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Abstract: Increasing interest has been shown in the subject of non-additive entropic forms during
recent years, which has essentially been due to their potential applications in the area of complex
systems. Based on the fact that a given entropic form should depend only on a set of probabilities,
its time evolution is directly related to the evolution of these probabilities. In the present work, we
discuss some basic aspects related to non-additive entropies considering their time evolution in
the cases of continuous and discrete probabilities, for which nonlinear forms of Fokker–Planck and
master equations are considered, respectively. For continuous probabilities, we discuss an H-theorem,
which is proven by connecting functionals that appear in a nonlinear Fokker–Planck equation with a
general entropic form. This theorem ensures that the stationary-state solution of the Fokker–Planck
equation coincides with the equilibrium solution that emerges from the extremization of the entropic
form. At equilibrium, we show that a Carnot cycle holds for a general entropic form under standard
thermodynamic requirements. In the case of discrete probabilities, we also prove an H-theorem
considering the time evolution of probabilities described by a master equation. The stationary-state
solution that comes from the master equation is shown to coincide with the equilibrium solution that
emerges from the extremization of the entropic form. For this case, we also discuss how the third
law of thermodynamics applies to equilibrium non-additive entropic forms in general. The physical
consequences related to the fact that the equilibrium-state distributions, which are obtained from the
corresponding evolution equations (for both continuous and discrete probabilities), coincide with
those obtained from the extremization of the entropic form, the restrictions for the validity of a Carnot
cycle, and an appropriate formulation of the third law of thermodynamics for general entropic forms
are discussed.

Keywords: nonlinear Fokker–Planck equations; generalized entropies; nonextensive thermostatistics

PACS: 05.70.Ln; 05.40.Fb; 05.90.+m; 05.10.Gg; 05.20.-y

1. Introduction

The area of complex systems has attracted the attention of many researchers in recent
years and has exhibited a large variety of novel phenomena, such as nonlinear dynamics,
slow relaxation processes, and nonextensivity in some thermodynamic quantities [1–4].
These systems are usually characterized by a large number of components immersed in
random or disordered media that interact through long-range forces and/or possess long
time memories; as a consequence, they may present a collective behavior very different
from those of their individual components. Many of the above-mentioned phenomena
have been understood appropriately by means of proposals of generalized entropies [4–12],
which have found grounds on diverse applications within the realm of complex systems
(see, e.g., Ref. [9] for a comprehensive list of entropic forms available in the literature up
to 2011). In its statistical formulation, a given entropic form should be a functional only
of a set {Pi(t)}, i.e., S ≡ S({Pi(t)}), where Pi(t) stands for the probability of finding a
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given system on a state i at time t [13,14]. Most of these generalized entropies violate
the additivity property and are usually referred to as non-additive entropic forms. This
property concerns two probabilistically independent systems (A and B), described by
two sets of probabilities {P(A)

i } and {P(B)
j }, respectively, such that the probabilities for

the composed system are given by P(A+B)
ij = P(A)

i P(B)
j (∀(i, j)). A given entropic form is

considered non-additive if

S(A+B)({Pij}) 6= S(A)({Pi}) + S(B)({Pj}) . (1)

Among the many proposals of generalized (or non-additive) entropies, the most commonly
known is Tsallis entropy Sq [12], which is characterized by an index q (q ∈ R),

Sq({Pi}) = k
1−∑W

i=1 Pq
i

q− 1
, (2)

so as to recover the Boltzmann–Gibbs (BG) entropy,

SBG({Pi}) = −k ∑
i

Pi(t) ln Pi(t) , (3)

in the limit q→ 1, i.e., S1 ≡ SBG.
One of the most successful theories of contemporary theoretical physics is BG statistical

mechanics [13–17]; this theory is based on BG entropy, which is additive. The time evolution
of SBG({Pi(t)}), and consequently, its approach to the equilibrium state, is directly related
to the evolution of the probabilities {Pi(t)}, which follow some fundamental equation,
e.g., a master equation. For continuous probability densities P(~x, t), the linear Fokker–
Planck equation (FPE) appears to be an appropriate candidate for describing the evolution
of probabilities and represents one of the most important equations of nonequilibrium
BG statistical mechanics. The FPE delineates the time evolution of the probability density
P(~x, t) for finding a given particle at a position ~x at time t while diffusing under an external
potential [14–18]. Usually one considers a confining external potential, leading to the
possibility of a stationary-state solution after a sufficiently long time. Particular interest in
the literature has been given to a harmonic confining potential, which leads to a Gaussian
distribution as the stationary-state solution of the FPE [17,18]. In the absence of an external
potential, the FPE reduces to the linear diffusion equation, which does not present a
stationary-state solution and is also associated with many out-of-equilibrium applications,
such as the celebrated Brownian motion and related phenomena.

