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Abstract: Mapping network nodes and edges to communities and network functions is crucial to
gaining a higher level of understanding of the network structure and functions. Such mappings are
particularly challenging to design for covert social networks, which intentionally hide their structure
and functions to protect important members from attacks or arrests. Here, we focus on correctly
inferring the structures and functions of such networks, but our methodology can be broadly applied.
Without the ground truth, knowledge about the allocation of nodes to communities and network
functions, no single network based on the noisy data can represent all plausible communities and
functions of the true underlying network. To address this limitation, we apply a generative model
that randomly distorts the original network based on the noisy data, generating a pool of statistically
equivalent networks. Each unique generated network is recorded, while each duplicate of the already
recorded network just increases the repetition count of that network. We treat each such network as
a variant of the ground truth with the probability of arising in the real world approximated by the
ratio of the count of this network’s duplicates plus one to the total number of all generated networks.
Communities of variants with frequently occurring duplicates contain persistent patterns shared by
their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for
operations planned on the network. Repeatedly generating new pools of networks from the best
network of the previous step for several steps lowers the entropy of the best new variant. If the
entropy is too high, the network operators can identify nodes, the monitoring of which can achieve
the most significant reduction in entropy. Finally, we also present a heuristic for constructing a
new variant, which is not randomly generated but has the lowest expected cost of operating on the
distorted mappings of network nodes to communities and functions caused by noisy data.

Keywords: functional and structural uncertainty; noisy data; covert networks; Bernoulli weighted
random network generator

1. Introduction

The amount of data collected in the world has grown exponentially for at least the last
decade [1], including data on covert networks [2]. To capitalize on such network data, access
to it needs to be supplemented with tools capable of curating data and extracting key results.
Specifically, the analysis of real-world networks needs to overcome errors recorded in the
network data that occur during the acquisition process. For small datasets it may be possible
to correct these errors manually, but it is not feasible for large datasets, especially when
edges are purposefully added or disguised by actors in the network. Therefore, we propose

Entropy 2023, 25, 1118. https://doi.org/10.3390/e25081118 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081118
https://doi.org/10.3390/e25081118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8758-0121
https://orcid.org/0000-0002-0307-6743
https://doi.org/10.3390/e25081118
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081118?type=check_update&version=1


Entropy 2023, 25, 1118 2 of 13

a new method to deal with networks created from data with unintentional or intentional
errors, which can significantly improve downstream extraction of key network features.

The sources of noise in network data can be classified into several categories. The first
source of noise originates from monitoring relations that are not directly observable, so
collected data are only a proxy of the desired relationships. In the context of social networks,
an example of this would be frequent communication between two people which may imply
a trust relationship between them. To illustrate the potential shortcomings of such proxies,
we can observe that some of the calls might be strictly professional or even an indication of
disagreement and distrust rather than trust. Similarly, in a biological network context, we
rely on proxies for protein interactions (their physical binding) in artificial testing systems.
These proxies can produce many false positives, as bound proteins might never actually be
found in the same place or at the same time within their originating cell [3].

The second category of noisy data is caused by deliberate distortion or attempts
to conceal some characteristics of the network, or even its entire existence, undertaken
by the nodes of such a network. The best example of this category of noise would be
covert networks, where members of the network are intentionally hiding their involvement
and interactions by avoiding communicating within the network in cases when the only
available means of communication can be easily tracked, such as cell phones with registered
ownership [4,5]. To avoid detection of their interactions within crime organizations, the
criminals may use wiretapped phones only for private conversations [6]. Finally, in many
networks with massive data collections, the third category of sources of data noise is the
presence of a low but persistent rate of erroneous experimental measurements that distort
the valid results [7,8].

The presence of noise in network data distorts the detection of network edges, which
is likely to modify the network’s community structure, e.g., [9]. In the absence of the
ground-truth data about basic properties of the network, like the allocation of nodes to
communities and to network functions, an operation designed based on a single network
derived from such data will not be able to predict all distortions that can arise during such
an operation.

