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Abstract: Market uncertainty has a significant impact on market performance. Previous studies
have dedicated much effort towards investigations into market uncertainty related to information
asymmetry and risk. However, they have neglected the uncertainty inherent in market transactions,
which is also an important aspect of market performance, besides the quantity of transactions
and market efficiency. In this paper, we put forward a concept of transaction entropy to measure
market uncertainty and see how it changes with price. Transaction entropy is defined as the ratio
of the total information entropy of all traders to the quantity of transactions, reflecting the level of
uncertainty in making successful transactions. Based on the computational and simulated results,
our main finding is that transaction entropy is the lowest at equilibrium, it will decrease in a shortage
market, and increase in a surplus market. Additionally, we make a comparison of the total entropy
of the centralized market with that of the decentralized market, revealing that the price-filtering
mechanism could effectively reduce market uncertainty. Overall, the introduction of transaction
entropy enriches our understanding of market uncertainty and facilitates a more comprehensive
assessment of market performance.

Keywords: market uncertainty; transaction entropy; market performance; price filtering mechanism;
willingness price

1. Introduction

The concept of the market holds great significance in economics and serves as a
fundamental basis for research of economics [1]. Understanding the mechanisms by which
markets function has profound implications for decision making, policy formulation, and
economic development. The research on market primary functioning has long been focused
on two key aspects: price formation and market efficiency.

In the context of market price, this is determined by the interaction between sellers and
buyers. In a perfect competitive market, the market price is deemed to be at the cross point
of the supply and demand curves. Therefore, the factors that influence these curves, such
as the willingness of the market participants and information dissemination, have impacts
on the level of the market price. Regarding market efficiency, market surplus is usually
used to measure it. Market surplus represents the total welfare generated by transactions
between sellers and buyers. An increase in market surplus signifies an improved efficiency
in market transactions and a more optimal allocation of resources.

However, most analyses of price formation and market efficiency are typically con-
ducted under the assumption of ideal conditions, without accounting for the uncertain-
ties faced by the participants in a market. Several studies have verified the existence of
uncertainties in market transactions [2,3]. During an actual transaction process, each par-
ticipant has limited access to information and cannot obtain complete knowledge about
the counterparty’s information or the overall market situation. This inherent imperfection
in information significantly influences the decision making and behavior of both parties
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involved, thereby increasing transactional uncertainty, which subsequently impacts market
prices and market surplus. Therefore, understanding the mechanism of price formation
and improving market efficiency have become the cornerstones of economic analyses,
and we contend that incorporating uncertainty into a market can not only provide a
more accurate description of market performance, but also enrich our understanding of
market functioning.

Financial markets serve as the primary focus of market uncertainty analyses. In
financial markets, the market participants make investment decisions based on expectations,
which inherently carry a certain level of uncertainty. Therefore, uncertainty is a common
and essential aspect of financial markets. These uncertainties, in turn, exert negative
effects on market information efficiency [4]. To enhance market efficiency, it is crucial to
understand and measure financial market uncertainty [5]. Information entropy is commonly
used to measure such a kind of uncertainty, which is developed from information theory [6].
As the amount of available information increases, the uncertainty decreases, resulting in a
decrease in entropy. Conversely, when there is less information and a higher uncertainty,
this entropy increases [7].

Firstly, as Eugene Fama argued, when uncertainty arises in financial markets, it is
challenging for participants to assess and respond to information accurately, resulting in
price volatility [8,9]. The uncertainty arising from market volatility is closely related to
fluctuations in unpredictable asset prices, highlighting the dynamic and uncertain nature
of price movements, which can significantly impact investment decisions and the overall
market sentiment. To measure the market uncertainty related to price volatility, various
variants of entropy have been proposed based on information entropy. Claudiu Vinte
introduced the approach of cross-sectional intrinsic entropy to estimate the uncertainty in
stock markets [10]. This approach takes into account the trading volume and price move-
ments of various assets, allowing for a more holistic understanding of market dynamics.
As the understanding of market volatility gets deeper, some researchers have recognized
its transmission effect, which can give rise to various forms of market uncertainty within
the same classification. Thomas Dimpfl employed transfer entropy to quantitatively assess
the transmission of volatility between different financial markets [11]. Understanding this
transmission of volatility can be crucial for investors and policymakers in making informed
decisions and conducting effective risk management.

Furthermore, uncertainty in portfolio selection is related to investors’ asset allocation.
Investors aim to achieve objectives through the rational allocation of different types of
assets. However, there are randomness and fuzziness factors in markets that prevent
investors from fully predicting the returns and values of assets, which leads to uncertainty
in portfolio selection [12,13]. Philippatos and Wilson were among the first to apply the
concept of entropy to portfolio selection [14]. They proposed a mean entropy approach
to measure the uncertainty in the asset allocation process. Their pioneering research shed
light on the importance of considering uncertainty in portfolio management, leading to a
paradigm shift in how investors make decisions about asset allocation. Building upon their
work, more generalized forms of entropy, such as incremental entropy, were formulated.
Compared to the traditional portfolio selection theory, the theory based on incremental
entropy emphasizes that there is an optimal portfolio for a given probability of return [15].
Xu et al. introduced the concept of hybrid entropy and utilized it to measure the asset risk
caused by both randomness and fuzziness [16]. Using information entropy to measure the
level of uncertainty in portfolio selection can effectively assist investors in evaluating and
optimizing their asset allocation strategies.

Finally, uncertainty in the option-pricing process is related to the impact of uncertain
factors such as underlying asset price volatility and interest rates. Options are financial
instruments whose value and returns depend on the price movements of the underlying
assets and other factors. Les Gulko introduced the entropy pricing theory (EPT), which can
provide valuation results similar to the Sharpe–Lintner capital asset-pricing model and the
Black–Scholes formula [17]. His research was also extended to stock option pricing [18]
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and bond option pricing [19], using the EPT to measure collective market uncertainty. The
EPT model demonstrates simplicity and user-friendliness, aligning with the principles of
the Efficient Market Hypothesis [5]. Based on the previous analysis, it is evident that infor-
mation entropy is a comprehensive tool for measuring the uncertainty in financial markets.
In comparison to traditional tools, it provides a better reflection of these uncertainties that
exist in financial markets.