A clear understanding of the range of applicability of BG statistical mechanics has
been emerging in the latest years; for example, it has become evident that it should be
used for systems characterized by weakly interacting particles and/or short time memories.
As typical counter-examples, regarding diffusion, it is very frequent nowadays to find
dynamical behavior that falls out of the ambit of the linear cases, which are commonly called
anomalous diffusion and usually take place in media presenting randomness, porosity,
and heterogeneity [19]. To deal with these phenomena, one habitually uses a nonlinear
(power-like) diffusion equation, known in the literature as a porous media equation [20].
Similar to the linear FPE, by adding a confining potential contribution, one obtains a
nonlinear Fokker–Planck equation (NLFPE) [21], as introduced in Refs. [22,23]. For a
harmonic confining potential, this NLFPE presents a q-Gaussian distribution typical of
nonextensive statistical mechanics [4–6] as its stationary-state solution. This distribution is
expressed as

Pq(u) = P0 expq(−βu2) (4)

and can be defined in terms of the q-exponential function,

expq(u) = [1 + (1− q)u]1/(1−q)
+ ; (exp1(u) = exp(u)) , (5)
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where P0 ≡ Pq(0) and [y]+ = y for y > 0 (zero otherwise). In this way, the NLFPE
introduced in Refs. [22,23] is associated with the Tsallis entropy, Sq, since its q-Gaussian
solution coincides with the distribution that maximizes Sq. Additionally, proofs of an H-
theorem connect the linear FPE with BG entropy [17,18], as well as NLFPEs with generalized
entropies [21,24–35], and particularly, they relate the NLFPE of Refs. [22,23] to the entropy
Sq.

In the present work, we analyze general entropic forms (typically non-additive) for
both continuous and discrete probabilities whose time evolution follows a NLFPE, or a
master equation, respectively. Some important novel results from the thermodynamical
point of view, related to their corresponding equilibrium states, are studied. In the next
section, we define general NLFPEs and explore their relationship to non-additive entropies
by means of an H-theorem. Additionally, the corresponding stationary-state solutions are
discussed; due to the H-theorem, after a sufficiently long time, the system should reach an
equilibrium state for which a given stationary-state solution holds as the equilibrium solu-
tion. At equilibrium, we show that the Carnot cycle applies for these entropic forms under
very common conditions. In Section 3, we consider the case of discrete probabilities, whose
time evolution follows a master equation, while also proving an H-theorem; moreover, the
third law of thermodynamics is discussed for both Sq and general entropic forms. Finally,
in Section 4, we present our main conclusions.

2. Continuous Probabilities: Non-Additive Entropic Forms and NLFPEs

Although one may pursue an analysis in arbitrary dimensions, by considering a
probability density P(x1, x2, · · · , xN , t) (such as, e.g., in Ref. [34]) herein for simplicity, we
will restrict ourselves to a one-dimensional space described in terms of a probability density
P(x, t) and following the normalization condition∫ ∞

−∞
P(x, t)dx = 1 . (6)

In this case, a general NLFPE may be defined as [30,31]

∂P(x, t)
∂t

= − ∂

∂x
{A(x)Ψ[P(x, t)]}+ D

∂

∂x

{
Ω[P(x, t)]

∂P(x, t)
∂x

}
, (7)

where D represents a diffusion coefficient with dimensions of energy, and the external
force A(x) is associated with a confining potential φ(x) [A(x) = −dφ(x)/dx]. The func-
tionals Ψ[P(x, t)] and Ω[P(x, t)] should satisfy certain mathematical requirements, e.g.,
positiveness and monotonicity with respect to P(x, t) [30,31]; moreover, to ensure the
normalizability of P(x, t) for all times, one must impose the conditions

P(x, t)|x→±∞ = 0 ;
∂P(x, t)

∂x

∣∣∣∣
x→±∞

= 0 ; A(x)Ψ[P(x, t)]|x→±∞ = 0 (∀t) . (8)

The NLFPE of Equation (7) recovers some well-known cases as particular limits:
(i) the linear FPE [14–18] for Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = 1 and (ii) the NLFPE
introduced in Refs. [22,23], which are associated with nonextensive statistical mechanics,
for Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = µ[P(x, t)]µ−1, where µ represents a real number
related to the entropic index through µ = 2 − q. It should be mentioned that a large
variety of NLFPEs, such as the one related to nonextensive statistical mechanics, the one
in the general form of Equation (7), or even those presenting nonhomogeneous diffusion
coefficients in the nonlinear diffusion term, have been derived in the literature by general-
izing standard procedures applied to the linear FPE [14–18], e.g., from approximations in
the master equation [34,36–39] or from a Langevin approach considering a multiplicative
noise [40–45].

Almost two decades ago, NLFPEs presenting more than one diffusive term appeared in
the literature [36,46–52], and a special interest was given to a concrete physical application,
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namely, a system of interacting vortices, which is currently used as a suitable model for
type II superconductors, that exhibited such a behavior [47–52]. A general discussion of
NLFPEs with two diffusive contributions was presented in Ref. [33], where one can be
identified in Equation (7),

Ω[P(x, t)] =
D1

D
Ω1[P(x, t)] +

D2

D
Ω2[P(x, t)] . (9)

Next, we discuss the H-theorem associated with Equation (7), leading to a direct connection
between this equation and entropic forms; we also comment on the above case of two
diffusive contributions.

2.1. Generalized Forms of the H-Theorem from NLFPEs

The H-theorem represents one of the most important results of nonequilibrium statis-
tical mechanics since it ensures that after a sufficiently long time, the associated system will
reach an equilibrium state. In standard nonequilibrium statistical mechanics, it is usually
proven by considering the BG entropy SBG and making use of an equation that describes
the time evolution of the associated probability density, such as the Boltzmann probability
density, linear FPE (in the case of continuous probabilities), or the master equation (in the
case of discrete probabilities) [13–17]. To our knowledge, the first proof of an H-theorem
making use of a NLFPE appeared in the literature more than 30 years ago [53]. After that,
proofs were extended by many authors in such a way as to cover generalized entropic
forms and their relationships to NLFPEs (see, e.g., Refs. [21,24–35]); below, we closely
follow those carried in Refs. [30–33].

