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Abstract: The existence of the physiological tremor of the human hand significantly affects the
application of tele-operation systems in performing high-precision tasks, such as tele-surgery, and
currently, the process of effectively eliminating the physiological tremor has been an important yet
challenging research topic in the tele-operation robot field. Some scholars propose using deep learning
algorithms to solve this problem, but a large number of hyperparameters lead to a slow training
speed. Later, the support-vector-machine-based methods have been applied to solve the problem,
thereby effectively canceling tremors. However, these methods may lose the prediction accuracy,
because learning energy cannot be accurately assigned. Therefore, in this paper, we propose a broad-
learning-system-based tremor filter, which integrates a series of incremental learning algorithms to
achieve fast remodeling and reach the desired performance. Note that the broad-learning-system-
based filter has a fast learning rate while ensuring the accuracy due to its simple and novel network
structure. Unlike other algorithms, it uses incremental learning algorithms to constantly update
network parameters during training, and it stops learning when the error converges to zero. By
focusing on the control performance of the slave robot, a sliding mode control approach has been
used to improve the performance of closed-loop systems. In simulation experiments, the results
demonstrated the feasibility of our proposed method.

Keywords: hand physiological tremors; incremental broad learning system; tele-operation robot
system; sliding mode controller

1. Introduction

With the rapid advancements of tele-operation techniques, robots have gradually
improved in performance and have been applied for various areas such as medical and
space exploration, see [1–3] for examples, where they are used to complete difficult and
complicated scenes with greater precision and efficiency. The stability of tele-operating
systems is susceptible to various factors, such as human hand tremors and transmission
time delays. Hand tremors in tele-operation lead to suboptimal task tracking. The phys-
iological tremors in human hands are natural, and not pathological [4,5]. These tremors
exist in every part of the human body with an amplitude range between 50 and 100 µm
in each principal axis, and their dominant frequency is usually distributed in the range of
8–12 Hz [6,7]. Note that physiological tremors are intolerant in the tele-operation scene
requiring highly precise manual positioning [8–10], since they can make a remote robot
generate motion deviations. Hence, it is imperative to compensate for these tremor signals
to enhance the effectiveness of tele-robotic operation systems. To eliminate this influence of
tremors, various related methods have been proposed; see [11–17] for examples.

Since physiological tremors exhibit a high-frequency characteristic, while human
hand motion is low frequency, some scholars have proposed utilizing the linear low-pass
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filter [11], which can filter out high-frequency signals and retain low-frequency signals.
However, digital filters usually require caching and data processing, which can cause time
delays and affect the response speed of systems. The literature show the results of the
implementation of canceling tremors on tele-operation systems using the low-pass filter,
thereby demonstrating that it is fundamental to set the filter frequency threshold, wherein
the optimal frequency threshold still loses some information [12]. To address the limitations
of digital filters, in [13], T. A. Wei and P. K. Khosla proposed that the Kalman filter (KF)
can combine sensor measurements and dynamic system modeling, as well as estimate the
state of the system using the Kalman filter principle, to eliminate the tremor. Furthermore,
in [14], Y. Wang proposed an innovative band-limited multiple Fourier linear combiner
(BMFLC)-based KF approach (BMFLC-KF) to offer the decomposition of band-limited
signals in the time frequency, thereby facilitating effective filtering and compensation.
In [15], the authors proposed an autoregressive-based KF model (AR-KF) aimed at the
real-time estimation of oscillatory patterns by leveraging past output data. In [16], the
authors proposed algorithms based on multi-step (MS) prediction to address the phase
delays in the sensors and filters, and they accurately eliminated real-time tremors. Since
the fusion of various algorithms leads to computational cost increases, a reduced-order
Kalman-enhanced-based BMFLC model (RKE-BMFLC) was proposed in [17], which can
reduce the computational complexity of the system and improve real-time performance.
Despite their promising performance in predicting tremors, the algorithms mentioned
above still have certain limitations. First, the AR-KF method utilizes a linear prediction
model to represent the tremor signal as a linear Gaussian distribution. To achieve accurate
results, the KF approach must consider the specific characteristics of the tremor being
analyzed. Second, when applying the BMFLC-KF, one may need to select parameters
carefully, and as shown in [14]; the results clearly show that a minor frequency gap can
lead to the infeasibility of such an approach for accurate estimation.