Although much attention has been paid to the uncertainty in financial markets, it is
worth noting that there are other forms of uncertainties that exist across various markets.
Information asymmetry is an important factor that leads to quality uncertainty [20,21],
which may lead to issues such as adverse selection [22,23]. Additionally, there is economic
policy uncertainty (EPU) present in the market, referring to the impact of exogenous
shocks related to economic policies that introduce unpredictability and uncertainty into
the market [24]. Lots of empirical studies have shown that EPU shocks can lead to stock
market turbulence [25,26]. These uncertainties are not limited to financial markets, and
they can actually occur in all kinds of markets.

All the uncertainties mentioned above are important and have indeed been extensively
studied in the literature. However, it should be noted that there is another significant
type of uncertainty that has not received sufficient attention. This particular form of
uncertainty stems from the mismatch between the quantities of desired exchanges in
market transactions. In a market where buyers and sellers engage in trading activities,
an equilibrium is achieved when the quantity supplied equals the quantity demanded.
However, in reality, markets often operate in a disequilibrium state, where the quantities
supplied and demanded are not equal with each other. This condition implies that traders
may face uncertainty in their transactions. In this paper, we focus on this specific type of
uncertainty and aim to put forward a metric to measure and analyze it.

Based on the foregoing analyses, the current applications of entropy in measuring the
uncertainty caused by incomplete information, as well as its utilization in characterizing
asset portfolios and risk assessment in financial markets, does not provide a comprehensive
understanding of the mechanisms of market operation. In particular, there is no equivalent
concept of entropy to express the uncertainty of participants’ trading in the market. Thus,
we come up with the concept of transaction entropy to represent the uncertainty of market
trade. We investigate how this transaction entropy changes with price. The results show
that the equilibrium market has the lowest entropy. Additionally, we also compare the
total entropy between centralized and decentralized markets, where the key distinction lies
in the presence of a price-filtering mechanism. The result shows that the total entropy is
lower in a centralized market than that in a decentralized market. This finding highlights
the effectiveness of price filtering in reducing market uncertainty and emphasizes the
importance of integrating a price-filtering mechanism in the trading process to ensure
market transaction stability.

The contributions of this paper can be summarized as follows: (1) the proposal of
a concept of “transaction entropy” to measure the level of uncertainty in the process of
transactions. By introducing this concept, we are able to better understand and quantify
market uncertainty, providing a new perspective for in-depth analyses of the mechanism of
market function; (2) the addition of an alternative metric for market performance based on
the existing framework of market function analyses. Through investigating the variation in
transaction entropy with respect to price changes, we find that the state of market equilib-
rium not only corresponds to the highest volume of transaction and the maximum market
surplus, but also the lowest entropy; (3) a comparison of the levels of total entropy between
centralized and decentralized markets, revealing that the presence of a price-filtering mech-
anism enhances successful transactions and reduces market uncertainty; (4) a comparison
of computational and simulation results in terms of various aspects, including the quantity
of transactions, market surplus, transaction entropy, and the total entropy in centralized
and decentralized markets, to verify the theoretical analysis; and (5) a clarification of the
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limitations of traditional market equilibrium analyses, while emphasizing the importance
of transaction uncertainty.

The remaining sections of this paper are organized as follows. Section 2 formulates
the functions of supply and demand based on the concept of willingness price. In Section 3,
we analyze market performance, including transaction quantity, market surplus, and trans-
action entropy, using the rationing rate. Additionally, we compare the total entropy in
centralized and decentralized markets and discuss policy implications based on the com-
parison results. Section 4 presents the simulation settings and results, demonstrating the
generating process of each variable that characterizes market performance. In Section 5, we
discuss the importance of market transaction uncertainty by highlighting the shortcomings
of the Walrasian general equilibrium and Marshall partial equilibrium approaches. We
also discuss the plausible applications of transaction uncertainty analyses in real-world
scenarios. Section 6 draws the conclusions.

2. The Expression of Demand and Supply with Willingness Price

A partial equilibrium analysis (PEA) is a widely used tool for understanding market
performance. It argues that supply and demand collectively represent two sides of traders
in a market, making it simple to analyze the consequence of their interaction by tracing
the equilibrium point and social welfare implications [27]. However, the PEA also needs
to be improved, since it fails to clearly identify how sellers and buyers constitute supply
and demand curves correspondingly. To solve this problem, Wang and Stanley introduced
the concept of willingness price and formulated supply and demand functions to restate
the PEA in a goods market [28]. The major advantage of this approach is that the laws of
supply and demand can be derived directly, and the efficiency of market equilibrium can
be strictly proved.

In this paper, we follow their approach to describe the supply and demand in a goods
market. We assume that each trader is willing to make a trade of one unit of goods and has
a willingness price before participating in the trade. For one seller, their willingness price is
defined as the minimum price that they are willing to sell one unit of goods. On the other
side, the willingness price of a buyer is defined as the maximum price that they are willing
to spend for one unit of goods. Supposing that a seller with a willingness price vs meets a
buyer with a willingness price vb, their deal can be made only if vb ≥ vs is valid. Although
we cannot identify all traders’ willingness prices in real markets, we know that they exist
there and govern whether a deal can be made or not.

As all participants’ willingness prices are exogenously given, the willingness prices of
sellers and buyers must have a distribution correspondingly. It is reasonable to assume that
willingness prices spread over the domain of (0, +∞). This spread can be characterized by
probability density functions, fs(v) and fB(v) for sellers and buyers, respectively. Suppos-
ing that the numbers of the sellers and buyers are given exogenously, denoted as NS and NB,
respectively, then we can use Fs(v) = Ns × fs(v) and FB(v) = NB × fB(v) to characterize
such distributions. From the normalization condition, we have the integrals of Fs(v) and
FB(v) over the whole region of willingness prices, which are Ns and NB, respectively,∫ ∞

0
Fs(v)dv = Ns, (1)

∫ ∞

0
FB(v)dv = NB. (2)

For any one seller, given a market price of p, they will make their choice by comparing the
willingness price and market price, that is to say, the necessary condition for the seller to
sell one unit of goods can be expressed as

p ≥ vS. (3)

Otherwise, the seller will withdraw their offer.