In the case of a system under a confining external potential φ(x) (from which one
obtains the external force appearing in Equation (7), A(x) = −dφ(x)/dx), the H-theorem
corresponds to a well-defined sign for the time derivative of the free-energy functional,

F[P] = U[P]− θS[P] ; U[P] =
∞∫
−∞

dx φ(x)P(x, t) , (10)

with θ denoting a positive parameter with dimensions of temperature. Moreover, the en-
tropy may be considered in the general form [30–33],

S[P] = k
∞∫
−∞

dx g[P(x, t)] ; g(0) = g(1) = 0 ;
d2g
dP2 ≤ 0 , (11)

where k represents a positive constant with entropy dimensions, whereas the functional
g[P(x, t)] should be at least twice differentiable. Furthermore, the conditions that ensure
the normalizability of P(x, t) for all times (cf. Equation (8)) are also used in the proof of
the H-theorem. Considering D = kθ, the H-theorem may be achieved by imposing the
condition [30–33],

−d2g[P]
dP2 =

Ω[P]
Ψ[P]

, (12)

which relates the entropic form to a certain time evolution described by the two functionals
of Equation (7). Particular entropic forms and their associated NLFPEs were explored in
Ref. [30], whereas families of NLFPEs (those characterized by the same ratio Ω[P]/Ψ[P])
were studied in Ref. [32].

One should mention that the relationship of Equation (12) is applicable for a single
diffusive contribution, a linear internal-energy definition (as in Equation (10)), and for a
constant diffusion coefficient, as in Equation (7). Extensions of the H-theorem have been
achieved, disregarding these restrictions separately, by considering: (i) two diffusive con-
tributions, as in Equation (9) [33] (to be discussed next); (ii) a nonlinear internal-energy
definition (see Refs. [31,34]). In this case, the H-theorem is fulfilled through a slight mod-
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ification in the NLFPE of Equation (7), so that besides Equation (12), an extra equation
appears concerning the nonlinear functional appearing in the internal energy definition;
(iii) a diffusion coefficient dependent on the position, so that one needs to modify the free
energy of Equation (10) [54]. Recent studies have discussed physical systems within the
context of nonextensive statistical mechanics, characterized by a varying entropic index q,
such as a modified cosmological scenario [55], and the phenomenon of quantum mixing,
i.e., the superposition of particle states with different masses [56]. This is certainly an inter-
esting novelty, not contemplated by Equation (7), which recovers the NLFPE introduced in
Refs. [22,23] and is associated with nonextensive statistical mechanics for Ψ[P(x, t)] = P(x, t)
and Ω[P(x, t)] = (2− q)[P(x, t)]1−q, where q represents a real number. The solution of this
NLFPE is the so-called q-Gaussian distribution (cf. Equation (4)), which was shown to cover
a large number of experimental verifications within the context of anomalous diffusion
phenomena, for which the value of q may vary for different systems [4–8]. An NLFPE with a
variable index q, its solution, as well as a possible H-theorem, require a particular nontrivial
analysis, which, to our knowledge, has not been addressed at present.

A detailed proof of the H-theorem in the case of two diffusive contributions, such as
in Equation (9), was presented in Ref. [33]; briefly, one replaces the free energy functional
of Equation (10) with

F[P] = U[P]− θ1S1[P]− θ2S2[P] ; U[P] =
∞∫
−∞

dx φ(x)P(x, t) , (13)

where θ1 and θ2 denote positive parameters with dimensions of temperature. Similarly to
Equation (11), one defines

Si[P] = k
∞∫
−∞

dx gi[P(x, t)] ; gi(0) = gi(1) = 0 ;
d2gi
dP2 ≤ 0 ; (i = 1, 2). (14)

In such a case, it is sufficient to impose the conditions

D1 = kθ1 ; D2 = kθ2 , (15)

as well as

−d2g1[P]
dP2 =

Ω1[P]
Ψ[P]

; −d2g2[P]
dP2 =

Ω2[P]
Ψ[P]

, (16)

extending the condition of Equation (12) for two diffusion contributions.
From now on, we restrict our analysis to a single diffusion contribution, as in

Equation (7), and their associated free energy functional (cf. Equation (10)), entropy
functional (cf. Equation (11)), as well as the relationship in Equation (12). In the discussion
above, this situation occurs whenever a diffusion coefficient is much larger than the other
one (e.g., D2 � D1) so that one may neglect the effects of the smaller contribution. As a
typical example, one should mention a system of interacting vortices currently used as a
suitable model for type II superconductors, for which, in typical cases, one of the diffusion
coefficients has been shown to be at least 104 times larger than the other one [49].