The rest of this paper is organized as follows. Section 2 contains a brief review of the
relevant literature. Section 3 describes the methodology used in our paper. In Section 4,
we present the datasets used for the experimental evaluation of the results. The design of
the experiments and the results are presented in Section 5. The summary of the work, the
significance of our findings, and some concluding remarks are given in Section 6.

2. Related Work

To address the problem of missing, mislabeled, or incorrectly included nodes or edges
in a network, several approaches have been proposed. Many of them use entropy-based
metrics. In [10], the authors measure the uncertainty of nodes considered for strengthening
or weakening of their existing links with the neighbors. In [11], an entropy-based metric
is used to measure the vulnerability of communities in complex networks to breaking
up. Similar metrics are also used to measure the structural similarity of nodes in complex
networks based on the local structure topology of each node [12]. In [13], the authors
present a successful example of applying entropy metrics to measure the evolution of
human communications. The authors found that Shannon’s entropy tends to decay over
time when the social network stagnates due to experiencing little or no changes among
members that comprise the network.

In [14], the authors consider the temporal evolution of networks and observe the
network structure at each time step in conjunction with prior distributions from the history
of network changes. According to the authors, their method leads to more robust commu-
nities that are less influenced by noisy collected data and results in networks that are less
likely to undergo dramatic changes over a short time span.

In [15], the problem of noisy networks is approached by pruning less prominent edges
to create a backbone of a network. The backboning method used by Coscia et al. [15] views
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nodes not just as a source of edges but considers the nodes’ ability to send and receive
communications. It evaluates the significance of each edge and tags weak connections that
do not translate into significant interaction between nodes as noise. The noise-corrected
approach described by the authors is scalable and correctly estimates the variance of the
transformed edge weights while ensuring high quality of the backbones as shown by a
series of Ordinary Least Squares (OLS) regressions.

3. Methods

In our earlier work [16], we focused only on the cost of assigning a node to the wrong
community. In this section, we introduce preprocessing steps that are applied to the
collected noisy network data, three novel entropy-based metrics, and two new heuristics,
each of which constructs the community structure for a given network while minimizing
the expected cost arising from operating on networks with communities and functions
distorted by using noisy data for their creation.

Using the Bernoulli weighted random network (BWRN) algorithm, we generate a
set of r networks from the given noisy network data and find their non-overlapping
communities. Then, we cluster these networks into s ≤ r groups of networks that share
the same community structure. Because the network community structures are robust to
minor edge perturbation, for large r and s < r, the ratio of the size of each cluster to r
approximates the probability that the corresponding structure is the ground truth. In this
work, to quantify the uncertainty of a community structure and its corresponding level
of predictability, we introduce three entropy-based metrics that are adopted from human
mobility entropy models proposed in [17].

As discussed in Section 2, given the unavailability of the ground truth, using only
a single network derived from noisy data is incapable of predicting all distortions in the
underlying data. To address this weakness, we apply a generator that rewires networks
using a combination of the Stochastic Block Model (SBM) [18] and hierarchical model [19].
The SBM is useful due to its ability to limit the changes to the community structure of
the generated network, while a hierarchical model helps preserve the network’s member
hierarchy. There are other generative models that can be used to create networks with
communities, some of which are discussed in [20]. The extent of rewiring is controlled by a
user-provided parameter pB ∈ (0, 1], which defines the variance of the generated weights
distribution. As pB approaches 1, the rewired networks become more like each other, and
the original noisy network [16].

Given the basic noisy parameters of such a network, including the lists of nodes,
weighted degrees of all nodes, communities, and hierarchy, the generator produces a set
of randomly generated networks by randomly redirecting weak edges while preserving
the strong ones. In the process of generating a vast number of statistically equivalent
networks, the generator records the network structure for each unique network variant.
Any duplicates of an already recorded network just increase the duplicate count for this
network.

When all networks are generated, we treat each unique network as a solution variant
and assign to it the probability that this variant represents the ground truth. This probability
is approximated by the ratio of the count of this network’s duplicates plus one to the total
number of all generated networks. Variants with large occurrence counts correspond to
networks with the most persistent patterns of network structures. Using just the Shannon
entropy, we can select a variant that minimizes the uncertainty for operations planned
on the network. Repeatedly generating new pools of networks from the resultant variant
lowers the entropy of the result. Moreover, if the entropy or the cost of distortions is too
high, the network operators can identify nodes, monitored for which can fastest reduce
the entropy.