Entropy 2023, 25, 1140 5 of 22

Equation (3) implies that only the sellers whose willingness price is not greater than
the actual market price are willing to sell their goods. Combining (1) and (3), we can obtain
the supply function with a given market price QS(p), which can be written as

QS(p) =
∫ p

0
Fs(v)dv. (4)

The above rationale can also be applied to derive the demand function. For a buyer, only if
his willingness price vB is higher than or equal to the market price p, will he buy one unit
of goods in a market, i.e.,

p≤ vB. (5)

Otherwise, he will give up on his purchase. Combining (2) and (5), we can obtain the
demand function with a given market price QD(p) of the market, which is given by,

QD(p) =
∫ ∞

p
FB(v)dv. (6)

As is well known, there are many factors that can affect the supply and demand in a
market. From the expressions of supply and demand given by Equations (4) and (6), the
implicit governing factor of supply and/or demand is the willingness prices of the market
participants. Thus, we can infer that most relevant factors take their effects through the
willingness prices of sellers and buyers. As a result, any change in any variable that impacts
these willingness prices will have an impact on the supply and demand of the goods. In
addition, the extent of a market determines the total quantities of the goods demanded and
supplied, which also has an impact on the supply and demand functions.

Another important inference of supply and demand functions is that we can prove the
laws of supply and demand by taking a derivative of these two formulas. The first deriva-
tives of the supply and demand functions can be expressed, respectively, as the following,

dQS
dp

= Fs(p) > 0, (7)

dQD
dp

= −FB(p) < 0. (8)

The results show that the relationship between the quantity supplied and the market price
is positive. In other words, the higher market price, the more goods supplied in the market.
On the contrary, the relationship between the quantity demanded and the market price is
negative. Fewer goods are demanded as the price rises.

The interaction between supply and demand determines the equilibrium price level
and quantity of transactions. Combining Equations (4) and (6), we can obtain the equilib-
rium price p = p∗.The equilibrium transaction quantity T∗ can be derived directly, which
can be expressed as,

T∗ =
∫ p∗

0
Fs(v) dv =

∫ ∞

p∗
FB(v)dv. (9)

Figure 1 illustrates the supply and demand curves in a commodity market. The supply
curve is upward sloping, and the demand curve is downward sloping. The cross-point of
these two curves specifies the market equilibrium, which corresponds to the equilibrium
quantity and market-clearing price of the market.
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3. The Market Performance with Formulated Supply and Demand Functions

In this section, our primary focus is on evaluating various aspects of market perfor-
mance using the newly formulated supply and demand functions. Specifically, we analyze
three key dimensions: transaction quantity, market surplus, and market uncertainty caused
by a quantity mismatch of the supply and demand in a disequilibrium market. To quantify
this uncertainty, we propose the concept of transaction entropy, which is derived from
information entropy.

3.1. The Quantity of Transactions

Supply and demand represent two parties of a goods market, and their interaction
determines not only the market price, but also the quantity of transactions. In this section,
we set the market price as being given exogenously, and investigate how transaction
quantity is determined by supply and demand as the price varies.

The state of a market depends on the level of given price. The market is in equilibrium
when the price makes the market clear. Otherwise, the market is in disequilibrium. This
disequilibrium can be divided into two cases, one is shortage and the other is surplus.
When the price is lower than the equilibrium level, it corresponds to a state of shortage,
where there is more quantity demanded than the quantity supplied in the market. When
the price is higher than the equilibrium level, it corresponds to a state of surplus, where
there is more quantity supplied than the quantity demanded in the market. As shown
in Figure 1, the regions of shortage and surplus are marked in yellow color and green
color, respectively.

According to the short-side principle, the realized quantity of transactions is deter-
mined by the short side. The short side refers to the trading party with fewer willing
exchanges, and those with more are at the long side. At equilibrium, the quantity supplied
is equal to the quantity demanded. In this case, the quantity of realized transactions T∗

given by Equation (9) is equal to the quantity supplied and demanded.
In a shortage market, the quantity demanded exceeds the quantity supplied. Therefore,

the quantity of realized transactions is determined by the quantity supplied. The expression
of the realized quantity of transactions in a shortage market TST(p) can be expressed as,

TST(p) =
∫ p

0
Fs(v)dv p < p∗. (10)

For a surplus market, the quantity demanded is less than the quantity supplied. In contrast,
the quantity of realized transactions in a surplus market TSP(p) can be written as follows,

TSP(p) =
∫ ∞

p
FB(v)dv p > p∗. (11)
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Based on the preceding analyses, the transaction quantity in the various states of a market
can be given by,

T(p) =


∫ p

0 Fs(v)dv p < p∗,∫ p∗
0 Fs(v)dv =

∫ ∞
p∗ FB(v)dv p = p∗∫ ∞

p FB(v)dv p > p∗.
, (12)

Figure 2 shows the computational results of the relationship between transaction quantity
and market price based on Expression (12), represented by the blue line. Obviously, the
quantity of transactions increases with an increase in market price when p < p∗, and
decreases when p > p∗. The quantity of transactions reaches its maximum when the
market price attains its equilibrium level.
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p∗ = 10. For further details about the simulation settings, see the section of Simulation Results.

3.2. Market Surplus
3.2.1. The Rationing Rates

According to the short-side principle, we know that all the participants at the long
side are willing to make transactions, nevertheless, some of them cannot achieve their
desired outcome. Thus, we define the rationing rate as the ratio of the quantity of actual
transactions to the quantity of desired exchanges. The sellers’ and buyers’ rationing rates
can be used in the following analysis of market surplus and transaction entropy. Their
expressions (Gs and GB) are given as follows, respectively,

Gs =
T

QS
, (13)

GB =
T

QD
. (14)

It is obvious that Gs and GB are in the range of [0, 1]. The quantities supplied and
demanded will change with a variation in the market price. Therefore, the level of rationing
rate will be altered as the market price varies. When the market price equals the equilibrium
one, the rationing rates of either sellers or buyers equal one. Thus, we obtain,

Gs(p∗) = GB(p∗) = 1. (15)

In the shortage region, i.e., p < p∗, all sellers can fulfill their willing exchanges, where
only a portion of buyers can successfully match with the sellers and achieve their desired
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transactions. As a result, the sellers’ rationing rate is one, while the buyers’ rationing rate
would be less than 1. Thus, we obtain,

Gs(p) = 1, (16)

GB(p) < 1. (17)

Meanwhile, with an increasing market price, there are more commodities supplied and less
demanded. The rationing rate of sellers remains constant with the increase in price, while
the rationing rate of buyers increases. We then obtain,

dGs(p)
dp

= 0, (18)

dGB(p)
dp

> 0. (19)