2.2. Equilibrium Distribution

Now, we briefly work out the stationary-state (i.e., time-independent) solution of
Equation (7), as well as the equilibrium distribution that results from an extremization
procedure of the entropic functional in Equation (11) (a detailed analysis of these procedures
may be found in Ref. [30])). As usual, the Lagrange parameters of this later approach will
be defined appropriately so that these two results coincide; based on this, in the calculations
that follow, we refer to an equilibrium state, described by a distribution Peq(x).
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First, let us obtain the time-independent distribution of Equation (7); for this purpose,
we rewrite it in the form of a continuity equation,

∂P(x, t)
∂t

= −∂J(x, t)
∂x

, (17)

where the probability current density is given by

J(x, t) = A(x)Ψ[P(x, t)]− DΩ[P(x, t)]
∂P(x, t)

∂x
. (18)

The solution Peq(x) is obtained by setting Jeq(x) = 0 (as required by conservation of
probability [30]), so that

Jeq(x) = A(x)Ψ[Peq(x)]− DΩ[Peq(x)]
dPeq

dx
= 0 , (19)

which may still be written in the form

A(x) = D
Ω[Peq(x)]
Ψ[Peq(x)]

dPeq

dx
. (20)

Integrating the equation above over x and remembering that the external force was defined
as A(x) = −dφ(x)/dx, one obtains

φ0 − φ(x) = D
∫ x

x0

dx
Ω[Peq(x)]
Ψ[Peq(x)]

dPeq

dx
= D

∫ Peq(x)

Peq(x0)

Ω[Peq(x′)]
Ψ[Peq(x′)]

dPeq(x′) , (21)

where φ0 ≡ φ(x0). Now, one uses the relationship in Equation (12), and, performing the
integration, can further obtain

D
dg[P]

dP

∣∣∣∣
P=Peq(x)

= φ(x) + C1 , (22)

with C1 being a constant.
Next, we extremize the entropic functional of Equation (11) with respect to the proba-

bility under the constraints of probability normalization and an internal energy definition
following Equation (10). For this, we introduce the functional

I =
S[P]

k
+ α

(
1−

∫ ∞

−∞
dx P(x, t)

)
+ β

(
U −

∫ ∞

−∞
dx φ(x)P(x, t)

)
, (23)

where α and β are Lagrange multipliers. Hence, the extremization (δI)/(δP)|P=Peq(x) = 0
leads to

dg[P]
dP

∣∣∣∣
P=Peq(x)

− α− β φ(x) = 0 . (24)

One notices that Equations (22) and (24), which result from the stationary-state solution of
Equation (7) and the extremization of the entropic functional of Equation (11), respectively,
coincide if one chooses the Lagrange multipliers α = C1 and β = 1/D.

2.3. Carnot Cycle for a General Entropic Form S(P)

Considering non-additive entropies, the Carnot cycle was shown to hold for the equi-
librium entropy S2−q (in the case that q = 0) and its corresponding thermodynamically
conjugated parameter θ [49], which is used to define an infinitesimal heat-like quantity
δQ = θdS2 [50–52]; the physical system under investigation was a model for type II super-
conductors characterized by interacting vortices. Later on, the Carnot cycle was shown to
be valid for any system of particles interacting repulsively through short-range potentials,



Entropy 2023, 25, 1132 7 of 16

whose equilibrium distributions are compact q-Gaussian distributions (characterized by a
cutoff) and can be described by the entropy S2−q (for q < 1), extending the above-mentioned
proof for q = 0 [57]. One should notice that, in the illustrations concerning the Tsallis
entropy considered herein, the equilibrium distribution and the entropic form are related
by means of the simple change q↔ (2− q) [58]. This appears to be a direct consequence of
a linear internal energy definition, such as the one in Equation (10), which was considered
in Refs. [50–52,57]; this subtle property will be discussed in detail for the case of discrete
probabilities (see the next section). Herein, we show that the Carnot cycle holds for general
entropic forms, as defined in Equation (11). For this, we assume that the usual (i.e., very
common) conditions apply for the system under investigation, as described below.

(i) The equilibrium distribution Peq(x), which maximizes the entropic functional of
Equation (11) (as shown in Section 2.2), exists and leads to the entropy S[Peq] and internal
energy U[Peq] at equilibrium. Both S[Peq] and U[Peq] are state functions in the sense that∫ b

a
dS[Peq] = S[P(b)

eq ]− S[P(a)
eq ] = Sb − Sa ; (25)

∫ b

a
dU[Peq] = U[P(b)

eq ]−U[P(a)
eq ] = Ub −Ua , (26)

where a and b denote arbitrary equilibrium thermodynamic states. We introduce the short
notations Sa ≡ S[P(a)

eq ] and Ua ≡ U[P(a)
eq ] (similar notations holding for state b). Hence,

one may define an infinitesimal type of heat, δQ = θdS, where θ represents the positive
parameter with the temperature dimensions introduced in Equation (10).

(ii) The system under investigation can, in principle, perform work in several ways,
leading to an infinitesimal contribution, δW = ∑i σidαi, where for each contribution i, σi
and αi are pairs of thermodynamically conjugate variables. However, for simplicity, we
restrict the following analysis to a single “external field”, σ, and its conjugate, α. The
parameter α is also considered a state function following conditions similar to those in
Equations (25) and (26).