To remove the two limitations above, many machine learning-based approaches have
been proposed, e.g., the small-scale sample learning method has been employed widely
in physiological tremor elimination applications for tele-operation systems. In [18], Luo, J.
proposed the support vector machine (SVM) algorithm as the model for tremor cancel-
lation, wherein it demonstrated good generalization ability and excellent computational
performance. In [19], Z. Liu made the SVM algorithm more adaptable to remote operating
system tasks and proposed an adaptive fuzzy SVM-based algorithm filter, which filters time
series signals and is capable of more accurately modeling tremor signals. In addition to the
small-scale sample approach, strong deep learning models [20–22] can further learn the
characteristics of tremor signals and achieve high-precision tremor elimination. Despite the
merits of the machine-learning-based approaches such as those mentioned above, they still
have some restrictions: (1) for a small-scale sample learning method, a loss in prediction
accuracy may occur, because learning energy cannot be accurately assigned, and it may be
insensitive to small amplitude signals, which may result in poor performance; (2) for deep
learning models, a large number of hyperparameters is an unavoidable problem, regardless
of their ability to process data efficiently.

Motivated by the observation above, in this study, an incremental broad learning
system filter (I-BLSF) has been proposed to predict and cancel hand physiological tremors.
In summary, the main novelties and contributions of this work are listed as follows:

• Unlike high-complexity deep learning networks, a simple and efficient network, broad
learning system (BLS), is applied in tele-operation systems as a tremor filter, which
overcomes the shortcomings of traditional deep neural networks by using the pseudo-
inverse calculation. Due to the ill-posed problem, we combine the BLS with the ridge
regression approach.

• Traditional batch-learning algorithms require a lot of time and computing resources,
and they are limited in dealing with mass data. To solve the problem, incremental
learning algorithms are introduced to rebuild the network model online, which can
improve the model performance.
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• A novel sliding mode controller is raised. The previous work [23] combined with the
PD controller to achieve tremor canceling, and there was still room for improvement in
tracking accuracy and robustness. Thus, in this paper, we apply a superior controller
to control the slave robot.

The rest of this paper is structured as follows. First, Section 2 points out the research
problem that needs to be addressed. Then, Section 3 describes the control strategies de-
signed for teleoperation. The proposed broad-learning-system-based filter (BLSF) approach
is introduced in Section 4. Section 5 shows experiment parameters and Section 6 validates
by simulation that our proposed method has the capability for canceling tremors. Finally,
Section 7 makes a summary of the paper.

2. Problem Description

The background problem of this study will be described in this section. First, we
introduce the tele-operation system, including the master and slave devices. Then, in the
master part, the joints of the master device are analyzed. Finally, the workspace relationship
between the master and the slave is given.

2.1. Tele-Operated Robot System

In Figure 1, it shows components of a tele-operation robot system, which is composed
of the following parts: (1) the master part (involving a haptic device and a sampling
device); (2) the bluetooth communication channel; and (3) the slave part (containing a slave
robot manipulator).

Teleoperation System Master Part Teleoperation System Slave Part

Force Feedback Control Strategy Controller

Communication 

Channels Slave Computer

Robot 

Manipulator

Driving Unit

Master Computer

Pose Sampler
Master Control

Bluetooth 

Figure 1. Tele-Operation robot system elements.

• Haptic device and sampling device: The haptic device contains a six degrees of
freedom (DOFs), where the first three are used to describe the position of the haptic
device, and the last three are used to describe the orientation of the haptic device. The
sampling device (Myo armband) has eight electromyography (EMG) electrodes and
one nine-axis inertial measurement unit (IMU), which can obtain the change in human
arm muscle bioelectricity versus time.

• Communication channels: Bluetooth technology eliminates the need for wires be-
tween master devices and slave devices through wireless connections. Master–slave
computers can communicate with each other at a certain distance through a wireless
receiver on the chip.

• Slave robot manipulator: A multi-DOFs robot manipulator is used as the slave control
object, which is equipped with force sensors and electric servers on each joint, where
electric servers include the control circuit, direct current (DC) motor, and reduction
gear set.

2.2. Master Joints Analysis

Although physiological tremors are normal signals in our daily life, they are a non-
negligible issue for meeting about 10 µm range position accuracy [24]. These tremor signals
affect each joint of the master device by yielding disturbance signals. In this paper, the
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modified D-H notation [25] has been adopted to express a haptic device with tremors, and
we have the following equation:{

θorii + θhi
+ ∆θi = θnewi , i = 1, 2, 3, 4, 5, 6,

dorii + dhi
+ ∆di = dnewi , i = 1, 2, 3, 4, 5, 6,

(1)

where θori and dori are the original joint information, θh and dh are the desired values
from the human hand, and i represents the i-th joint. ∆θ and ∆d are the disturbed values
influenced by tremors, and θnew and dnew are actual joint information. And then, the
homogeneous transformation matrix can be described in the following form:

i
i−1T̂ =


cθnewi −sθnewi 0 ai−1

sθnewi cαi−1 cθnewi cαi−1 −sαi−1 −sαi−1sdnewi

sθnewi sαi−1 sαi−1cθnewi cαi−1 cαi−1dnewi

0 0 0 1

,

s = sin(·), c = cos(·), i = 2, . . . , 6,

(2)

where α is the kinematic link twist. To obtain the joint transformation matrix for the
end effector, the six matrixes 0