In contrast, the above rationale can also be applied to the surplus region, where p > p∗.
The rationing rate of sellers is lower than 1, and the buyers’ rationing rate is one. Then,
we obtain,

GS(p) < 1, (20)

GB(p) = 1. (21)

The relationship between the rationing rate and market price in a surplus market can also
be derived. In this case, as the market price increases, sellers are less likely to obtain their
rations, because the quantity supplied increases while the quantity demanded decreases.
Meanwhile, the rationing rate of the buyers will not change. The derivatives of the rationing
rates of sellers and buyers have the following properties,

dGs(p)
dp

< 0, (22)

dGB(p)
dp

= 0. (23)

Figure 3 depicts the dependence of these rationing rates on market price. As shown in
this figure, when a market is in a shortage, the rationing rate of buyers is less than one,
whereas the rationing rate of sellers is equal to one. In contrast, the rationing rate of sellers
is smaller than 1, while the buyers’ rationing rate equals one when a market is in surplus.
When a market is in equilibrium, the rationing rates of either the sellers or buyers are 1.

3.2.2. The Formulation of Market Surplus

Market surplus, used to measure market efficiency, is another essential component of
traditional market performance analyses. The surplus of one seller (buyer) can be defined
as the difference between the actual (willingness) price and the willingness (actual) price.
In the transactions of a goods market, only a portion of participants will be able to realize
their willing exchanges, and a surplus will be generated. Therefore, it is reasonable to take
rationing rates into account when formulizing the surplus of a market.

For sellers, given a market price p, the total realized surplus of these sellers (Z sr) in
the market could be calculated as follows,

Zsr(p) =
∫ p

0
Fs(v)(p− v)Gs(p)dv. (24)
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On the other side, given a market price p, the total realized surplus of the buyers (Z Br) in
the market could be given by,

ZBr(p) =
∫ ∞

p
FB(v)(v− p)GB(p)dv. (25)

The total realized market surplus for a price Zr(p) is the sum of them, i.e.,

Zr(p) =
∫ p

0
Fs(v)(p− v)Gs(p)dv +

∫ ∞

p
FB(v)(v− p)GB(p)dv. (26)

Taking the first derivatives of Equation (26), the expression of the relationship between the
derivation of surplus and market price can be expressed as,

∂Zr(p)
∂p =

∫ p
0 Fs(v)Gs(p)dv−

∫ ∞
p FB(v)GB(p)dv

+
∫ p

0 Fs(v)(p− v) ∂Gs(p)
∂p dv +

∫ ∞
p FB(v)(v− p) ∂GB(p)

∂p dv.
(27)

Combining Equations (4)–(6), (13) and (14), Equation (27) can be rewritten as,

∂Zr(p)
∂p

=
∫ p

0
Fs(v)(p− v)

∂Gs(p)
∂p

dv +
∫ ∞

p
FB(v)(v− p)

∂GB(p)
∂p

dv. (28)

When the market is in a shortage, we can obtain the following expression by combining
Equations (18), (19) and (28),

∂Zr(p)
∂p

> 0. (29)

When the market is in surplus, we can obtain the following expression by combining
Equations (22), (23) and (28),

∂Zr(p)
∂p

< 0. (30)

Figure 4 depicts the relationship between market surplus and market price. From this
figure, we can find that the market surplus increases when p < p∗ and decreases when
p > p∗. When the market is at equilibrium, the market surplus attains its maximum.
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Figure 3. The relationship between rationing rates and market price. The green line and red dots
represent the computational and simulation results of Gs(p), respectively, while the orange line and
blue dots are computational and simulation results of GB(p), respectively. For details about the
simulation settings, see the section of Simulation Results.
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3.3. Market Uncertainty

Except for traditional market performance, which focuses on transaction quantity
and market surplus, we also consider market uncertainty as an additional dimension of
market performance.

3.3.1. Transaction Entropy

Information entropy is a commonly used tool for measuring the level of disorder
and uncertainty, and its extension has been widely applied in the fields of economics and
finance [5,29,30]. In this section, we introduce a new kind of information entropy, named
transaction entropy, to characterize market uncertainty and investigate how transaction
entropy changes as market price varies.

To figure out the information entropy of one participant, we need to identify the
transaction procedure, which is shown in Figure 5. At first, the participant has to make
sure whether they satisfy the price-filtering mechanism given by Equations (3) and (5). At
this stage, there are only two filtering results for the participants: remain in or exit the
market. The exiting participants refer to ones whose willingness prices does not satisfy
the condition of trade in the market, while the remaining participants refer to those who
satisfy the trading conditions. It is worth noting that it is possible to fail in the trade for the
remaining participants. Only the traders in the short side can make a deal.
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trader’s transaction in the market [4]. The definition of information entropy for individual
traders H(E) can be written as,

H(E) = −[E ∗ lnE + (1− E) ∗ ln(1− E)], (31)

where E is the possibility of a successful trade. It should be noted that the possibility of
a successful trade in this case is the rationing rate, referred to in the former subsection.
Therefore, the respective information entropy of one seller Hs and one buyer HB can be
given by, respectively,

Hs(p) = −[Gs(p) ∗ lnGs(p) + (1− Gs(p)) ∗ ln(1− Gs(p))], (32)

HB(p) = −[GB(p) ∗ lnGB(p) + (1− GB(p)) ∗ ln(1− GB(p))] (33)

We assume that a trader is willing to make an exchange with one unit of goods,
so Equations (32) and (33) can also present the information entropy of their willingness
exchange quantity. The willingness exchange quantities of the remaining sellers and
buyers are denoted as QS and QD. Combining the supply and demand functions given by
Equations (4) and (6), we obtain the total information entropy TS as follows,

TS =
∫ p

0
Fs(v)Hs(p)dv +

∫ ∞

p
FB(p)HB(p)dv. (34)

From Equations (16) and (17), we find that the rationing rate of sellers Gs(p) = 1 and
rationing rate of buyers GB(p) < 1 when p < p∗. As a result, we can derive that Hs(p) = 0
and HB(p) 6= 0 directly from Equations (32) and (33). The total information entropy of
the market equals the information entropy of buyers. When p > p∗, the rationing rate of
sellers Gs(p) < 1 and the rationing rate of buyers GB(p) = 1 is based on Equations (20)
and (21), so HB(p) = 0, Hs(p) 6= 0. In this case, the total information entropy of the whole
market equals the information entropy of the sellers, which can be obtained from Equation
(34). The rationing rates of the sellers and buyers are equal to one when p = p∗, given by
Equation (15), and the information entropy of the sellers and buyers is equal to zero. Thus,
Equation (34) can be rewritten as,

TS =


∫ ∞

p FB(v)HB(p)dv p < p∗

0 p = p∗∫ p
0 Fs(v)Hs(p)dv p > p∗.

