displayed in
Figure 11. The vertical numbers on the left correspond to the experimental numbers in
Section 4.4.2. The “Query” represents the person image to be matched, and the images
to the right of each query are the recognition results. The numbers above the recognition
results indicate the similarity level between the recognition image and the query image,
with smaller numbers indicating higher similarity (smaller Euclidean distance). The green
box indicates correct recognition, while the red box indicates incorrect recognition.
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Based on the findings from Experiment 1 in Figure 11, it is evident that the omission
of DropPath, ITM, and CurricularFace loss leads to an incorrect recognition at the second
position in the Rank List. However, with the inclusion of DropPath, the erroneous result
now appears at the third position. Even when both DropPath and ITM are incorporated,
the recognition performance still exhibits an incorrect recognition at the fourth position
of the Rank List. Notably, the model achieves optimal training and recognition outcomes
when all the proposed training strategies in this study are implemented, as demonstrated
in Experiment 4 in Figure 11. Interestingly, the occurrence of incorrectly recognized images
begins to manifest at the sixth position in the Rank List. This visualization effectively
demonstrates the effectiveness of the proposed training strategy in this paper.

4.5.3. Results Output

In this study, a random selection of five person images from the Market1501 dataset
were used as query images. The DDFE network was utilized to extract feature descriptors
for these query images. Concurrently, integrated features were also extracted for all person
images in the gallery. Subsequently, the Euclidean distance between the integrated feature
of each query image and the integrated feature of all gallery images was calculated. Finally,
the top 10 images with the smallest Euclidean distances in the gallery were outputted and
presented, as shown in Figure 12.
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From the results in Figure 12, it can be observed that for simple frontal images of
persons (Query1~3), the DDFE network successfully extracts rich information for feature
description and recognition. For more challenging samples, such as images of persons from
the back (Query4 and Query5), the DDFE network is also able to distinguish and recognize
them to some extent among all the visually similar images.

5. Conclusions

This paper introduces a novel person re-identification method called Dual Descriptor
Feature Enhancement (DDFE) network, which employs two sub-networks to extract fea-
tures from the same person image. Compared to the traditional single-network approaches,
this method provides better representation for person images. The incorporation of Cur-
ricularFace loss, DropPath operation, and Integration Training Module (ITM) during the
model training phase substantially enhances the recognition performance of the DDFE
network. Extensive experiments conducted on the Market1501 and MSMT17 datasets
demonstrate the effectiveness, state-of-the-art performance, and generalization capability
of the proposed method.
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