1T̂, 1
2T̂, 2

3T̂, 3
4T̂, 4

5T̂, and 5
6T̂ can be multiplied in a sequence

as follows:

0
6T̂ = 0

1T̂ 1
2T̂ 2

3T̂ 3
4T̂ 4

5T̂ 5
6T̂ =


n̂11 n̂12 n̂13 p̂x
n̂21 n̂22 n̂23 p̂y
n̂31 n̂32 n̂33 p̂z
0 0 0 1

, (3)

where n̂ij, i = 1, 2, 3, j = 1, 2, 3, and p̂x, p̂y, p̂z are the rotational factors and the position
vector, respectively.

2.3. Workspace Description

In a tele-opeation robot system, the description of the coordinate system between the
master and the slave is different due to their different physical characteristics, and their
workspace relationship is shown as follows:

Ss = Zδ × (θSm + b), (4)

where Ss defines the coordinates of the slave robot manipulator, and Sm defines the coordi-
nates of the master device. Zδ is the rotational matrix about the z-axis, and Equation (4) has
the following form:xs

ys
zs

 =

cosδ −sinδ 0
sinδ cosδ 0

0 0 1

×
θx 0 0

0 θy 0
0 0 θz

xm
ym
zm

+

bx
by
bz

, (5)

where δ is a rotation angle. θx, θy, and θz are the scale factors in the three-axis direction,
and bx, by, and bz are the translation factors the three-axis direction. The parameters of
Equation (5) are provided as below:

δ =
π

4
[θx θy θz]T = [0.041 0.040 0.041]T

[bx by bz]T = [0.701 0.210 0.129]T .

(6)

The presence of tremors in the homogeneous transformation matrix of a haptic device
leads to changes in the master coordinates Xm, which in turn causes differences in the
slave coordinates Xs. As the error in the master–slave position increases, the accuracy of
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the system decreases. To address this issue, a tremor attenuation filter can be designed to
reduce the effects of tremors on the performance of tele-operation systems.

3. Control Strategies

In the paper, we integrated the force feedback module, the controller module, and
the tremor filter module into the teleoperation system. An initial torque τo from a human
hand is sent to the haptic device, and the haptic sends an operation trajectory Sm1 to the
filer unit. Sm2 is a filtered trajectory, Ss is an actual trajectory of the slave manipulator, and
Se is an error trajectory, i.e., Se = Sm2 − Ss. The error signal is sent to the force feedback
module to obtain the master and slave control variables q̇md and q̇sd, respectively. In the
controller module, the controller exports the master and slave torque, which are τm and τs,
respectively. Figure 2 shows this process in tele-operation robot systems. Here, we provide
more details on the control strategies as follows.

Ss
Sm1 Ssd sd

q

m
τ

Operator Hand
o
τ

Haptic Device Filter
Sm2

Slave Manipulator ObjectsKs J
+

s Controller
s
τ+

-
qs

Se

KmJ
+

m

Smd

Force Feedback Module

Force Feedback Module

Controller
md

q

Tremor Filter Module

qm

Controller Module

Controller Module

Figure 2. Control mode in teleoperation systems.

3.1. Force Feedback Control

When the end effector of the slave robot arm follows the motion of the master device,
the master device can receive feedback information from the force sensors of the slave robot
joints. Force feedback can achieve the integration of visual perception and tactile sensation,
thus ensuring that the operator can perceive the remote environment and manipulate the
robot more naturally [26]. The strength of the feedback force is expressed as [27]:

Ff = K f

√
(xs − xm)2 + (ys − ym)2 + (zs − zm)2, (7)

where xm, ym, and zm and xs, ys, and zs are the coordinate values of the master device and
the slave device, respectively. K f is a feedback force parameter. With the optimization of a
received feedback force from the slave part, the desired trajectories of the master and slave
devices, Smd and Ssd, respectively, can be obtained. The pose information can be turned
into the joint velocity information by the Jacobian matrixes J+m and J+s as follows:q̇md = J+m ( ˙Sm)Ṡmd,

q̇sd = J+s (Ṡs)Ṡsd.
(8)

3.2. Sliding Mode Controller

The sliding mode controller, known for its ability to overcome system uncertainties
and achieve robust control characteristics [28], employs different structures on both sides
of the sliding surface. This nonlinear controller is particularly effective in dealing with the
complexities of uncertain dynamic systems. For a typical second-order nonlinear uncertain
dynamic system with a single input, its general state space expression can be described as
follows [29]:

ẋ1(t) = x2(t) (9)

ẋ2(t) =
n

∑
i=1

(ai + ∆i(t)) fi(x1, x2, t) + b(x1, x2, t)u(t) + d(t) (10)
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x1(t0) = x1,0, x2(t0) = x2,0, (11)

where x1(t) and x2(t) are the state variables, ai (i = 1, . . . , n) are the constant parameters
of the system, and ∆i and d(t) are the uncertain perturbations and the known disturbance,
respectively. u(t) represents the input signals, and fi(x1, x2, t) and b(x1, x2, t) are derived
by the system characteristics; x1,0 and x2,0 are initial conditions given at the initial time t0.
The main objective of this controller is to satisfy that X(t) = [x1(t), x2(t)]T can track the
desired trajectory Xd(t) = [xd1(t), xd2(t)]. Hence, the control law should be designed to
make the tracking error asymptotically arrive at zero. Since the above considered system is
single input, there exists only one sliding surface s(x1, x2) = 0 for second order systems,
and it is defined as follows:

s(x1, x2) = err2(t) + c× err1(t), (12)

where c is a strictly positive real number, and the tracking errors err1(t) and err2(t) are
written as follows:

err1(t) = x1(t)− xd1(t)

err2(t) = x2(t)− xd2(t).
(13)

Assume that ˙err1 = err2, and denote E(t) = [err1(t), err2(t)]. To obtain a unique solution of
a homogeneous differential equation err(t) = 0, s(x1, x2) is set as zero. Thus, the tracking
error will asymptotically reach zero with a proper control law that can keep the trajectory
on the sliding surface. The control law is designed as follows:

ṡ = ˙err2 + c× err2 = −bsgn(s), b > 0

˙err2 = −c× err2 − bsgn(s), b > 0,
(14)

where b is a positive number.

Remark 1. Traditional controllers often rely on control algorithms such as the PID controller,
which are simple and easy to implement but have limited accuracy and anti-interference capabilities.
In contrast, the sliding mode control is effective in reducing the effects of uncertainties and external
disturbances that are common in practical systems, which is achieved by designing a sliding surface
that drives the system towards a stable equilibrium point, regardless of the uncertainties and
disturbances. Furthermore, the sliding mode control provides a fast response and high tracking
accuracy.

3.3. Tremor Attenuation Filter

To provide a more detailed explanation of the flow of signals in the tremor filter, we
provide the mathematical model of the designed tremor filter in Figure 3. The model
illustrates the various flows involved in the filtering process and how they interact with
each other.

Z
0 
Z

-1 …… Z
-d

+
+

nref(k)

D(k)

Tremor filter

+X(k)

Tremor compensation model

npre(k)

S(k)


Figure 3. Mathematical expression of the tremor complementation model.
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Since the data sampled by the sampling unit are hand trajectories and tremor distur-
bance signals, we denote the input of the tremor filter mathematical model as actual signals
X(k) and the tremor disturbance signals as nre f (k). The actual signals with tremors can be
written as follows:

X(k) = D(k) + nre f (k), (15)

where k is the sampling point, and D(k) is the desired signal without tremors. Through the
prediction of the tremor filter, the output of the tremor filter mathematical model is

S(k) = X(k)− npre(k) = D(k) + nre f (k)− npre(k), (16)

where npre(k) is the prediction signal of the tremor filter.
We denote the error as ∆n = nre f (k)− npre(k) and aim for it to equal to zero. Theoreti-

cal predictions suggest that the model error ideally should be zero. In practical scenarios,
there might exist a small residual deviation, thus resulting in a prediction error that is
slightly larger than zero.

4. Design of Broad-Learning-System-Based Tremor Filter

While deep learning algorithms are efficient at processing large amounts of data, they
often involve a large number of hyperparameters, which can be problematic. The broad
learning system is a novel and efficient network architecture that avoids the complex and
redundant structures found in traditional deep learning networks [30,31]. As a result, it
provides a more efficient, interpretable, and scalable solution for processing data.

4.1. Broad Learning System

The proposed network architecture was developed by C. L. Philip Chen and is referred
to as the broad learning system, which is depicted in Figure 4. This novel network architec-
ture differs from deep learning neural networks, as it does not require backpropagation
to update weights. The speed of the broad learning system is attributed to the fact that
weights can be obtained via pseudo-inverse formulas. Moreover, the network weights
are continuously updated as the system is trained with data, as the system employs an
incremental learning algorithm to adjust nodes without reinputting previous data.