(35)

The expression indicates that the resulting information entropy contains the contri-
butions of all the actual transactions. To eliminate the effect of the market scale on the
information entropy, we define the transaction entropy generated by one transaction to
measure the market performance. Then, the transaction entropy takes the following form,

S =
TS
T

=


HB(p)
Gs(p) p < p∗

0 p = p∗
Hs(p)
GB(p) p > p∗.

(36)

For the sake of simplicity, we denote that G(p) = min{Gs, GB}. When the market price
is lower than the equilibrium price, the minimum rationing rate between the sellers and
buyers is that of the sellers. When the market price is higher than the equilibrium level, the
minimum rationing rate is that of the buyers. Then, Equation (36) can be transformed into
the following form,

S = − [G(p) ∗ lnG(p) + (1− G(p)) ∗ ln(1− G(p))]
G(p)

. (37)
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It is obvious that the level of transaction entropy S is non-negative. According to L’Hospital’s
rule, the entropy tends to be positive infinity when the market price tends to positive infinity
or zero. That is to say,

lim
p→0

S = lim
p→0

ln(
1

G(p)
− 1) = +∞, (38)

lim
p→+∞

S = lim
p→+∞

ln(
1

G(p)
− 1) = +∞. (39)

Taking the first derivation of Equation (37), we can obtain,

∂S
∂p

=
G′(p)
G2(p)

∗ ln(1− G(p)). (40)

When the market price is lower than the equilibrium one, the relationship between the
transaction entropy and market price is negative, which can be expressed as,

∂S
∂p

< 0. (41)

When the market price is greater than the equilibrium one, the transaction entropy and
market price have a positive relation, which can be presented as,

∂S
∂p

> 0. (42)

Figure 6 presents the results of the relationship between the transaction entropy and market
price. From the figure, we can see that the slope is downward when p < p∗, while it
is upward in the case of p > p∗. Moreover, the single equilibrium transaction entropy
corresponds to zero when p = p∗.
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3.3.2. Total Entropy in Centralized and Decentralized Markets

In this section, we redirect our focus from analyzing the entropy generated by one
transaction (S) to examining the total entropy (TS) within two distinct market structures: a
centralized market and a decentralized market. The difference between these two markets
is the presence of price filtering or not. A centralized market can be regarded as having
transactions with price filtering, while a decentralized market has transactions without
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price filtering. By comparing the entropy in these two market types, we can reveal the role
of price filtering in mitigating market uncertainty.

Firstly, we examine the total entropy in a centralized market. The centralized market
is characterized by the presence of a central authority or intermediary that sets one order
book to collect the bid–ask prices of traders, thereby facilitating all trading activities within
the market [31,32]. It is worth noting that, in our previous analysis of transaction entropy,
we assumed that a given market price serves as the reference condition for transactions,
which is consistent with the key assumption of the centralized market. Therefore, we can
conduct an analysis of the total entropy in a centralized market based on the existing results
from the previous sections.

For the sake of simplicity, we make the following assumptions: (1) the number of sellers
is equal to that of buyers, denoted as N; (2) the willingness prices of the sellers and buyers
are in the range of [a, b], and both a and b are positive; and (3) the supply and demand
functions are linear. With these assumptions, we can easily obtain FS(v) = FB(v) = k, where
k is a constant variable. As for the total entropy, considering the foregoing assumptions,
we can rewrite Equation (35) as follows,

TS =


∫ b

p FB(v)HB(p)dv a < p < p∗;
0 p = p∗;∫ p

a Fs(v)Hs(p)dv p∗ < p < b.
(43)

Additionally, we can express the supply and demand functions in the centralized market,
denoted as QSC(p) and QDC(p), respectively, as follows:

QSC(p) =
∫ p

a
FS(v)dv = k(p− a), (44)

QDC(p) =
∫ b

p
FB(v)dv = k(b− p). (45)

Taking the first derivations of (44) and (45), we obtain the following results,

Q′SC(p) = Fs(p) = k, (46)

Q′DC(p) = −FB(p) = −k. (47)

By substituting Equations (13), (14), (32) and (33) into Equation (43), the expression of the
total entropy can be rewritten as,

TS =


−
[

QSC(p)lnQSC(p) + (QDC(p)−QSC(p))ln(QDC(p)−QSC(p))
−QDC(p)lnQDC(p)

]
a < p < p∗;

0 p = p∗;

−
[

QDC(p)lnQDC(p) + (QSC(p)−QDC(p))ln(QSC(p)−QDC(p))
−QSC(p)lnQSC(p)

]
p∗ < p < b.

(48)

To clarify the concavity of the total entropy, we can differentiate Equation (48) based
on Equations (46) and (47). The results show that lim

p→a
TS′ = +∞, lim

p→p∗−
TS′ = −∞,

and lim
p→p∗+

TS′ = +∞, lim
p→b

TS′ = −∞, where TS′ is the derivative of TS. Moreover, it can be

observed that the second derivative of TS is negative, which is presented in Appendix A,
indicating a concave shape. There are three price levels corresponding to the total entropy
being down to zero, that is, p = a, p = b,and p = p∗.

Then, we turn our attention to an exploration of the total entropy in a decentralized
market. The decentralized market operates without a centralized authority or intermediary,
enabling participants to engage in direct transactions with one another [33]. The key
characteristic of a decentralized market is the random matching of sellers and buyers for
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one period at a time, along with anonymous pairwise meetings involving bargaining [34,35].
The transaction process in the decentralized market is illustrated in Figure 7.
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In this decentralized and random trading environment, every trader has an opportu-
nity to engage in trading with one of the counterparty. A transaction will only be made if
the buyer’s willingness price surpasses the seller’s willingness price; otherwise, the trade
will not take place.