We apply the entropy-based metrics described in Section 2 to a set of s community
structures derived from r networks generated by the BWRN algorithm [16]. In our ap-
plication, entropy-based metrics are used to measure the uncertainty arising from two
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probabilities assigned to each node. The first is being a member of a community, referred
to as structural uncertainty, and the second is performing the function assigned to this
node, referred to as functional uncertainty. These uncertainties are measured in the set of
generated community structures and functions assigned to nodes. The goal is to construct
a community structure with the lowest expected cost of operating on a network with uncer-
tain communities and node functions caused by noisy network data. We present two new
heuristics to create such community structures. They are important in the investigation of
criminal or terrorist organizations and in planning their disruptions.

3.1. Preprocessing of Noisy Network Data and Shannon Entropy Metric

Given a network with a set N of nodes, denoted as {n1, n2, . . . , n|N|}, and a set
E ⊆ N × N of edges, we use the BWRN generator [16] to rewire the given network r
times, creating a set of r networks which are statistically equivalent to each other. Then,
we use the Louvain community detection algorithm [21] to detect non-overlapping com-
munities in each generated network. We cluster these networks into s ≤ r groups, each
containing the same community structure Ci for i = 1, . . . , s. Each community structure Ci
has weight wi defined as the number of networks that share this structure.

This set of s community structures is subsequently used as a proxy for the ground-truth
community structure for the given noisy network data. When r → ∞, fractions f C

i = wi/r
asymptotically converge to the probability that the community structure Ci is the ground
truth for the given noisy network data.

The preprocessing steps expect that the values for the following parameters are se-
lected: pB, which controls the extent of rewiring, and r, which defines the number of
generated networks. The smaller pB is, the larger r must be, because more aggressive
rewiring requires generating more networks to create all feasible community structures.
Because the methods presented here are heuristics, they require finding suitable values of
these parameters to obtain the best results.

The first entropy-based metric proposed here is the classic Shannon entropy com-
puted over an entire set of generated community structures by setting pC

i = f C
i . The

corresponding equation is

eC
s =

s

∑
i=1

pC
i ln pC

i (1)

It follows from the definition that the most reliable ground-truth structure is the
community structure Ci with the highest fraction of f C

i .

3.2. Set Entropy-Based Metrics

In this section, we introduce three entropy-based metrics that adopt the human mobil-
ity entropy metrics proposed in [17] for use in our application. This reference uses mobile
phones and tracks users’ locations by identifying cell towers servicing the call of each user
as the location. The authors define uncertainty of user location by introducing three entropy
metrics for increasingly complex mobility patterns of the cell towers servicing the calls. The
first is the random entropy defined as

Srnd
i = log2Vi, (2)

where Vi is the number of distinct locations (cell towers) visited by user i. The second is the
temporal-uncorrelated entropy, defined as

Sunc
i = −

Vi

∑
j=1

pi(j) log2 pi(j), (3)

where pi(j) is the historical probability that location (cell tower) j was visited by user i.
The third and final measure is the real entropy Si, which depends on the frequency and
order of visits made by each user. Let Ti = X1, X2, . . . , XL denote the sequence of cell
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towers at which that user i was observed at each consecutive hourly interval. Then, the
real entropy is

Si = − ∑
T′i⊂Ti

P(T′i ) log2[P(T′i )], (4)

where P(T′i ) is the probability of finding a particular time-ordered subsequence T′i in the tra-
jectory Ti. The authors also introduce important measures of predictability Π ≤ Πmax(S, V),
where Πmax represents the maximum predictability for each user, and is calculated as

S = H(Πmax) + (1−Πmax)log2(V − 1), (5)

where the binary entropy function is

H(Πmax) = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax). (6)

The maximum predictability for Πrnd and Πunc is also determined and extracted from Srnd

and Sunc, respectively. For the real entropy, S, we map each node onto the mobile user.
Time slot t in the mobility model is mapped to community structure Ct, where the node ni
visits all cell towers associated with members of its community in Ct, during time slot t.
Finally, we impose the order of visitations from the most to least frequent pairings between
the node ni and each member of its communities. In other words, node ni will first visit
its community member nj that most frequently appears with ni in the same communities
across all s community structures.