(iii) Using the quantities defined in (i) and (ii), we formulate the equivalent to the first
law,

dU = δQ + δW = θdS + σdα , (27)

where δW corresponds to the work carried out by the external field σ on the system.
(iv) Equation (27) implies that U = U(S, α); we assume that U(S, α) is invertible,

yielding S = S(U, α) (with the same condition holding for S(U, α)), leading to

dS =
1
θ

dU − σ

θ
dα . (28)

From Equation (27) (or equivalently, from Equation (28)) one obtains the fundamental
relationship

θ =

(
∂U
∂S

)
α

, (29)

as well as the equation of state

σ =

(
∂U
∂α

)
S

. (30)

Let us now consider four equilibrium states, yielding a Carnot cycle
a → b → c → d → a, defined by two isothermal (constant θ) transformations: a → b at
a temperature θ1 and c→ d at a temperature θ2, with θ1 > θ2. These transformations are
intercalated by two adiabatic transformations (where S is constant) (b → c and d → a),
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so that ∆Sbc = ∆Sda = 0. Considering that both S and U are state functions (according to
Equations (25) and (26)), and using Equation (27), one has for the whole cycle

∆S = ∆Sab + ∆Scd = 0 ⇒ ∆Sab = −∆Scd ; (31)

∆U = (Wab + Qab) + Wbc + (Wcd + Qcd) + Wda = 0 . (32)

From this later equation, one can obtain that the total work W carried out on the system is
given by

W = Wab + Wbc + Wcd + Wda = −(Qab + Qcd) = −W , (33)

where we have definedW (W > 0) as the total work completed by the system. For the two
isothermal transformations, one has

Qab = θ1

∫ b

a
dS = θ1(Sb − Sa) = θ1∆Sab ; (34)

Qcd = θ2

∫ d

c
dS = θ2(Sd − Sc) = θ2∆Scd , (35)

and using Equation (31), one obtains that

Qab
Qcd

= − θ1

θ2
, (36)

showing that Qab and Qcd present different signs. Therefore, as usually considered for a
Carnot Cycle, we assume that Qab > 0 and Qcd < 0, i.e., heat gets into (out of) the system
along the isothermal transformation at temperature θ1 (θ2). Let us now redefine Q1 = Qab
and Q2 = |Qcd|, leading to the fundamental relationship for the Carnot Cycle,

Q1

Q2
=

θ1

θ2
, (37)

as well as to the conservation of energy along the whole cycle, which can be expressed as

Q1 =W + Q2 , (38)

Tn these two equations above, all quantities are positive. Consequently, one has the
celebrated efficiency for the Carnot cycle,

η =
W
Q1

=
Q1 −Q2

Q1
= 1− θ2

θ1
(0 ≤ η ≤ 1). (39)

Therefore, we have shown that the Carnot cycle, which represents a fundamental
thermodynamical process, holds for general entropic forms as defined in Equation (11)
and for the internal energy of Equation (10) under the usual requirements for its equilibrium
state. Within the framework of non-additive entropies, the most serious restrictions are:
(a) at equilibrium, S ≡ S[Peq] and U ≡ U[Peq], so that one must express S = S(U, {αi}),
where {αi} represents state functions, whose small changes define infinitesimal work
contributions; (b) the entropy S = S(U, {αi}) should be invertible, leading to the possibility
of expressing U = U(S, {αi}). Only if these conditions are satisfied may one be able to
calculate an effective temperature in two different (but equivalent) ways,

θ =

(
∂U
∂S

)
{αi}

and
1
θ
=

(
∂S
∂U

)
{αi}

, (40)

using Equations (27) and (28), respectively.
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To our knowledge, at present, the only successful proofs of a Carnot cycle for non-
additive entropies have been carried for the equilibrium entropy S2−q
(in the case that q = 0) and its corresponding thermodynamically conjugate parame-
ter θ in an application of a system of type II superconducting vortices [49–52], as well as an
extension for the equilibrium entropy S2−q (for q < 1) associated with a system of particles
interacting repulsively through short-range potentials, whose equilibrium distributions are
compact q-Gaussian distributions (characterized by a cutoff) [57]. The proof above opens
the way for the validation of the Carnot cycle considering other non-additive entropic
forms available in the literature.

3. Discrete Set of Probabilities: H-Theorem and Equilibrium Solutions for
Generalized Entropies

We now consider a system characterized by discrete states, with associated probabili-
ties {Pi(t)} (i = 1, 2, · · · , W), where Pi(t) represents the probability of finding the system
on a state i at time t, following the normalization condition

W

∑
i=1

Pi(t) = 1 (∀t). (41)

For discrete probabilities, an H-theorem was proven for SBG({Pi}) (cf. Equation (3)) in
both cases of an isolated system (expressed by dSBG/dt ≥ 0) and a system in contact with a
heat bath at a temperature T, where one can consider the time-derivative of the free-energy
functional to be

F = U − TSBG ; U = ∑
i

εiPi , (42)

leading to dF/dt ≤ 0 (see, e.g., Ref. [13]).
Recently, there has been a growing interest in generalized entropic forms for an

appropriate description of complex systems [4–11]. In most cases, these entropic forms
may be written as

S[{Pi}] = k
W

∑
i=1

g[Pi] ; g(0) = g(1) = 0 , (43)

where the functional g[Pi] should be concave and at least twice-differentiable, i.e.,
(d2g/dPi

2) ≤ 0 (∀i). Moreover, the free-energy functional is considered similar to the
one in Equation (42),

F = U − θS ; U = ∑
i

εiPi , (44)

where θ represents a positive quantity with dimensions of temperature, which in some cases
may coincide with the usual absolute temperature T, although it may present a different
concept in some complex systems (see, e.g., Refs. [49–52]).