In order to make a comparison between the levels of total entropy in different markets,
we keep the core assumptions presented in the centralized market. We suppose that the
traders in the market only trade once at a time with one unit of goods in a random way. The
probability of a successful transaction for a buyer with a willingness price of v′ is the ratio
of the number of sellers with a willingness price lower than v′ to the total number of sellers.
Similarly, the probability of a successful transaction for a seller with a willingness price of
v′ is the ratio of the number of buyers with a price higher than v′ to the total number of
buyers. Therefore, the respective expressions for the probability of a successful transaction
for a seller (E s) and a buyer (EB) with a willingness price of v′ are as follows,

Es =

∫ b
v′ FB(v)ν∫ b
a FB(v)ν

, (49)

EB =

∫ v′
a Fs(v)ν∫ b
a Fs(v)ν

. (50)

At this time, the total entropy in the decentralized market with random matching TSde is
the sum of the buyers’ entropy and sellers’ entropy, which can be expressed as,

TSde =
∫ b

a FS(v)dv ∗ HS(ES) +
∫ b

a FB(v)dv ∗ HB(EB)

=
∫ b

a FS(v) ∗ HS(v)dv +
∫ b

a FB(v) ∗ HB(v)dv
(51)

The result shows that the total entropy in the decentralized market with random matching
is a constant variable, and the detailed calculations can be found in Appendix B. This
constant entropy can be expressed as,

TSde = k(b− a). (52)

This result indicates that the total entropy is closely related to the market scale in this market,
with the willingness prices of sellers and buyers not changing due to the assumption of
traders only trading once at a time.
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3.3.3. Comparison of Total Entropy in Centralized and Decentralized Markets

By investigating the characteristics of centralized and decentralized markets, it is
obvious that the most prominent difference between these two market structures lies in
the role of price in market transactions. In a centralized market, the difference between
the willingness price and market price acts as a criterion for sellers and buyers to enter the
market. Conversely, in a decentralized market, there is no market price to guide the market
participants, and they trade by random matching. Therefore, the decentralized market can
be seen as operating without price filtering.

By comparing the different levels of total entropy in centralized (TSce) and decen-
tralized markets (TSde), we can shed light on the role of price filtering in the transaction
uncertainty of a market. As discussed earlier in the analysis of the centralized market, the
total entropy exhibits a symmetrical, double-humped, downward profile. Therefore, there
exists two price levels at which the total entropy reaches its maximum. These price levels
can be derived by solving the equation for the derivative of the total entropy with respect
to price, i.e., TS′(p) = 0. The expressions for the resulting prices corresponding to the
maximum entropy are as follows, and the detailed derivation can be found in Appendix C,

p1 =

(
5−
√

5
)

b +
(

5 +
√

5
)

a

10
, p2 =

(
5 +
√

5
)

b +
(

5−
√

5
)

a

10
, (53)

By substituting Equation (53) into Equation (48), we can obtain the maximum total entropy
in the centralized market (TS ce

max
)

as follows,

TSce
max =

k ∗ (b− a)
2

∗ ln

(
5 +
√

5
)

(
5−
√

5
) . (54)

Comparing Equations (52) and (54), we can find that the total entropy of the decentralized
market surpasses that of the centralized market for all prices. This result indicates that
there is a higher uncertainty in transactions within a random-matching market compared
to transactions with price filtering. Thus, it is evident that the filtering mechanism plays an
effective role in reducing the transaction uncertainty and ensuring successful trading in the
centralized market. Figure 8 illustrates the computational results of the total entropy in
the centralized and decentralized markets. The double-humped curve is the total entropy
in the centralized market, and the horizontal line on the top is the total entropy in the
decentralized market.

Based on the computational and simulation results of the total entropy in centralized
and decentralized markets, we can conclude that the price-filtering mechanism plays an
effective role in reducing market uncertainty. This yields a direct suggestion for policymak-
ers to mitigate market uncertainty, that is, to make the market price public information
during the process of transactions between buyers and sellers.

However, how to form a proper market price is a key challenge for policymakers.
If the willingness prices of the market participants are available, as commonly occurs
in stock markets, a bid–ask mechanism can generate market prices continuously. When
the willingness prices are private information, governments could set a market price
to regulate markets. However, the possibility that the exogenously set market price is
exactly equal to the equilibrium one is so low that market disequilibria are inevitable. As a
result, transaction uncertainty during the trading process will present, i.e., the transaction
entropy comes out. In this case, the traders on the “long side,” have to face transaction
uncertainty in the market. As a response, they will adjust their bargaining prices during
the transaction process to fulfill their willingness to trade until the market price converges
to the equilibrium, where the transaction uncertainty is minimized.
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In summary, in order to form a public market price when the willingness prices of
participants are available, a bid–ask mechanism can work out. Oppositely, when these
willingness prices are private, the market participants should be allowed to collectively
form a market price by a competitive bargaining process. This self-organized process
enables the market price to converge towards the equilibrium one. Although the resulting
market price fluctuates over time, transaction uncertainty could be mitigated effectively by
this way.

4. Simulation Results

Based on the computational results and theoretical analyses presented above, we
develop an agent-based model in this section to simulate the interactions between buyers
and sellers in a market and their exchange outcomes. This market system comprises N
buyers and N sellers. By enabling them to make transactions, we can observe how some key
variables in this market, including the transaction quantity, market surplus, and transaction
entropy, change with market price.

At the beginning, we set N = 200, and each trader is endowed with a willingness
price before trading in the market. The willingness prices of these buyers and sellers are
randomly generated within the range of [2,18], following a uniform distribution. To make
the simulations meaningful, we set the market price in the model to vary within the range
of [2,18]; otherwise, no transactions will occur. By following the change in market price, we
can observe the trading behavior of all the traders and the overall market dynamics.

We first perform simulations of a centralized market. The price was set to increase
gradually with an increment of 0.5 every step for the simulations, resulting in a total
of 33 simulation results corresponding to market prices in the range of [2,18]. With a
given market price, buyers and sellers can compare this with their own willingness prices
and decide whether they participate in the potential trade or not. Following the rules
given by Equations (3) and (5), only the screened participants have a chance to make
transactions. According to the short-side principle, some participants may not be able to
make a successful deal. The actual quantity of transactions is determined by the short side.
Given the initial setup, the simulation results for how the quantity of transactions depends
on the market price are plotted as red dots in Figure 2.
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To estimate the possibility of successful trades for participants, we conducted 100 ran-
dom transactions between screened buyers and sellers during the simulation process.
Hence, the probability of successful trades for each participant could be computed as a ratio
of the number of successful trades to 100 times. Subsequently, by calculating the average
ratio of the successful transactions of all the screened buyers, we could obtain the buyers’
rationing rate with the given market price. Similarly, by calculating the average ratio of
the successful transactions of all the screened sellers, we obtained the sellers’ rationing
rate corresponding to the given market price. In Figure 3, the red and blue dots represent
the simulation results of the rationing rates of the sellers and buyers, respectively. By
comparing the rationing rate of the buyers with that of the sellers for each market price, we
could further obtain the minimum rationing rates for all given market prices.