3.3. Selecting the Community with the Smallest Expected Cost of Structural and
Functional Uncertainties

So far, we have used the entropy measures to find the community structure Ccan with
the highest approximated probability to be the ground-truth structure and therefore having
the lowest entropy. Here, we select a new structure that ensures the lowest expected cost
of operating on a network with uncertain communities and node functions. This cost, CT ,
is defined by a pairwise comparison of the newly constructed k version of a candidate
community structure Ccan

k to each of the s already established structures Ci. This cost can
be defined as

CT(Ccan
k ) =

s

∑
i=1

C(Ccan
k , Ci) (7)

To demonstrate how to construct such cost functions, we introduce two simple but useful
examples of them using pairs of community structures Ccan

k , Ci, shown in Equation (7). We
call the first cost function frequency based as it accounts for the average frequency of pairs
of nodes appearing in all ground-truth communities. It is defined as follows:

C f req(Ccan
k , Ci) =

|N|

∑
j=1

(
|ccan

k,j ∪ ci,j| − |ccan
k,j ∩ ci,j|

)
f C
i . (8)

where ccan
k,j denotes the community with node nj in Ccan

k while ci,j refers to the community
with node nj in community structure i. Hence, this metric penalizes unmatched members
of either community with a unit cost, independent of the community size.

The second cost function, named the fraction-based cost, is defined as

C f rac(Ccan
k , Ci) =

|N|

∑
j=1

(
1−
|ccan

k,j ∩ ci,j|
|ccan

k,j ∪ ci,j|

)
f C
i , (9)

Hence, this metric computes an arithmetic complement of the Jaccard similarity metric [22]
between pairs of communities that share a node in the corresponding communities Ccan

k , Ci.
Unlike the first one, this function discounts the expected cost of unmatched nodes in
large communities.
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In both cases, the heuristics for creating Ccan start with the initial Ccan,1 in which
each node nj ∈ N is a community. Let Mj denote the average number of members of
communities containing node nj in all s ground-truth community structures. Then, the

total penalty for the initial structure Ccan,1 is −|N| + ∑
|N|
j=1 Mj for the frequency-based

penalty. Denoting mi,j the number of members of a community containing node nj in the Ci

community structure, the fraction-based penalty can be expressed as |N| −∑
|N|
j=1 ∑s

i=1
f C
i

mi,j
.

For the frequency-based penalty, we first compute the average frequencies of all
pairs of nodes in all s feasible ground-truth community structures and denote them as
fp(j1, j2). Consequently, the change in penalty from joining j1, j2 into one community is
pc(1− 2 fp(j1, j2) and the penalty decreases when fp(j1, j2) > 1/2. This argument holds if
we apply it to communities ca, cb and consider the frequency of their union ca ∪ cb. This
observation motivates our heuristic, defined inductively as follows:

1. Initial step 1, the initial Ccan,1 is the set of |N| communities, each containing a different
single node.

2. Inductive step 1 < k ≤ |N|. Having a community structure with |N| + 2− k, we
measure the penalty change from merging any pair of communities. Next, we select
the pair of communities ican

1 , ican
2 with the lowest penalty change pc in the merger.

If pc ≥ 0, then the current community structure Ccan,k−1 is the best. Otherwise, we
merge communities ican

1 , ican
2 , creating the Ccan

k structure with one less community
that is merged with another, which is with |N|+ 1− k communities. Naturally, this
heuristic runs at most |N| steps.

The heuristic for the fraction-based penalty uses the same inductive scheme of merging
one pair of communities in each step, selecting a pair whose merging decreases the penalty
the most, and stopping when none decreases the penalty.