The extremization of the entropic form of Equation (43), considering the constraints
for the probability normalization of Equation (41) (with the Lagrange multiplier α) and the
internal energy definition of Equation (44) (with its corresponding Lagrange multiplier β),
leads to the following equation for the equilibrium distribution Peq

i :

g′[Peq
i ]− α− βεi = 0 , (45)

where we have defined

g′(X) ≡ dg[P]
dP

∣∣∣∣
P=X

. (46)

One should notice that the functional g′[Peq
i ] is invertible, since g[Pi] is concave; however,

in some cases, one may deal with a transcendental equation for Peq
i . The procedure above

applied to BG entropy (cf. Equation (3)) yields the well-known Boltzmann weight [13,14];
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let us now illustrate this method by considering the Tsallis entropy (cf. Equation (2)), for
which

g′[Peq
i ] = − q

q− 1

(
Peq

i

)q−1
. (47)

Substituting the result above into Equation (45) and using Equation (41), one obtains the
distribution

PEquation (1)
i =

1

Z(1)
q

[1− (q− 1)β(1)εi]
1/(q−1)
+ , (48)

where [y]+ = y for y > 0 and is zero otherwise; the superscript refers to the extremization
of the entropy Sq under the internal energy definition with a linear dependence on the set of
probabilities, as in Equation (44), which is also known as first formulation [4]. It is important
to notice that the equilibrium distribution coming out of the extremization procedure of
any entropic form is directly related to the imposed constraints (see, e.g., Refs. [58–62]
for detailed discussions on the role of constraints in nonextensive statistical mechanics);
herein, we adopt the linear internal energy definition due to its simplicity for proving the
H-theorem. However, the most common form for the equilibrium distribution, usually
known as the Tsallis distribribution, is obtained from an internal energy definition with a
nonlinear dependence on the set of probabilities {Pi}, i.e., a power-like Pq

i , leading to [4]

Peq
i =

1
Zq

[1− (1− q)βεi]
1/(1−q)
+ , (49)

which will be considered the equilibrium distribution from now on. Notice that Equa-
tions (48) and (49) may be converted into one another by means of the simple change
q ↔ (2− q) [58]. In fact, the distribution of Equation (49) may also be derived from the
extremization of S2−q in Equation (45). Since in the thermodynamic application that follows,
namely, the third law of thermodynamics for the Tsallis entropy, we consider an equilibrium
state described by Equation (49), the corresponding entropic form can be written as S2−q
instead of Sq.

Below, we outline the proof of an H-theorem for general entropic forms, written as in
Equation (43), which may be achieved by making use of a master equation [63],

∂Pi(t)
∂t

= ∑
j
[Pj(t)wji(t)− Pi(t)wij(t)] . (50)

As usual, wij(t) represents the probability transition rate associated with a transition from
state i to state j (i.e., wij∆t is the probability that a transition from states i to j occurs during
the time interval t→ t + ∆t). Herein, we will consider the most general out-of-equilibrium
situation characterized by time-dependent probability transition rates, i.e., Pi(t)wij(t) 6=
Pj(t)wji(t). These quantities will become time-independent only at equilibrium, where the
detailed balance condition holds,

Peq
i Wij = Peq

j Wji [Wij = lim
t→∞

wij(t)] . (51)

The procedure below essentially extends the proof of the H-theorem for BG entropy in
Equation (3) for an isolated system, as well as for a system in contact with a heat bath at a
temperature T, where one considers the time derivative of the free-energy functional in
Equation (42) (see, e.g., Ref. [13]). Following this, we start by taking the time derivative of
the entropic form in Equation (43),

dS
dt

= k
d
dt ∑

i
g[Pi(t)] = k ∑

i

dg
dPi

∂Pi
∂t

, (52)
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and using Equation (50), one obtains

dS
dt

= k ∑
i,j

dg
dPi

[Pj(t)wji(t)− Pi(t)wij(t)] . (53)

Interchanging i↔ j and adding the resulting equation with Equation (53), one obtains

dS
dt

=
k
2 ∑

i,j
[g′(Pi)− g′(Pj)][Pj(t)wji(t)− Pi(t)wij(t)] , (54)

where we have used the definition of Equation (46). In a similar way, one can express the
time derivative of the internal energy of Equation (44) as

dU
dt

=
1
2 ∑

i,j
[εi − ε j][Pj(t)wji(t)− Pi(t)wij(t)] . (55)

Now, using Equations (44), (54) and (55), one obtains the time derivative of the free-
energy functional,

dF
dt

=
1
2 ∑

i,j

{
εi − ε j − kθ[g′(Pi)− g′(Pj)]

}
[Pj(t)wji(t)− Pi(t)wij(t)] . (56)