Input: X

Z1 Z2 Zn

Output: Y

H1 Hm

Z1 Z2 Zn

m

n
W

 
i ii f f

Z = f X W + b  
j j

n

j e e
H = Z W + b

Figure 4. Broad learning system network model architecture.

In Figure 4, we denote X ∈ RM×N as the input into the BLS, and we denote Y ∈ RM×C

as the output, where M, N, and C represent the number of samples, the number of features,
and the number of output nodes, respectively. The input data X is randomly mapped to n
sets of feature window nodes, thereby generating the feature layer of the network, which
can be expressed in the following form:

Zi = φ
(

XW fi
+ β fi

)
, i = 1, . . . , n, (17)
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where the variables W fi
and β fi

correspond to randomly generated weights and biases,
respectively. φ(·) refers to a random mapping function. Each mapping group contains k
feature nodes. All the feature nodes can be represented as Zn ≡ [Z1, Z2, . . . , Zn], and we
denote j-th group enhancement nodes as the following:

Hj = ξ
(
[Z1, Z2, . . . , Zn]Whj + βhj

)
= ξ

(
ZnWej + βej

)
, j = 1, ..., m, (18)

where Whj and βhj are random weight coefficients, and the function ξ(·) is a nonlinear acti-
vation function, f = tanh(·). We denote all nodes as Lm

n ≡ [Z1, Z2, . . . , Zn|H1, H2, . . . , Hm].
The output of the broad learning model is represented as follows:

Y = [Z1, . . . , Zn|ξ(ZnWh1 + βh1), . . . , ξ(ZnWhm + βhm)]Wm
n

= [Z1, . . . , Zn|H1, . . . , Hm]Wm
n = Lm

n Wm
n .

(19)

Here, Wm
n represents the connection weight of the network with n feature windows and m

groups of enhancement nodes. For all nodes Lm
n , the pseudoinverse is equal to the following:

(Lm
n )

+ = [(Lm
n )

T Lm
n ]
−1(Lm

n )
T , (20)

and the weights can be represented as follows:

Wm
n = (Lm

n )
+Y = [(Lm

n )
T Lm

n ]
−1(Lm

n )
TY. (21)

Due to the ill-posed nature of the problem, where no stable or unique solution to the inverse
matrix exists, the ridge regression algorithm is employed to obtain the connection weights
of the structure. As a result, Equation (20) can be rewritten as follows:

(Lm
n )

+ = lim
λ→0

(
[λE + (Lm

n )
T Lm

n ]
−1(Lm

n )
T
)

, (22)

and we have
Wm

n = (Lm
n )

+Y = lim
λ→0

(
[λE + (Lm

n )
T Lm

n ]
−1(Lm

n )
T
)

Y. (23)

Remark 2. The broad learning model (BLM) is a computational framework that offers a fast
and efficient solution for various supervised and unsupervised machine learning tasks. The BLM
has been developed to overcome the limitations of traditional deep learning architectures, which
typically require a large number of layers and a large amount of computational resources to achieve
high predictive performance. The singular value decomposition technique is used to simplify the
complexity of the model, and incremental learning modes can be integrated to form the broad
learning system.

4.2. Incremental Learning Methods

In the broad learning system, to improve the system performance, an incremental
learning approach is integrated. This incremental learning method has three updating
forms, which contain the increment of the feature nodes, the increment of the enhance-
ment nodes, and the increment of the input data. Since the input data is enough for our
experiment, in this paper, the first two methods are considered. The details are given
as follows.

4.2.1. Increment of Additional Enhancement Nodes

Denote Lm
n = [ Zn |Hm ] and denote the group of additional enhancement nodes as

H∗ = ξ(ZnWh(m+1) + βh(m+1)). Hence, the new input matrix is written as follows:

Lm+1 ≡ [ Lm
n | ξ(ZnWh(m+1) + βh(m+1)) ], (24)
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where Wh(m+1) and βh(m+1) are random weights and random biases from n groups of
features mapping to p additional enhancement nodes, respectively. The pseudo-inverse of
the new matrix can be written as follows:

(Lm+1)+ =

[
(Lm

n )
+ − DBT

BT

]
, (25)

where D = (Lm
n )

+ξ(ZnWh(m+1) + βh(m+1)),

BT =

{
(C)+ i f C 6= 0
(1 + DT D)−1DT(Am

n )
+ i f C = 0,

(26)

and C = ξ(ZnWh(m+1) + βh(m+1))− Am
n D; the new weights are denoted as the following:

Wm+1 =

[
Wm − DBTY

BTY

]
. (27)

Remark 3. When the trained network fails to achieve the desired accuracy, additional enhancement
nodes can be added to improve the accuracy. By adding extra enhancement nodes into the network,
the nonlinear capability can be enhanced. As shown in the equations above, the algorithm only
requires the calculation of the pseudo-inverse of the new nodes rather than the entire matrix, thereby
enabling the network to be rapidly restructured.