Both heuristics required careful implementation to be efficient, like creating a dic-
tionary of all s community structures, and recomputing frequencies of only a pair of
the candidate communities that were merged, which sped up the processing 100 times
compared to the initial prototype.

4. Data

To present our proposed entropy-based metrics in action, we evaluate them on the real-
world Caviar gang [23] and Sicilian mafia [6] criminal networks and the Jakarta Bombing
terrorist network [24].

The Caviar network represents criminals who smuggled hashish and cocaine into
Montreal, Canada. The data were collected between 1994 and 1996. During this time,
the police seized shipments of drugs but delayed any arrests until the investigation was
completed. The Caviar network is a weighted and directed network, where edges represent
wiretapped telephone calls between members of the network.

The Sicilian network was a drug-trafficking criminal organization based in Sicily,
Italy. Its data was collected between 2003 and 2007. This network is also weighted and
directed, with edges representing wiretapped telephone calls among members of the
network. Both the Caviar and Sicilian networks were derived from data publicly released
from court proceedings.

The Jakarta Bombing terrorist network is an undirected weighted network composed
of two snapshots showing the network before and after the 2009 Jakarta bombing in Jakarta,
Indonesia. We only focus on the pre-attack snapshot because the network was denser
before rather than after the attack.

5. Results

In the evaluation of our proposed entropy-based metrics and community prediction
methods, we use the BWRN generator with pB = 0.875 to rewire r = 1000 networks, using
the Caviar and Sicilian criminal networks and the Jakarta Bombing terrorist network. We
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then measure the Shannon entropy and the set entropy across the community structures of
the rewired networks.

5.1. Variance of BWRN Generated Networks

The user-defined pB ∈ (0, 1] controls the variance of the generated weights distribution
of the BWRN rewired networks. As pB approaches 1, the rewired networks become more
statistically equivalent to the original network. To determine which pB value to use, we
test the following values pB: [0.5, 0.75, 0.875, 0.9375]. Table 1 shows the resulting Shannon
entropy values. As pB increases, the Shannon entropy mean and standard deviation of the
community structures generated by BWRN decrease. We find that pB = 0.875 results in
rewired network community structures with the largest range of Shannon entropy values,
in comparison to the rest of the tested pB values. Yet, networks rewired using pB = 0.875 are
more statistically equivalent to the original network than networks rewired using smaller
pB values, as shown in Table 1. Using pB = 0.9375, or a larger value, results in the rewired
networks and the original network becoming too alike. Therefore, for the rest of this paper,
all the BWRN rewired networks will use pB = 0.875.

Table 1. The mean, range, and standard deviation of Shannon entropy are shown for all community
structures found in networks rewired from the original Caviar, Jakarta, and Sicilian networks using
the following values of pB = [0.5, 0.75, 0.875, 0.9375]. Each of the original networks was rewired
1000 times and divided into 10 groups with 100 networks each, to create 10 groups of results.

pB Values 0.5 0.75 0.875 0.9375

Caviar
mean 3.640 3.246 2.727 2.169
range 0.554 0.522 0.417 0.324

σ 0.188 0.153 0.136 0.121

Jakarta
mean 2.043 1.379 0.944 0.621
range 0.517 0.413 0.215 0.141

σ 0.174 0.148 0.060 0.039

Sicilian
mean 6.908 6.908 6.907 6.826
range 0 0 0.002 0.003

σ 0 0 0.001 0.001

5.2. Repeated Rewiring of the Network with the Lowest Shannon Entropy

The rewiring of the Caviar and Sicilian networks using the BWRN generator [16]
results in creating networks with varying edges and community structures. We use the
following heuristic to find a community structure with the lowest Shannon entropy. It starts
with rewiring the original network r times. In the set of rewired networks, we find the
community structure Ccan with the highest fraction f C

i and mark all rewired networks with
this community structure as candidates. Using the BWRN generator [16], we rewire every
candidate network r times and mark the candidate network that results in the set of rewired
networks with the lowest Shannon entropy as gcan. We repeat this process iteratively on the
sets of networks rewired using the subsequent gcan. This process stops when the Shannon
entropy of the newly rewired network community structures stops decreasing. Once this
happens, we repeat the process one more time, and if all newly rewired networks have a
Shannon entropy higher than the previous minimum, we stop. Otherwise, we restart the
rewiring to search for the next local minimum of the Shannon entropy, and after finding it,
we stop. We found that the Shannon entropy of the networks rewired from the subsequent
graph gcan tends to be lower than that of the networks rewired from the original network.