Moreover, each successful transaction in the trading process contributes to the market
surplus from all the screened participants in once matching. To enhance the reliability
of the estimation of the total market surplus, we repeated the random matching of the
screened buyers and sellers 20,000 times and took the average as the value of the market
surplus for each market price. All the simulation results are represented by the red dots in
Figure 4.

Furthermore, for each participant who entered the market through price filtering, we
obtained the probability of successful transactions for 100 times of random matching. Based
on the calculations of probability for all participants, we could obtain the total entropy for
the market. We then performed 200 repetitions of such a calculation of the total entropy and
obtained its average value. The simulation results of the total entropy for all market prices
are plotted as the blue dots in Figure 8. Then, we could obtain the transaction entropy by
dividing the total entropy by the quantity of market transactions. The simulation results of
the transaction entropy for all market prices are represented by the red dots in Figure 6.

For the simulation of the entropy in a decentralized market, we followed a similar
process as that for obtaining the simulation results of the total entropy in a centralized
market. In this kind of market, there is no price-filtering mechanism, so sellers and buyers
are directly matched randomly. We first computed the possibility of successful transactions
in the market for each participant and then obtained each agent’s information entropy
accordingly. By summing up all the agents’ information entropy, we could obtain the total
entropy in the market. We took an average of the total entropy by performing 200 simula-
tions, which is plotted as a dash line in Figure 8. From all the figures mentioned above, we
can see that the simulation results are in a high accordance with the computational ones,
showing that the theoretical analyses are verified by such an alternative way.

5. Discussion

Market equilibrium is a fundamental concept in economic analyses, and its research
involves two primary theories: the Walrasian general equilibrium theory and Marshallian
partial equilibrium theory. The Walrasian general equilibrium theory assumes that there
is an auctioneer who acts as an information center during the trading process. Prices
are gradually adjusted in response to changes in supply and demand until equilibrium is
achieved across all markets. However, the existence of the fictional Walrasian auctioneer has
been criticized for its inconsistency with reality [36,37]. In contrast, the Marshallian partial
equilibrium theory has been widely accepted by economists in market analyses with supply
and demand curves. It focuses on individual markets and takes producers and consumers
as the market participants, who are matched in a reverse rank during transactions [38,39].
This reverse rank matching refers to willingness bids to buy being typically arranged from
high to low in the order book, and willingness asks to sell being arranged from low to high.
This way of matching implies that the information of traders’ willingness prices is public,
leading to transparent transactions and the absence of uncertainty in these transactions. As
a result, the concept of transaction entropy is not applicable in this case. However, except
for certain call auction markets, the willingness prices of traders are private information in
most markets. Therefore, the partial equilibrium theory has limited applications.
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In this paper, we argued that traders’ willingness prices are private information, and
the transaction process can be depicted as a random matching of the market participants
in the market. Specifically, in a centralized market, the price maker can just know who
has entered the market after setting the market price, but is not aware of the willingness
prices of the existing traders. Likewise, in a decentralized market, the willingness prices of
traders, which guide them to make decisions, are not known by each other, whether they
have successfully made a deal or not. Therefore, we can see that inherent uncertainty exists
in actual transactions due to the unavailability of traders’ willingness prices. It is necessary
to introduce the concept of transaction entropy to characterize this market uncertainty
when willingness prices are private information.

Although our work is primarily a theoretical analysis, our findings can be extended to
practical applications in various scenarios. Such applications involve many real markets,
with stock markets serving as a prime example. In a stock market, the bid–ask mechanism
dominates the trading and the market equilibrium can be obtained from the bid–ask prices
posed by the market participants, without any transaction uncertainty.

However, stock markets often encounter situations of market disequilibrium, espe-
cially when they attain their upper limit or lower limit, leading to transaction uncertainty.
The traders would have their responses to this uncertainty, which, in turn, exert significant
effects on the market. In normal conditions, when market participants become aware of
the presence of uncertainty, they actively adjust their bargaining prices during the bidding
process to achieve market-clearing prices. Therefore, transaction uncertainty can enhance
traders’ sensitivity to market conditions, facilitating more astute investment strategies and
accelerating the convergence to an efficient market.

In contrast, in an extreme situation, transaction uncertainty can trigger intense re-
sponses and impose negative effects on the market. On one hand, the transaction uncer-
tainty caused by a shortage may engender false prosperity and asset bubbles in the market.
Investors, driven by dramatic uncertainty, may engage in excessive speculation, artificially
inflating stock prices. However, such a prosperity bubble is unsustainable and could even-
tually burst, resulting in severe market downturns and financial losses for investors. On the
other hand, the transaction uncertainty resulting from a market surplus can lead to market
downturns and even cause market panic and crashes. The stock market circuit breakers
witnessed during the COVID-19 pandemic are a spirited instance of this. When the market
experiences substantial declines and its trading activities exceed the predefined thresholds,
a trading halt is automatically executed, with the intention of preventing further market
collapse. However, this circuit breaker can exacerbate short-term market panic, intensifying
investors’ concerns about market instability and risks.

In conclusion, in order to maintain market stability and ensure the positive develop-
ment of the financial system, we should consider the impacts of transaction uncertainty on
markets when formulating risk mitigation measures.

6. Conclusions

Following the statistical approach from Wang and Stanley [28], in which the concept
of willingness price was introduced to formulate supply and demand functions, as well
as market surplus in a goods market, we expanded the metrics of market performance by
introducing a new kind of information entropy to measure the transaction uncertainty in a
disequilibrium market.

The first metric of market performance is the realized quantity of transactions. Given a
market price in the centralized market, the realized quantity of transactions can be derived
from the supply and demand functions. According to the short-side principle, the quantity
of transactions is governed by the quantity supplied when the market is in a shortage,
while when the market is in a surplus, the realized quantity is governed by the quantity
demanded. When the market is at equilibrium, the quantity of transactions is determined by
the cross-point of the supply and demand curves. We find that the quantity of transactions



Entropy 2023, 25, 1140 19 of 22

reaches its maximum at equilibrium, and it will decrease when the market price departs
from the market-clearing point to a shortage or surplus.