4.2.2. Increment of Additional Feature Mapping Nodes

We point out that the dynamic increment of the enhancement nodes method cannot
improve the current network performance, as it may fall into a locally optimal solution.
The increment of additional feature mapping nodes is an effective learning method for
neural networks, which only needs to calculate the pseudo-inverse of the new nodes and
does not need to retrain the whole network. This method provides the benefits of saving
time for improving the feature extraction capability.

Assume that the initial nodes are constructed by n groups of feature mapping nodes
and m groups of enhancement nodes, and denote the additional (n+1)-th group feature
mapping nodes as Zn+1 = φ(XWe(n+1) + βe(n+1)), where We(n+1) and βe(n+1) are randomly
generated. The corresponding enhancement nodes generated by the additional (n+1)-th
group feature mapping nodes are defined as follows:

H∗j =
[
ξ(Zn+1W∗e1 + β∗e1), ξ(Zn+1W∗e2 + β∗e2), . . . , ξ(Zn+1W∗ej + β∗ej)

]
, j = 1, ..., m, (28)

where W∗ei and β∗ei are random parameters. Here, we denote Lm
n+1 = [ Lm

n | Zn+1 |H∗j ], and
its pseudo-inverse matrix is defined as follows:

(Lm
n+1)

+ =

[
(Lm

n )
+ − dbT

bT

]
, (29)

where d = (Lm
n+1)

+[ Zn+1 |H∗j ],

bT =

{
(c)+ i f c 6= 0
(1 + dTd)−1dT(Lm

n )
+ i f c = 0,

(30)

and c = [ Zn+1 |H∗j ]− Lm
n d; the new weights are denoted as follows:

Wm
n+1 =

[
Wm

n − dbTY
bTY

]
. (31)
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4.3. Sparse Autoencoder

Obtaining a good feature representation of input data is a critical step in machine learn-
ing. Traditionally, complex mathematical derivations have been used to derive features,
or a set of features has been generated through random initialization. However, random
features suffer from unpredictability and uncertainty, which may lead to incomplete feature
extraction. As the dimensionality or size of the input data increases, it becomes necessary
to remove redundant features.

To address these issues, the sparse autoencoder (SAE) model has been proposed,
which fine-tunes random features into a set of sparse and compact features [32–34]. The
SAE model structure is illustrated in Figure 5, and then the details of the sparse feature
learning algorithm are described below.

Input 
Data

X

Input 
Data

X

Random Mapped

：Sparse Feature Nodes

：Random Feature Nodes ：Inhibitory Neural Nodes

：Input Nodes

Remodeling

Figure 5. Sparse autoencoder structure diagram.

The extraction of sparse features is considered to be an optimization problem that
requires addressing. Lasso regression (l1 regularization) represents a convex optimization
problem, as stated in [35]. To obtain the solution W∗ for the sparse autoencoder, the
following optimization problem can be used to obtain it:

f (W∗) = arg min
W∗

‖ZW∗ − X‖2
2 + C‖W∗‖1, (32)

where C is the regularization parameter, and Z is the output of the linear random mapping
equation, as shown in Equation (17). It is well-known that l1 regularization is often used to
solve linear inverse problems. A common approach is the alternating direction method of
multipliers (ADMM), which is used to obtain the solution by minimizing one function at a
time. To apply the ADMM algorithm, we first reformulate Equation (32) as follows:

f (W∗) = f (w, v) =arg min
w,v

h(w) + g(v)

s.t w− v = 0,
(33)

where h(w) = ‖Zw− X‖2
2, g(v) = c‖v‖1. In the augmented Lagrangian with a penalty

form, we have the following:

arg min
w,v

h(w) + g(v) + λ(w− v) +
ρ

2
‖w− v‖2

2

s.t w− v = 0,
(34)
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and then the solution of the original problem can be obtained as follows:

wk+1 =
(

ZTZ +
ρ

2
I
)−1[

ZTX +
ρ

2
(vk − uk)

]
,

vk+1 = Sk(wk+1 + uk), k =
c
ρ

,

uk+1 = uk + (wk+1 − vk+1), uk =
λT

ρ
,

(35)

where ρ is a positive penalty factor. S(·) is the soft thresholding operator, and it is defined
as follows:

Sk(wk+1 + uk) =


wk+1 + uk − k i f (wk+1 + uk > k)

0 i f (|wk+1 + uk| 6 k)

wk+1 + uk + k i f (wk+1 + uk < −k)

. (36)

4.4. Physical Model Structure of BLSF

A novel BLSF was proposed to address the effects of physiological tremors, and it
consists of three main components: the sampling unit, the tremor filter unit, and the
control unit. In the sampling unit, an internal measurement unit (IMU) captures real-
time hand movements by measuring the three-axis position acceleration ẍ, ÿ, and z̈ and
the three-axis joint angular velocity θ̇x, θ̇y, and θ̇z. The tremor filtering unit utilizes the
BLS network algorithm to forecast and compensate for tremor signals, thereby effectively
neutralizing them in the actual signals. The control unit incorporates inverse kinematics
calculations, single joint drivers, and motion feedback from deflection sensors to convert
inverse kinematics into motion control variables for the robot manipulator.