We then use the set entropy-based metrics to measure the uncertainty present across
the community structures of all the rewired networks. We find that over the first few
rounds of rewiring, the Shannon entropy and the set entropy are constantly decreasing,
until they reach a minimum value. Once this happens, further rewiring would cause the
Shannon entropy and set entropy to increase. What we found to be very interesting is that



Entropy 2023, 25, 1118 8 of 13

further rewiring of the resulting networks with an increased entropy value brings back
previously observed minimum values of the Shannon entropy and set entropy.

The presence of many candidate networks to rewire among the networks rewired
from the original network indicates that the original network has low uncertainty, resulting
in many networks with the same community structure. Rewiring of O(r) networks r
times, each with N nodes and L edges, takes O(r2gNL), where g is the cost of generating
a random number. For a larger r, rewiring all candidates may become infeasible. To
continue our process of rewiring efficiently, we use a heuristic that selects a single network
with the highest modularity, instead of rewiring. Because the complexity of modularity
is O(NL) [25], the heuristic complexity is O(rNL), so it is O(rg) faster than rewiring. As
shown in Figure 1, this heuristic works well.

Figure 1. Starting with the rewiring of the original Caviar and Sicilian networks at step 0, we rewire
the networks using the BWRN generator [16]. Then, we find a candidate for the lowest Shannon
entropy community structure, denoted Ccan, and rewire this structure’s networks to find the one, gcan,
whose rewired networks yield the lowest Shannon entropy. We repeat this process until the minimum
Shannon entropy value of the results stops decreasing. The Caviar network creates several candidates
gcan before getting to the solution. Instead, to speed up the process, we select one candidate network
with the largest modularity among all candidates. The figure shows the results of rewiring using the
brute-force method versus the heuristic, showing that the latter is more efficient.

In Figure 2, we show the set entropy of the networks generated from the best candidate
network gcan, presented in Figure 1. After every step of rewiring, we measure Srnd

i , Sunc
i ,

and Si and their corresponding Πrnd, Πunc, and Πmax over the set of rewired network
community structures. We believe that Sunc

i and the corresponding predictability Πunc are
the most useful measures for structure uncertainty. The temporal-uncorrelated entropy
considers the number of unique communities to which each node belongs in its community
structures and its frequency of appearance in such communities. As shown in Figure 2,
the Πunc increases as the corresponding Shannon entropy value decreases. The Srnd

i and
Si are presented for completeness. It is important to note that the value of Si, and its
corresponding predictability Πmax, are calculated based on the assumption that the user
will visit the most frequent community members first. Thus, these values may change
under a different assumption for patterns of visitations.

5.3. Rewiring Using Fraction-Based and Frequency-Based Predicted Communities

To evaluate the quality of communities generated using fraction-based and frequency-
based methods, we first find the rewiring step that results in the minimum Shannon
entropy value. As shown for the Caviar and Sicilian networks in Figure 1, this value can
be reached repeatedly as we continue rewiring, even when the entropy starts rising. For
the experiments conducted in this section, we refer to the round of rewiring with the first
iteration of rewiring at which the minimum Shannon entropy value is reached, as ican.
We proceed by applying the fraction-based and frequency-based community prediction
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methods on the set of rewired network community structures present in the rewiring step
that directly precedes ican. We will refer to the predicted communities of the fraction-based
method as C f rac and to the frequency-based method as C f req. For all the experiments
conducted using the frequency-based method, the user-defined parameter Z, defined in
Section 3.3, is set to R

2 .

Figure 2. During the iterative rewiring presented in Figure 1, we measure the set entropy and the
maximum predictability of the set of rewired network community structures. The three entropy
measures used are Srnd

i , Sunc
i , and Si, and we extract from them their corresponding predictability

Πrnd, Πunc, and Πmax. We find that as the Shannon entropy of Ccan decreases, so does the set
entropy of the best community structure among all rewired networks, signaling the corresponding
predictability increases.

