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Abstract: Some possible correspondences between the Scale Relativity Theory and the Space–Time
Theory can be established. Since both the multifractal Schrödinger equation from the Scale Relativity
Theory and the General Relativity equations for a gravitational field with axial symmetry accept the
same SL(2R)-type invariance, an Ernst-type potential (from General Relativity) and also a multi-fractal
tensor (from Scale Relativity) are highlighted in the description of complex systems dynamics. In this
way, a non-differentiable description of complex systems dynamics can become functional, even in
the case of standard theories (General Relativity and Quantum Mechanics).
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1. Introduction

Although differentiability is most commonly used in the description of complex
systems dynamics [1–4], some natural nonlinear phenomena (such as states transitions,
self-structuring, chaos, etc.) would greatly benefit from non-differentiability as a natural
way of describing such dynamics. For example, in interactions found in various fluids, gas,
and plasma, the trajectory of any particle, between two successive collisions, is a straight
line (a continuous and differentiable curve). At the impact (collision) point, this curve
becomes non-differentiable. As a consequence, the set of all impact points is equivalent to a
fractal set [3].

Non-differentiability employed in the description of complex systems dynamics can
be accomplished either through fractional derivatives formalism or through the Scale
Relativity Theory (SRT) [5–9]. Regarding this theory, the description of complex systems
dynamics can be achieved by employing either mono-fractal manifolds (dynamics in a
single fractal dimension [7]) or multifractal manifolds (dynamics in multiple simultaneous
fractal dimensions [7,9])

It follows that, in the context of SRT, any physical quantity (used in the description
of complex systems dynamics) will depend on space–time coordinates, as well as on a
scale resolution. This leads us to a description of these dynamics by means of strictly
non-differentiable mathematical functions. We must mention that any non-differentiable
function will operate as the limit of a family of mathematical functions. This function is non-
differentiable at null-scale resolution and differentiable at non-null-scale resolution [5–9].
These non-differentiable functions display a self-similarity property. In our opinion, such a
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property could be associated to holographic-type behaviors in the description of complex
systems dynamics [6,8,9].

The concept of holography can be found in modern space–time theories, in the form
of the holographic principle [10]. By employing this principle, scientists are trying to find
correlations between the Space–Time Theory (i.e., General Relativity) and the Quantum
Theory (in order to determine a unified theory of physical interactions).

In the present paper, correlations between SRT and General Relativity (for the case of
the axially symmetric field) are given.

2. A Short Reminder on Schrödinger- and Madelung-Type Scenarios in the
Description of Complex Systems Dynamics

It is a known fact that the dynamics of complex systems in the SRT [6–9] can be
described through the multifractal Schrödinger equation—the Schrödinger-type scenario:

λ2(dt)[
4

f (α) ]−2
∂l∂

lΨ + iλ(dt)[
2

f (α) ]−1
∂tΨ = 0 (1)

where

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂
l =

∂2

∂x2
l

(2)

In Equations (1) and (2), Ψ is a state function; xl is the multifractal spatial coordinate;
t is the non-multifractal temporal coordinate with the role of an affine parameter of the
multifractal curves; λ is a diffusion-type constant associated to the differentiable–non-
differentiable transitions in the dynamics of complex systems; dt is the scale resolution; and
f (α) is the singularity spectrum of order α, α = α(DF), where DF is the fractal dimension
of the motion curves. In such a context, it is possible, through f (α), to identify the areas of
the complex system’s dynamics that are characterized by a certain fractal dimension (mono-
fractal complex systems dynamics), and also to identify the number of areas for which
their fractal dimensions can be found in a value interval (multifractal complex systems
dynamics). Regarding the fractal dimensions, several definitions can be used, such as the
Kolmogorov fractal dimension or Hausdorff–Besicovitch fractal dimension [5–9].