By incorporating the BLS network algorithm, the proposed BLSF effectively forecasts
tremor signals, as depicted in Figure 6. The three-axis compensation signals, namely, xp, yp,
and zp, and θxp, θyp, and θzp, exhibit equal magnitudes but opposite phases in comparison
to the tremor signals. This unique characteristic allows them to effectively neutralize the
tremor signals present in the actual signals x, y, and z.

Actual 

Input

 signal
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measurement 

module
A/D

x y z

x y z
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Broad learning 
system-based 

filter

x y z

x y z
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yp zp

+

-

Inverse 
kinematics

+
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Single joint 
controller
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Driver 

module
Robot 

manipulator

Tremor filter model

Deflection 
estimation

A/D

Control model

Joint variable
1


2


3


4
 5


6


1
d

2
d 3

d
4

d
5

d
6

d
Deflections

Figure 6. Block diagram of the broad-learning-system-based tremor filter.

5. Simulation Experiments

A mainstream SVM algorithm in the field of machine learning was used. Its model was
built based on solving convex optimization problems in optimization problems. At the same
time, kernel functions were used to replace the nonlinear mapping of high-dimensional
space to realize the role of processing high-dimensional space data in the low-dimensional
calculation. The desired classification flat was only related to the support vector samples,
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thereby enabling the SVM-based algorithm to have the ability of small sample learning.
However, this algorithm suffers from poor performance in canceling tremors because of
their characteristics.

Hence, in this subsection, we compared the broad-learning-system-based algorithm
model with the support vector machine algorithm for the tele-operation systems, which
were mainly based on the MATLAB Robotics and Libsvm toolbox.

5.1. Model Evaluation Metrics

Determing whether a model has the ability of classification or regression can be judged
by some evaluation metrics, such as the Euclidean distance error. In this topic, the (1) sum
square error (SSE); (2) root mean square error (RMSE); and (3) regression determination
coefficient (R2) were used as the evaluation strategies of the various network models.

SSE =
T

∑
t=1

(nre f (t)− npre(t))2 (37)

RMSE =

√
∑T

t=1 (nre f (t)− npre(t))2

N
(38)

R2 = 1−
∑T

t=1 nre f (t)− npre(t)

∑T
t=1 nre f (t)− n̄re f (t)

, (39)

where T represents the periods, and N is the number of samples. n̄re f (t) is the mean values
of nre f .

5.2. Data Pre-Processing

In order to satisfy the same distribution of the input data and to prevent the difference
of varying data from being large, we pre-processed the input data. Specifically, we used
z-score normalization processing, which allows the input data to be adjusted to present a
standard normal distribution, i.e., the Gaussian distribution, which satisfies the zero mean
and the one variance.

s =
si −min(s)

max(s)−min(s)
, (40)

where s represents the input vectors on the three-axis directions in the original input data.
After standardization, all the elements in the vector are normalized to [0, 1], which can
accelerate the training and learning speed of the network.

5.3. Parameter Settings

The simulation experiment had a sampling time of 200 s with an interval time of 1 s,
thus resulting in a total of 200 sampling points. In MATLAB, we built a simulation robot, and
its joint parameters are given in Table 1. Additionally, other simulation parameters, such as
network nodes and activation functions, were set according to the following specifications.

Table 1. The MATLAB-based simulation robot arm joint parameters.

i Theta d a Alpha Offset

1 q1 105 0 π/2 0
2 q2 0 −174 0 −π/2
3 q3 0 −174 0 0
4 q4 76 0 π/2 −π/2
5 q5 80 0 −π/2 0
6 q6 44 0 0 0
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Noise signals were used to simulate the tremor signals of the human hand. We added
these simulated signals into the trajectory, and they were set as two parts: (1) the low-
frequency part and (2) the high-frequency part. The physiological tremor signal is defined
as the joint angle signal of the haptic device that comes into contact with the human hand.
Assuming the absence of any accompanying physiological tremor in the human body, the
joint angle information of the joystick is denoted by qd. However, after being affected by
tremors, the joint angle is updated as the following:

q(t) = qd(t) + n(t). (41)

In Figure 7, the presence of a physiological tremor can cause the operating human hand to
deflect during operations, particularly during slow movements. This amplifies the effect
of the physiological tremor, and the subplot in Figure 7 demonstrates that the operator’s
actual trajectory deviated significantly from the desired target trajectory.
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Figure 7. Expected values and actual values when the operator was operating.