General proofs of the H-theorem have been carried out in Ref. [63] through alge-
braic manipulations of the equations above (e.g., making use of the property that g[X] is
concave, leading to a monotonically decreasing first derivative g′[X]) for two typical situa-
tions, namely, an isolated system (for which the H-theorem is expressed by (dS/dt) ≥ 0)
and a system in contact with a thermal bath )for which the H-theorem is expressed by
(dF/dt) ≤ 0). Moreover, these proofs apply to very general out-of-equilibrium situations
(along which Pi(t)wij(t) 6= Pj(t)wji(t)) and are characterized by non-symmetric probability
transition rates (wij(t) 6= wji(t)). Additional interesting results were achieved in Ref. [64],
where the quantities above were associated with the phenomenon of entropy production
for irreversible processes. Mathematically, this result may be expressed by writing the
entropy time rate in the form [16,65,66]

d
dt

S[P] = Π−Φ, (57)

where one can identify the contributions of the entropy production Π and entropy flux Φ.
These two concepts were extended to general entropic forms, making use of general NLF-
PEs [67] when dealing with continuous probabilities, as well as of a master equation [64]
for discrete probabilities. Comparing the quantities above with

dF
dt

=
dU
dt
− θ

dS
dt

, (58)

one identifies
Π = −1

θ

dF
dt

; Φ = −1
θ

dU
dt

, (59)

so that, for a non-negative entropy production contribution, the H-theorem implies Π ≥ 0,
as expected [16,65,66]. All these results were illustrated for the particular cases of BG (cf.
Equation (3)) and Tsallis (cf. Equation (2)) entropies [63,64].

Third Law of Thermodynamics for Generalized Entropies

Herein, we assume that the following typical conditions apply.
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(i) There is a positive temperature-like parameter θ, associated with the Lagrange
multiplier β, such that β = 1/(kθ). It is important to mention that the following analysis
also applies for the absolute temperature T of standard thermodynamics.

(ii) There is a discrete non-negative energy spectrum {εi}, i.e., εi ≥ 0 (i = 1, 2, · · · , W).
(iii) There is a non-degenerate ground state characterized by the energy ε1 ≥ 0.
(iv) There is a gap between the energies of the ground and first-excited states, ∆ =

ε2 − ε1 > 0.
(v) As the temperature parameter θ decreases (or equivalently, as β increases), the

probabilities {Pi} associated with the lowest-energy states become larger.
Next, we illustrate the third law of thermodynamics for the entropy Sq of Equation (2)

and its corresponding equilibrium distribution in Equation (49). In this case, for conve-
nience, we set ε1 = 0. Notice that the requirement for real probabilities in Equation (49)
implies the condition

(1− q)βεi ≤ 1 (∀i). (60)

Whenever the inequality above is violated, one has Pi = 0, i.e., the corresponding energy
level may not be occupied. For the third law of thermodynamics applied under the above
requirements, two distinct cases should be considered, namely, q ≥ 1 and q < 1, as
discussed below.

Case 1: q ≥ 1.

The condition in Equation (60) is always fulfilled, so that for β→ ∞, the system should
reach a pure state, characterized by P1 = 1 and leading to Sq(1) = S2−q(1) = 0.

Case 2: q < 1.

The condition in Equation (60) is not always fulfilled, and it may be violated for certain
ranges of β, values of q, and energies εi, for which Pi = 0. Now, we concentrate on the
two lowest energy values, separated by the gap ∆ = ε2 − ε1, and define a temperature θ∗

through kθ∗ = (1− q)∆. At precisely the effective temperature θ∗, only these two energy
levels are occupied with the respective probabilities P2 and P1 such that P1 + P2 = 1. Then,
for a slightly lower temperature, one has P2 = 0 and P1 = 1, leading to Sq(1) = S2−q(1) = 0.
Notice that kθ∗ ≤ ∆ (for 0 ≤ q < 1), whereas kθ∗ = (1 + |q|)∆, yielding kθ∗ > ∆ (for q < 0).

Therefore, the entropy S2−q becomes zero for a positive value of temperature,
θ∗ = (1− q)∆/k > 0, so that the third law is satisfied at (and below) this temperature
value. In this way, the effective temperature θ∗ for q < 1 plays a role similar to θ = 0 for
q ≥ 1; thus, in the former case, all thermodynamic quantities should be analyzed in the
limit θ → θ∗ (from above). The vanishing of S2−q at an effective temperature θ∗ > 0 for
q < 1 is directly related to violations in the condition of Equation (60), i.e., to the existence
of a cutoff in the set of probabilities {Pi}. Qualitative plots of the entropy S2−q versus
the effective temperature θ are presented in Figure 1; in each case, the approach to the
limits θ → 0 (q ≥ 1) or θ → θ∗ (q < 1) are shown in dashed lines since the corresponding
slopes may depend on the system under investigation. One should mention that previous
studies of the third law for the Tsallis entropy [68,69] did not take into account the effective
temperature θ∗ for q < 1, leading to misinterpretations of the third law of thermodynamics.

Below, we formulate the third law for the entropy Sq, as well as for nonadditive
entropies in general.

Third law of thermodynamics for the entropy Sq:

Consider a system described by: (a) a positive effective temperature θ (for certain
values of q, this temperature may coincide with the absolute temperature T of standard
thermodynamics) thermodynamically conjugated to the entropy Sq∗ (typically q∗ = 2− q);
(b) a discrete non-negative energy spectrum {εi}; (c) a non-degenerate ground state with
energy ε1 = 0; and (d) a gap between the energies of the ground and the first-excited states,
∆ = ε2. Under these conditions, the entropy Sq∗ becomes zero for θ → 0 (q ≥ 1) or for
θ → θ∗ (q < 1), where θ∗ = (1− q)∆/k > 0.”
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For a general nonadditive entropic form, as defined in Equation (43) and possibly
characterized by a set of indices {α, γ, · · · } typical of nonadditive entropic forms [9–11],
one should add an extra condition in the above statement concerning possible combinations
of θ, energy values {εi}, and the indices {α, γ, · · · }, for which there may be restrictions
on the probabilities {Pi}, such as a cutoff, yielding levels with Pi = 0. In this way, we
formulate the third law for a general nonadditive entropy below.