By choosing Ψ of the form
Ψ =

√
ρeis (3)

where
√

ρ is the amplitude, and s is the phase, and introducing the real velocity fields
(Vi

D—differentiable velocity field, Vi
F—non-differentiable velocity field):

Vi
D = 2λ(dt)[

2
f (α) ]−1

∂is (4)

Vi
F = iλ(dt)[

2
f (α) ]−1

∂iln ρ (5)

Equation (1) is reduced to the multifractal hydrodynamic equation system, i.e., the
Madelung-type scenario:

∂tVi
D + V l

D∂lVi
D = −∂iQ (6)

∂tρ + ∂l

(
ρV l

D

)
= 0 (7)

with Q the multifractal specific potential:

Q = −2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ
√

ρ
= −Vi

FVi
F −

1
2

λ(dt)[
2

f (α) ]−1
∂lV l

F (8)
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Equation (6) corresponds to the multifractal specific momentum conservation law.
Equation (7) corresponds to the multifractal state density conservation law. Moreover,
through (8), the multifractal specific force results in:

Fi = −∂iQ = −2λ2(dt)[
4

f (α) ]−2
∂i ∂l∂l

√
ρ

√
ρ

(9)

which is a measure of the multifractality of the motion curves of the dynamics.
The main consequences of the multifractal hydrodynamic equation systems are given

in [11,12].
Now, by employing the multifractal tensor:

τ̂il = 2λ2(dt)[
4

f (α) ]−2
ρ∂i∂lln ρ (10)

Equation (9) takes the form of a multifractal equilibrium equation

ρ∂iQ = ∂l τ̂
il (11)

Since the multifractal tensor τ̂il can also be written in the form:

τ̂il = η
(

∂lVi
F + ∂iV l

F

)
(12)

with
η = λ(dt)[

2
f (α) ]−1

ρ (13)

a multifractal constitutive law for a multifractal “viscous fluid” can be applied. In this way,
it is possible to provide an original interpretation of coefficient η as a multifractal dynamic
viscosity of the multifractal fluid.

3. Riemannian-Type Geometries Associated to the Multifractal Tensor τ̂il

Due to the fact that the multifractal tensor τ̂il becomes fundamental in the definition
of a constitutive material law, let us specify some of its properties.

The eigenvalues (by means of its characteristic/secular equation) of the τ̂il multifractal
tensor imply the cubic equation [13,14]:

a0x3 + 3a1x2 + 3a2x + a3 = 0 (14)

If we admit that (14) has real roots [15,16], then these roots can be written as:

x1 = h+h*k
1+k

x2 = h+εh*k
1+εk

x3 = h+ε2h*k
1+ε2k

(15)

In (15), h, h* are the roots of Hessian

H = (a0a3 − a1a2)
2 − 4

(
a0a2 − a2

1

)(
a1a3 − a2

2

)
and ε ≡

(
−1 + i

√
3
)

/2 is the cubic root of unity
(
i =
√
−1
)
. We note that all the values of

variables h, h*, and k can be organized in a simple transitive group with real parameters.
This simple transitive group can be highlighted through Riemann-type spaces associated
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with the cubic (14). The basis of this approach is the fact that the simply transitive group
with real parameters [9,15,16]:

xl ↔
axl + b
cx + d

, l = 1, 2, 3 a, b, c, d ∈ R (16)

where xl are the roots of the cubic (14), induces the simply transitive group in the quantities
h, h*, and k (as a unimodular factor), whose actions are:

h↔ ah+b
ch+d

h* ↔ ah*+b
ch*+d

k↔ ch*+d
ch+d k

(17)

The structure of this group is of a SL(2,R) type, and we take it in the standard form.
Due to its simple transitivity property, the generators can be easily found as the components
of the Cartan landmark of the group as before [17,18], from relation

d( f ) ≡ ∑ ∂ f
∂xk dxk

=
[
ω1
(

h2 ∂
∂h + h*2 ∂

∂h* k ∂
∂k

)
+2ω2

(
h ∂

∂h + h* ∂
∂h*

)
+ ω3

(
∂

∂h + ∂
∂h*

)]
( f )

(18)

where ωk are the three differential forms that give the components of the Cartan coframe
that can be found from the algebraic system

dh = ω1h2 + 2ω2h + ω3

d
−
h = ω1h∗2 + 2ω2h∗ + ω3

dk = ω1kh− h∗
(19)

Therefore, we immediately have both the infinitesimal generators and the Cartan
coframe, by identification of the right side of Equation (18) with the standard scalar product
of the structure SL(2,R) [15,16]

ω1B3 + ω3B1 − 2ω2B2 (20)

so that
B1 = ∂

∂h + ∂
∂h* , B2 = h ∂

∂h + h* ∂
∂h*

B3 = h2 ∂
∂h + h*2 ∂

∂h* +
(
h− h*)k ∂

∂k

(21)

and
ω1 = dk

(h−h*)k
, 2ω2 = dh−dh*

h−h* − h+h*

h−h*
dk
k

ω3 = hdh*−h*dh
h−h* + hh*

h−h*
dk
k

(22)