We use the best candidate network gcan in the set of rewired networks created by the
rewiring step that directly precedes ican. We find that using either the C f rac or the C f req
generates communities whose Shannon entropy is lower than communities generated by
rewiring gcan as shown in Figure 1. This demonstrates that the construction heuristic goes
beyond the optimization achievable by the rewiring. We also find that Πunc and Πmax

increase for the networks rewired using C f rac and C f req. Table 2 shows that the usage of
the C f rac-predicted communities results in the highest predictability for Πunc and Πmax

across the set of rewired network community structures. Accounting for both the frequency
of occurrence between nodes in communities and the size of the communities in which
the nodes occur together improves predictions of the community structure from the set of
rewired networks.

Table 2. We find that rewiring the network gcan with the community structure Ccan reveals the com-
munity structures with the lowest observed Shannon entropy value. Using the BWRN generator [16],
we further rewire gcan using the C f rac- and C f req-defined community structures in place of Ccan. We
find that the minimum Shannon entropy value of the set of rewired network community structures
decreases in such cases. We also find that using the C f rac-defined community structure yields the set
of rewired network community structures with the highest Πunc and the Πmax predictability.

Community Structure Shannon Entropy Πrnd Πunc Πmax

Ccan 0.067 22.29% 46.95% 80.54%

C f rac 0.058 21.9% 50.49% 81.27%

C f req 0.061 21.33% 52.39% 81.6%

5.4. Validation with LFR Benchmark Networks

While we have shown that the resulting C f rac- and C f req-defined community structures
have a lower Shannon entropy value and higher predictability, it is difficult to prove their
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superiority because of the absence of a ground-truth community structure with which to
compare our communities C f rac and C f req. It is rarely possible to obtain a ground truth
when working with covert networks due to their secretive nature. Hence, to validate
our methods on networks with a ground-truth community structure, we generate LFR
benchmark networks [26] that are statistically equivalent to either the Caviar or Sicilian
networks but have a known ground-truth community structure.

The authors of [26] provide a tool to generate networks with a desired set of properties.
These include the number of nodes N, the average degree k, the maximum degree maxk,
the proportion of the total edge weight that is internal to communities muw, the proportion
of total degree that is internal to communities mut, the minimum number of communities
minc, the maximum number of communities maxc, and the average clustering coefficient C.
We compute the values of these properties on the Caviar and Sicilian networks. For setting
the values of minc and maxc, we run the Louvain [21] community detection algorithm 100
times on each network and find the maximum and minimum number of communities
detected. Of those 100 Louvain community structures, we use the community structure
that appears most frequently to compute muw and mut. The rest of the properties are
computed directly from the Caviar and Sicilian networks. We enter these properties into
the LFR benchmark tool to obtain a single network that is statistically equivalent to the
Caviar network but has a ground-truth community structure defined by the tool. We repeat
this process five times to create five separate LFR benchmark networks generated from the
Caviar network. The same is performed for the Sicilian network. We will refer to these
networks as the Caviar LFR networks and Sicilian LFR networks.

To provide a baseline result, on each of the ten LFR networks, we run the Louvain
algorithm 100 times, collecting the community structures obtained in each run. Then, we
compute the normalized mutual information (NMI) [27] score between each community
structure produced by the Louvain algorithm and the ground-truth community structure
of the LFR network. Next, we compute two measures over the obtained 100 NMI scores,
the average and the median values as the baseline results. Finally, we run our repeated-
rewiring construction heuristic on the LFR benchmark networks to obtain the C f rac- and
C f req-defined community structures with the lowest Shannon entropy and compute the
NMI scores between these structures and the ground-truth community structures.