Figure 1. The entropy S2−q is exhibited versus an effective temperature θ (positive quantity with
dimensions of temperature) in three distinct cases, namely, q > 1 (red curve), q = 1 (black curve),
and q < 1 (blue curve). The entropy S2−q becomes zero for θ → 0 (q ≥ 1), whereas S2−q → 0 for
θ → θ∗ > 0 (q < 1) (see text). In the latter case, the vanishing of S2−q at an effective temperature
θ∗ > 0 is directly related to violations in the condition of Equation (60), i.e., to the existence of a cutoff
in the set of probabilities {Pi}. In these curves, the approaches S2−q → 0 are shown in dashed lines
since the corresponding slopes may depend on the system under study.

Third law of thermodynamics for a general nonadditive entropy Sα,γ,···:

Consider a system described by: (a) a positive effective temperature, θ, thermody-
namically conjugated to the entropy Sα,γ,··· (for certain values of the indices {α, γ, · · · }, this
temperature may coincide with the absolute temperature T of standard thermodynam-
ics); (b) a discrete non-negative energy spectrum {εi}; (c) a non-degenerate ground state
with energy ε1 ≥ 0; (d) a gap between the energies of the ground and the first-excited
states, ∆ = ε2 − ε1 > 0; and (e) combinations of θ, the energy values {εi}, and the indices
{α, γ, · · · }, for which there are restrictions on the probabilities {Pi}, such as a cutoff, yield-
ing levels with Pi = 0. Under these conditions, the entropy Sα,γ,··· becomes zero for θ → θ∗

(with θ∗ > 0), where this threshold should depend on ∆ and the parameters {α, γ, · · · } that
define the entropy; whenever the restrictions described in (e) do not apply, Sα,γ,··· becomes
zero for θ → 0”.

4. Discussion and Conclusions

We have discussed some basic aspects related to non-additive entropies, considering
their time evolution in the cases of continuous and discrete probabilities, described by
nonlinear Fokker–Planck and master equations, respectively. In both cases, forms of
the H-theorem were proven, connecting functionals of the probabilities appearing in
these equations with those of the entropic forms. A particular emphasis was given to
their equilibrium-state distributions, showing that those obtained from the corresponding
evolution equations coincide with those derived form the extremization of the associated
entropic forms.

Considering the equilibrium state, we have shown that a Carnot cycle holds for a
general entropic form under standard thermodynamic conditions. Within the framework
of non-additive entropies, the most serious restrictions for the validity of the Carnot cycle
are as follows: (a) the equilibrium functionals S ≡ S[Peq] and U ≡ U[Peq] should allow
one to express S = S(U, {αi}), where {αi} represents state functions, whose small changes
define infinitesimal work contributions; (b) the entropy S = S(U, {αi}) should be invertible,
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leading to the possibility of expressing U = U(S, {αi}). Only if these conditions are satisfied
may one be able to calculate an effective temperature parameter, which is fundamental for
the Carnot cycle. It is possible that these procedures may not be feasible for some of the
entropic forms introduced in the literature (see, e.g., a comprehensive list in Ref. [9]). To
our knowledge, at present, the only successful proofs of a Carnot cycle for non-additive
entropies have been carried out for the equilibrium entropy S2−q (in the case for which
q = 0) and its corresponding thermodynamically conjugate parameter θ in an application
of a system of type II superconducting vortices [49–52], as well as an extension for the
equilibrium entropy S2−q (for q < 1), associated with a system of particles interacting
repulsively through short-range potentials, whose equilibrium distributions are compact
q-Gaussian distributions (characterized by a cutoff) [57].

In the case of discrete probabilities, we have discussed how the third law of thermody-
namics should apply to equilibrium non-additive entropic forms in general. Considering
an equilibrium entropic form S and its thermodynamically conjugate parameter θ, one
has two situations to be analyzed, which are as follows: (i) combinations of θ, energy
values {εi}, and possible entropic indices characteristic of the generalization, for which
there are restrictions on the probabilities {Pi}, such as a cutoff, which implies levels with
Pi = 0; (ii) cases where the combinations mentioned in (i) do not lead to restrictions on the
probabilities {Pi}. If there are no restrictions, one must have S→ 0 when θ → 0; whenever
there are restrictions on the set of probabilities (such as a possible cutoff), one should have
S→ 0 for θ → θ∗, where θ∗ > 0.

The physical consequences, and particularly, the fact that the equilibrium-state distri-
butions obtained from the corresponding evolution equations (for both continuous and
discrete probabilities) coincide with those obtained from the extremization of the entropic
form, become very relevant for the study of complex systems. Moreover, the validity
of a Carnot cycle and a formulation of the third law of thermodynamics for general en-
tropic forms, under standard thermodynamic requirements, opens the path for consistent
thermodynamic frameworks in the context of generalized (or non-additive) entropic forms.
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