In real variables, given by h ≡ u + iv, k = eiΦ, these equations can be written as

B1 = ∂
∂u , B2 = u ∂

∂u + v ∂
∂v

B3 =
(
u2 − v2) ∂

∂u + 2uv ∂
∂v + 2v ∂

∂φ

ω1 = dφ
2v , ω2 = dv

v −
u
v dφ

ω3 = u2+v2

2v dφ + vdu−udv
v

(23)
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In order to respect the historical truth, we must mention that in the original article
from 1938, Barbilian does not work with these differential forms, but with the absolutely
invariant differentials [19]

ω1 =
dh

(h− h*)k
, ω2 = −i

(
dk
k
− dh + dh*

h− h*

)
, ω3 = − kdh*

h− h* (24)

or, in real variables, with the differential forms

Ω1 = dφ + du
v

Ω2 = cos φ du
v + sin φ dv

v

Ω3 = −sin φ du
v + cos φ dv

v

(25)

which highlights a three-dimensional Lorentz structure of the metric space, to which they
refer. The differential forms (25) actually represent a Bücklund transformation of the
hyperbolic plane connection [20]. Moreover, it can be seen easily that the infinitesimal
generators of the group differ from the Beltrami operators characteristic of the Lobachevski
geometry in the Poincaré representation only by the component 2v∂/∂φ in the expression of
the third operator. If we calculate the invariant metric of the group, either from components
(22) of the coframe or from (25) as the Lorentz metric, we will obtain the known expression

ds2 =

(
dφ +

du
v

)2
+

(
du)2 +

(
dv)2

v2 (26)

in which we recognize the Beltrami metric, to which is added (with a negative sign) the
square of the differential form whose cancellation defines the parallelism angle in the
Lobachevski plane, i.e., the connection form [21]. Let us note that, according to the above,
because through relation

ω2 = 0⇐⇒ dφ = −du
v

a direction parallelism of the Lobachevski plane in a Levi-Civita sense can be defined, the
metric (26) can be reduced to its Poincaré representation, i.e.,

ds2 =
dhdh*

(h− h*)
2 =

(
du)2 +

(
dv)2

v2 (27)

Let us note that metric (27) can be considered as a Lagrangian (geodesic Lagrangian),
and it can provide a momentum vector. Now, the general methodology from [16,17,20]
states that the projection of this vector on a Killing vector of the metric (27) is a quantity that
conserves along the geodesics. In this way, these quantities gain direct physical meaning.

We must mention that this formalism can be applied to any scale resolution of a com-
plex system’s dynamics, i.e., we are discussing here differential geometries of a multifractal-
type, which evidently implies multifractal metrics.

4. Harmonic Mappings from the Usual Space to the Hyperbolic One

Let us assume that the complex system’s dynamics are described by the field variables(
Y j), for which, at any scale resolution, the following metric was discovered:

hijdYidY j (28)

in the usual space of the metric:
γαβdXαdXβ (29)
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Then, the field equations result by using a variational principle applied to the multi-
fractal Lagrangian:

L = γαβhij
dYidY j

∂Xα∂Xβ
(30)

In our case, (28) is given by (27). Now, for the variational principle

δ
∫

L
√

γd3x = 0 (31)

applied to the Lagrangian (30), the multifractal Euler equations are(
h− h*)∇(∇h) = 2(∇h)2(

h− h*)∇(∇h*) = 2
(
∇h*)2 (32)

and admit the solution

h =
cosh (Φ/2)− sinh(Φ/2)e−iα

cosh(Φ/2) + sinh(Φ/2)e−iα , α ∈ R (33)

In (33), α is real and arbitrary, as long as (Φ/2) is the solution of a multifractal Laplace
equation for the free space, such that

∇2(Φ/2) = 0 (34)

For α = ωt, transitions from stationary to non-stationary states in complex systems
dynamics can be highlighted. We present in Figures 1a–d and 2a–d harmonic mappings of
damped and modulated complex systems dynamics. Because h can also be written as

h =
i
[
e2Φsin(2Ωt)− sin (2Ωt)− 2ieΦ]

e2Φ[cos(2Ωt) + 1]− cos(2Ωt) + 1

we plotted |h| for φ = 2.35.
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5. A Short Description of Gravity for an Axial Symmetry ERNST Potential