The second metric is market surplus, which is a traditional index of market efficiency.
In the calculation of realized market surplus, the rationing rate is indispensable, which is
defined as the ratio of the actual transaction quantity to the desired one. Sellers and buyers
have their rationing rates, which are dependent on the market status. It can be proved
that the realized market surplus is at its highest when the market is at equilibrium, since it
increases in a shortage and decreases in a surplus.

We argue that transaction uncertainty is a new dimension of market performance. To
measure this kind of uncertainty, we first introduced transaction entropy to reflect the level
of uncertainty in individual transactions. When a market is at equilibrium, the transaction
entropy is zero. Otherwise, we will have positive transaction entropy when a market is
in disequilibrium. It has a decreasing trend in a shortage, but an increasing trend in a
surplus. The results indicated that there is no transaction uncertainty at equilibrium, and
disequilibrium leads to a higher transaction uncertainty. We then made a comparison
of the total entropy in centralized and decentralized markets and found that it is lower
in a centralized market than a decentralized market. This means that the price-filtering
mechanism plays a key role in reducing market uncertainty.

Finally, we argue that market uncertainty is necessary in analyzing market perfor-
mance, since willingness prices are private information. Traditional approaches to market
equilibrium assume that information of the willingness prices of traders is available, and
traders engage in reverse rank matching when they make transactions. However, these
assumptions are unrealistic, and the willingness prices of traders can only guide them to
choose whether to enter market or not. Once they have entered a market, they are randomly
matched to trade with each other, which must incur uncertainty in transactions.
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Appendix A. The Derivation of Concavity of Total Entropy in the Centralized Market

As shown in Equation (49), the total entropy when a < p < p∗ can be expressed as:

TS = −
[

QSC(p)lnQSC(p) + (QDC(p)−QSC(p))ln(QDC(p)−QSC(p))
−QDC(p)lnQDC(p)

]
.

Taking the first derivation of Equation (49), which can be expressed as:

TS′ = −
[
Q′SC(p)(lnQSC(p)− ln(QDC(p)−QSC(p)))

+Q′DC(p)(ln(QDC(p)−QSC(p))
−lnQDC(p))]

= Q′SC(p)(ln(QDC(p)−QSC(p))− lnQSC(p))
−Q′DC(p)(ln(QDC(p)−QSC(p))
−lnQDC(p))

= FSC(p)(ln(QDC(p)−QSC(p))− lnQSC(p))
+FBC(p)(ln(QDC(p)−QSC(p))
−lnQDC(p))

= 2k ∗ ln(QDC(p)−QSC(p))− k ∗ lnQSC(p)− k ∗ lnQDC(p).

(A1)
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Then, we can identify the concavity of the TS function by taking the second derivative
as follows,

TS′′ = − (2k)2

QDC(p)−QSC(p) −
k2

QSC(p) +
k2

QDC(p)

= − 1
(QDC(p)−QSC(p)) ∗ QSC(p)∗QDC(p) ∗ [(2k)2

∗QSC(p) ∗QDC(p) + k2 ∗QDC(p)
∗(QDC(p)−QSC(p))− k2 ∗QSC(p)
∗(QDC(p)−QSC(p))]

= − k2

(QDC(p)−QSC(p))∗QSC(p)∗QDC(p)

∗(QSC(p) + QDC(p))2 < 0.

(A2)

Therefore, TS is a concave function when a < p < p∗. With the similar derivation process,
we can deduce that there are two concave curves symmetric about p = p∗ within the
interval [a, b].

Appendix B. The Total Entrpy in the Decentralized Market

To facilitate obtaining an integral expression of Equation (51), we split it into two
components, that is, the sellers’ total entropy TSde

S =
∫ b

a FS(v)HS(v)dv and the buyers’

total entropy TSde
B =

∫ b
a FB(v)HB(v)dv. Combining this with Equation (31), we derive the

buyers’ market entropy first, which can be expressed as,

TSde
B =

∫ b
a FB(v)(−1)[EBlnEB + (1− EB)ln(1− EB)]ν

= −k
∫ b

a ( v−a
b−a ln v−a

b−a +
b−v
b−a ln b−v

b−a )ν

= − k
b−a

∫ b
a (v− a)ln(v− a) + (b− v)ln(b− v)

−(b− a)ln(b− a)ν
= − k

b−a

∫ b
a (v− a)ln(v− a) + (b− v)ln(b− v)dv + k(b− a)ln(b− a).

(A3)

Supposing x = v− a, t = b− v , Equation (A3) can be rewritten as:

TSde
B =

(
− k

b−a

)
[
∫ b−a

0 xlnxdx +
∫ b−a

0 tlntdt]
+k(b− a)ln(b− a)

= 2
(
− k

b−a

)∫ b−a
0 xlnxdx + k(b− a)ln(b− a).

(A4)

where 2
∫ b−a

0 xlnxdx = (b− a)2ln(b− a)− 1
2 (b− a)2. Therefore, the final total entropy of

the buyers in the market with random matching can be derived as:

TSde
B =

(
− k

b−a

)[
(b− a)2ln(b− a)− 1

2 (b− a)2
]

+k(b− a)ln(b− a)
= 1

2 k(b− a).
(A5)

Then, we can derive the final total entropy of the sellers’ total entropy through a similar
derivation process, given by:

TSde
S =

1
2

k(b− a) (A6)

Summing up Equations (A5) and (A6), we obtain the final expression of the total entropy
in the decreolization market, as shown in Equation (52).

Appendix C. The Prices Which Correspond the Maximum Total Entropy in the
Centralized Market

According to Appendix A, we can know that the condition of the maximum total
entropy in the centralized market is TS′ = 0. According to Equation (A2), we obtain:

(QDC(p)−QSC (p))2 = QDC(p) ∗ QSC(p). (A7)
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Combining (A7) with Equations (45) and (46), we can obtain the price when the total
entropy is maximized, which is:

p1 =
(5−

√
5)b + (5 +

√
5)a

10
, a < p < p∗. (A8)

With the similar derivation process, we obtain:

p2 =
(5 +

√
5)b + (5−

√
5)a

10
, p∗ < p < b. (A9)
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