For the BLS-based tremor filter, the sparse regularization parameter C was set to 2−30,
while the reduction parameter s for the enhanced node was set to 0.8. The broad learning
system consists of N11 = 10 feature nodes, N2 = 80 feature node windows, and N33 = 200
enhanced nodes for each window. The number of added feature nodes was m1 = 10, the
number of enhancement nodes related to the incremental feature nodes per increment step
was m2 = 20, and the number of enhancement nodes in each incremental learning was
m3 = 50. The activation function ξ(·) = tanh(·) was used for mapping the feature nodes to
the enhanced nodes. For the SVM-based filter, a method based on epsilon support vector
regression was used with a loss function parameter p set to 0.4, which indicated the penalty
degree for the input data. Moreover, the radial basis function (RBF) was selected as the
kernel function of the network.

6. Tremor Forecast Results

In this section, the comparison simulation experiments w.r.t. the broad learning system
and support vector machine were achieved under the simulated physiological tremor signal.
As shown in Figure 8, the simulated manipulator was built in our MATLAB platform, and
the motion trajectory and the joint angle of the manipulator with tremors and without
tremors are given. In millimeters, we can see that the joint angle and the motion trajectory
with tremors deviated from the desired trajectory.
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Figure 8. Joint angle and motion trajectory of robot manipulator with tremors and without tremors.

Figure 9a shows the prediction and estimation ability for the broad learning system
and the support vector machine, where four curves are shown in the figure, which are
the broad learning system, the incremental broad learning system, the support vector
machine, and the actual tremor-induced offset. Since the ability of the broad learning
system to predict the tremor-induced offset trajectory reached a saturation state, there
was still no obvious effect improvement after the reinforcement of incremental learning,
which indicates that the ability of the broad learning system to learn time sequence signals
is limited to some extent. To compare the performance of different algorithms, we can
observe the error curve shown in Figure 9b. As we can see, the SVM error fluctuated,
whereas the BLS error decreased gradually over time. In summary, the proposed BLS
algorithm outperformed the SVM. This conclusion is supported by the evaluation metrics
in Table 2, which indicate that a good regression model should have a high determination
coefficient R2. In Figure 10, we can observe the recovery trajectory of a tele-operation
system under the influence of various filters. By comparing the recovery trajectories across
multiple filters, we can gain insights into the relative effectiveness and limitations of each
filter in achieving the desired outcome. As shown in Figure 11, the position and velocity
control were achieved by applying a sliding mode controller. First, the position and velocity
references were input into the controller, which generated a control signal that was then
applied to the system. The sliding mode controller ensures that the system tracks the
desired position trajectory while also regulating the velocity. The resulting system behavior
is shown in the position and velocity plots.

Overall, the teleoperation robot system applied the sliding mode controller to obtain a
good performance, while our proposed filter was efficient in canceling tremors.

Table 2. Canceling tremor results of different filters.

Different Methods and Metrics SSE RMSE R2 Train Time

Broad learning system filter 0.0687 0.0026 80.06% 0.118

Incremental broad learning system filter 0.0587 0.0024 82.94% 0.122

Support vector machine filter 0.0918 0.0303 73.35% 0.278
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Figure 9. The results of canceling tremors based on different approaches. (a) In the case of tremors,
prediction values based on different approaches. (b) In the case of tremors, the error between tremor
values and prediction values based on different approaches.
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7. Conclusions

In this paper, we proposed a simple and efficient network model, the incremental
broad learning system, as a tremor filter architecture for the current application issues of
deep learning and machine learning in tele-operation. Unlike deep learning algorithms
that have many hyperparameters, our proposed approach simplifies the learning process
and avoids such complexities. Furthermore, the support vector machine often suffers from
poor precision in regression tasks, and our novel architecture was designed to overcome
this issue. We combined it with incremental learning algorithms to rapidly improve per-
formance. Additionally, our proposed sliding mode controller provided greater stability
and faster response performance when compared to traditional controllers. The simula-
tion results and performance metrics demonstrated the effectiveness of our approach in
attenuating tremors.

In future work, we will delve deeper into the feature extraction module of the broad
learning system to improve its ability to eliminate physiological tremors to the best of
our ability. Although our experimental results demonstrated the efficient elimination of
physiological tremors by the broad-learning-system-based, we believe that there is still
room for improvement.
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