We are talking here about gravity as it is presented to us in the formalism of the Theory
of General Relativity (Einstein’s field equations). Rarely, one can give a general solution of
these equations. However, the vacuum and electromagnetic vacuum equations have such a
solution that can be brought to a simpler form in the case of stationary metrics. Frederic J.
Ernst was the one who pointed out this form [22,23] for the case of the axially symmetric
field. Later, both he, but especially Israel and Wilson [24], whom we will follow here, have
shown that it is possible to treat the general stationary case in a completely analogous way.
We will follow this last work here, first because it seems a bit more explicit for what we
want to bring out into evidence, then because it apparently has a fresh idea of bypassing the
related indeterminacy of the metric tensor, leading to profitable results for mathematical
philosophy. We still follow the general idea of Ernst’s original works, namely, that of posing
the problem of the gravitational field in connection with a variational principle, for reasons
that will be immediately highlighted.

The main point of the cited work of Israel and Wilson is that, for a stationary space–
time metric, conveniently written in the form

(ds)2 = f
(

dx4 + ωmdxm
)2
− f−1(γmndxmdxn) (35)

where we use the convention of summation by repeated indices of different variance,
Einstein’s equations for the electromagnetic vacuum field

Gαβ = −8Tαβ (36)

take the form of the system of equations with nonlinear partial derivatives

∇2ε = ∇ε ·
(
∇ε + 2Ψ*∇Ψ

)
f∇2Ψ = ∇Ψ ·

(
∇ε + 2Ψ*∇Ψ

) (37)
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Let us note that in Equations (35) and (36), Greek indices go from 1 to 4, while Latin
indices go from 1 to 3 and represent spatial indices.

In Equation (36), we used the convention from [22–24] (the Newton constant and the
speed of light in a vacuum are identical with the unit).

The spatio-temporal metric tensor is defined by

g44 = f , γmn = g4mg4n − g44gmn, ωk =
g4k
g44

and for raising and lowering the spatial indices, the metric (γmn) is used. All these
components do not depend on the time coordinate (stationarity property). A potential
four-vector (A, A4) ≡ (Aγ) describes the electromagnetic field, whose intensities are given
by its covariant curl:

Fαβ = ∇α Aβ −∇β Aα (38)

This electromagnetic field satisfies the equation

−4πTµν ≡ gαβFµαFνβ −
1
4

gµνFαβFαβ (39)

In Equation (39), we used the same convention as in the case of Equation (36).
Further, Gαβ is the Einstein tensor associated with the metric field and defined by

Gµν ≡ Rµν −
1
2

gµνR (40)

with Rαβ the Ricci tensor of the metric and R the scalar invariant of the curvature. In
relation to these symbols, then are defined the functions

Ψ ≡ A4 + iΦ; ε ≡ f −Ψ*Ψ + iφ; i =
√
−1 (41)

where Φ ia a magnetic potential and φ an arbitrary function. Once we know the functions
ε, Φ, and φ, we can construct the Ricci tensor corresponding to the metric (γmn) by

− f 2Rmn(γ) =
1
2 ε(m∇n)ε

* + Ψ∇(mε · ∇n)Ψ
*

+Ψ*∇(mε* · ∇n)Ψ−
(
ε + ε*)∇(mΨ · ∇n)Ψ

* (42)

where the parentheses mean symmetrization in relation to the indices they contain.
F. J. Ernst [22] introduced the complex potential ε for the special case of the gravita-

tional field with axial symmetry. It was later proven that spatial symmetry is not a necessary
condition for the existence of such a potential [23], but only the stationarity of the metric
field (time independence). In order to find a solution for the gravitational potentials (metric
tensor components in Einstein’s sense [24]), it is necessary to solve Einstein’s Equation (36).
In such a context, since the right side of these equations contains the energy tensor, an a
priori knowledge of the metric tensor is required.

This problem has been repeatedly iterated in gravitational field physics, in one way or
another, and among its settlement cases, there are some remarkable for their contribution
to knowledge of the nature of the gravitational field [25–28]. Let us note that the problem
of the gravitational field could be solved if we take a different approach than the usual one,
in the sense of allowing the metric γ to be arbitrary, so that it can be conveniently chosen.
Indeed, Israel and Wilson [23] note that Equation (42) should only be taken as compatibility
conditions between a specially chosen spatial metric and the complex fields ε and Ψ. In the
particular case of the ordinary Euclidean space, the conditions of compatibility are simply
reduced to the linear equation

Ψ = a + bε, ab* + a*b = −1
2

(43)
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and the whole construction comes back to solving the Laplace’s equation

∇2ξ = 0, ξ ≡
(

1 + ε)−1 (44)

Through Equation (43), the gravitational field determines an electromagnetic field.
Moreover, Ernst himself [22] noted the fact that a functional relationship between the
complex gravitational and electromagnetic potentials solves the gravitational field problem.