As shown in Table 3, the C f rac-defined community structures created by our repeated-
rewiring construction heuristic have significantly improved the NMI scores on average
compared to the baseline. As shown in Figure 3, the C f rac-defined community structures
have the highest NMI score on 9 out of the 10 LFR networks. The only exception is the first
Caviar-based LFR network where the C f rac NMI score is 0.744 and the mean baseline NMI
score is 0.747, but this is a relatively tiny difference. The C f rac NMI score is still significantly
higher than the median baseline NMI score of 0.713. Overall, these results demonstrate that
the C f rac-defined community structures provided by our heuristic get closer to the ground
truth than those provided by a traditional community detection algorithm.

The relative improvement in the NMI score is smaller on the Sicilian-based LFR
networks than the Caviar networks. The Sicilian-based LFR network community structures
also generally have higher NMI scores than those based on Caviar. This happens because
the average degree of the Caviar network is 4.52 while for the Sicilian network it is 2.88.
Low degrees of most nodes in the Sicilian network reduce the variance among the detected
community structures.
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Table 3. Five LFR benchmark networks are generated each based on the Caviar and Sicilian networks.
As a baseline, the mean denoted for a vector Xl as <Xl> and median denoted as Median[Xl ] and
normalized mutual information (denoted as NMI(CS1, CS2)) scores are provided for a vector of
100 communities generated by Louvain community detection algorithm (CS100), compared pairwise
with the ground truth (CSGT) on the Caviar and Sicilian-based LFR benchmark networks. Results
for the heuristic-obtained Caviar and Sicilian-based LFR benchmark network structures with the
lowest Shannon entropy are shown in the last two rows of the table. All four values are averaged
over the 5 separate LFR benchmark networks. The C f rac-defined community structures with the
lowest Shannon entropy have the highest average NMI scores.

Analysis of LFR Benchmark Ground-Truth Networks Caviar Sicilian

<< NMI(CS100) > /NMI(CSGT) > 0.676 0.812
<< Median[NMI(CS100)] > /NMI(CSGT) > 0.645 0.815

NMI(C f req)/NMI(CSGT) 0.726 0.808
NMI(C f rac)/NMI(CSGT) 0.729 0.827
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Figure 3. Five LFR benchmark networks are generated using the parameters of the Caviar (a) and
Sicilian (b) networks. For each LFR network, we provide a baseline score by running Louvain
community detection 100 times on the network and computing the normalized mutual information
(NMI) scores of the detected communities versus the ground truth. The median and mean of these
scores are plotted on the orange and yellow lines. Using our repeated-rewiring construction heuristic,
we obtain the C f req- and C f rac-defined community structures with the lowest Shannon entropy. The
NMI scores for these structures compared to the ground truth are plotted on the light and dark blue
lines. The C f rac-defined community structures have the highest NMI scores for nine out of the ten
LFR networks. The only exception is the first Caviar-based LFR network where the C f rac NMI score
is 0.744 and the mean Louvain NMI score is 0.747, although this is a relatively tiny difference.
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6. Conclusions

The major contribution of this paper is the introduction of entropy measures of network
community structure uncertainty and their use to establish limits of such uncertainties,
defined as Πrnd, Πunc, Πmax in Section 3.2. This enables us to search a pool of rewired
networks for the one whose community structure has the lowest uncertainty, and even
beyond this pool, when using our second heuristic, we assign each node to communities
and network functions in the way that minimizes the expected cost of data uncertainty.

The abstract concept of network uncertainty is important, but even more important
are the downstream consequences resulting from erroneous edge assignment. They can
vary widely depending on which nodes are assigned to communities or functions that are
different than predicted. In the case of criminal covert networks, such uncertainty may lead
to the arrest of a low-level gang member instead of the leader. To address this challenge,
we introduce a novel heuristic that constructs a community structure with the minimal
expected cost of uncertainty of each node community membership and function. The cost
function can be predefined or provided by the users based on the application. We showed
three examples of such functions and developed a methodology that starts with noisy
network data and maps nodes to communities and network functions that minimize the
expected cost of data uncertainty.

In future work, we plan to extend the methodology to other domains in which net-
works are created from noisy data. We have already started to look at biomedical networks,
in which data collections return massive volumes of noisy data, and the resilience of supply
chains, in which diverse participants limit access to their proprietary data to preserve their
competitive advantage.
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