In 1971, Ernst [23] proved that the theory providing Equations (37) and (42) above,
applied to the purely gravitational case, can be obtained from the variational principle

δ
y

{
R(γ) + 2

γmn(∇mε)
(
∇nε*)

(ε + ε*)
2

}√
det(γ)

(
d3x
)
= 0 (45)

where R(γ) is the scalar curvature of the metric γ. As such, it can now be seen that in a
Euclidean space, this variational principle refers exclusively to Ernst’s complex potential:

δ
y

{
γmn(∇mε)

(
∇nε*)

(ε + ε*)
2

}(
d3x
)
= 0 (46)

In other words, only in cases where the gravitational field defines an electromagnetic
field through a linear relationship of the type (43) can that gravitational field be described
exclusively through a complex potential. Here, we will limit ourselves to this last case of
the gravity field in a vacuum. The line of ideas that we have just presented opens a specific
path for the solution of the problem of vacuum fields, because the variational principle (46)
can be constructed in connection with the continuous group SL(2, R) that we have here in
mind.

Richard Matzner and Charles Misner observed [28] that the principle variational (46)
is actually a response to what constitutes the problem of harmonic applications (discussed
by Misner in [29]). From this point of view, Equation (46) describes a harmonic application
from Euclidean space to SL(2, R). This fact is evident if, instead of the Ernst ε potential, we
use as a field variable h ≡ iε, so that Equation (46) becomes

δ
y

{
γmn(∇mh)

(
∇nh*)

(h− h*)
2

}(
d3x
)
= 0 (47)

This variational equation describes a harmonic application between the usual Eu-
clidean space of the metric (γmn) and the higher complex plane (the Poincaré representation
of the hyperbolic plane) with the metric given by

(ds)2 = −4
(dh)

(
dh*)

(h− h*)
2 ≡

(
du)2 +

(
dv)2

v2 , h = u + iv

known as the invariant metric of the SL(2, R) group.
In this context, the complex potential h could gain physical meaning. Indeed, Equation

(41) gives us for the case of the null electromagnetic field (pure gravitational field):

h = −φ + i f (48)

so that the real part of the potential is arbitrary, while the imaginary part

v ≡ f = g44 (49)

is positive. These are essential qualities required by the geometry of the Poincaré half-plane.
By this fact, the Poincaré metric is physically legitimized. Another attractive theoretical
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point of this potential is that the differential equations corresponding to the variational
principle (47), known as the “Ernst equations” of the problem, take the shape(

h− h*)(∇2h
)
= 2(∇h)(∇h)(

h− h*)(∇2h*) = 2
(
∇h*)(∇h*) (50)

and complex conjugate, obviously, and can be easily solved with the help of Laplace’s
equation. More precisely, the solution of Equation (32) can be written in the form

h = −i
coshψ− e−iαsinhψ

coshψ + e−iαsinhψ
,∇2ψ = 0 (51)

with α real and arbitrary. Therefore, here, the solution to the problem of the stationary
gravitational field is also reduced to solving Laplace’s equation in the usual space of our
experience, just like in classical Newtonian theory [30–32].

6. Conclusions

In this paper, correlations between the Space–Time Theory and the Scale Relativity
Theory have been established. In this way, non-differentiable implementations in complex
systems dynamics become operational. This could specify the fact that, even in the case of
standard theories (General Relativity and Quantum Mechanics), several implications of
a holographic-type principle, fundamental to modern theories, could be found. Precisely,
the presence of the same type of SL(2R) symmetry can lead to possible correspondences
between the Scale Relativity Theory and the General Relativity Theory. We want to note the
fact that the Scale Relativity Theory can be reduced, for dynamics in the fractal dimension
DF = 2 at Compton-scale resolution, to classical Quantum Mechanics, and, also, that the
General Relativity Theory, for a gravitational field with axial symmetry, can be reduced to a
complex Ernst-type potential. Because these two theories accept the same type of symmetry,
non-differentiable implementations in the description of complex systems dynamics can
be highlighted.
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