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Abstract: Fuzzy dispersion entropy (FuzDE) is a newly proposed entropy metric, which combines the
superior characteristics of fuzzy entropy (FE) and dispersion entropy (DE) in signal analysis. However,
FuzDE only reflects the feature from the original signal, which ignores the hidden information on
the time scale. To address this problem, we introduce variable-step multiscale processing in FuzDE
and propose variable-step multiscale FuzDE (VSMFuzDE), which realizes the characterization of
abundant scale information, and is not limited by the signal length like the traditional multiscale
processing. The experimental results for both simulated signals show that VSMFuzDE is more robust,
more sensitive to dynamic changes in the chirp signal, and has more separability for noise signals; in
addition, the proposed VSMFuzDE displays the best classification performance in both real-world
signal experiments compared to the other four entropy metrics, the highest recognition rates of the
five gear signals and four ship-radiated noises reached 99.2% and 100%, respectively, which achieves
the accurate identification of two different categories of signals.

Keywords: dispersion entropy; fuzzy dispersion entropy; variable-step multiscale fuzzy dispersion
entropy; feature extraction; signal analysis

1. Introduction

Entropy, as a nonlinear metric, plays a great role in quantifying the degree of chaos
in a system and evaluating the complexity of a time series [1–3]. In general, having a
high entropy value means that the signal is more complex and difficult to predict, and
vice versa [4,5]. In recent years, entropy has been widely employed in biomedical signal
analysis, mechanical fault diagnosis, and underwater acoustic signal processing due to its
advantages of simple calculation, fast speed, and good robustness [6–8].

Along with the continuous deeper research on entropy, new entropy metrics such as
sample entropy (SE) [9], fuzzy entropy (FE) [10], permutation entropy (PE) [11], dispersion
entropy (DE) [12], etc., have been proposed by numerous scholars successively [13–15].
However, these entropies still have limitations. For example, SE reflects the complexity of
the signal, but it is complex to calculate, and the entropy value is susceptible to sudden
changes in the signal. As an improvement of sample entropy, FE solves the problem of
uncertainty of the SE value, but its calculation is still more complicated. PE is simple to
calculate but ignores amplitude information. Although the DE considers the amplitude
information, its anti-noise performance is poor. To further alleviate the shortcomings of
DE, fuzzy dispersion entropy (FuzDE) was proposed [16], which combines the advantages
of FE and DE by replacing the circle mapping function of DE with the fuzzy affiliation
function in FE to reduce the information loss of the original signal during the calculation.

FuzDE is one of the improved algorithms for DE, and its main improvement lies in the
mapping approach of DE. By introducing fuzzy membership degrees, FuzDE overcomes
the limitation of traditional mapping approaches that easily lose effective information, so
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as to improve the detection ability of changes in frequency, amplitude and chaos of time
series [17]. However, like other DE-based improvement algorithms, FuzDE also suffers
from the defect of single scale, and it is difficult to reflect the effective information of the
original series from multiple scales.

To solve the above problems, multiscale versions are derived by combining different
coarse-grained methods, which enables these complexity measures to capture information
from the temporal scale [18–20]. Azami et al. proposed multiscale DE (MDE) and refined
composite MDE (RCMDE) in 2017 and applied them to the field of biomedical signal
processing, and the research results showed that MDE and RCMDE can effectively respond
to signal information on different time scales with shorter computation time and can
better distinguish different types of physiological signals compared with the previous
entropy metrics [21]. In 2023, Li proposed a multiscale FuzDE (MFuzDE) and applied it to
the domain of hydroacoustic signal processing, and the results of empirical experiments
showed that MFDE was better than MDE for ship radiation noise analysis [22].

Although the above metrics alleviated the problem that FuzDE could not respond to
signal information at multiple scales to a certain extent, these metrics still suffered from the
loss of signal subsequence information with the increase in time series scale, and there were
certain computational errors. In 2022, variable-step multiscale Lempel-Ziv complexity was
proposed, which retains more potential information through the feature of variable step
processing process and solves the problem of sequence length shortening with increasing
scale [23]. Inspired by the advantages of variable-step multiscale processing, we proposed
variable-step multiscale FuzDE (VSMFuzDE) by incorporating it into FuzDE.

In general, the main contributions of this paper are as follows: based on FuzDE, the
VSMFuzDE is proposed by introducing variable-step multiscale processing; compared
with FuzDE, VSMFuzDE can obtain rich scale information and can provide more stable
performance for signal analysis when the scale factor (SF) is large. The structure of the
rest of the paper is as follows: Section 2 describes FuzDE and the proposed VSMFuzDE
in detail; Section 3 proves the validity of VSMFuzDE using different simulated signals;
Section 4 conducts experiments on the extraction and classification of two classes of real-
world signals based on VSMFuzDE; the main conclusions of the entire paper are shown in
Section 5.

2. Fundamental Theory
2.1. Fuzzy Dispersion Entropy

The fuzzy dispersion entropy (FuzDE) introduces the fuzzy membership function on
the basis of DE as a substitute of the round function of DE, which further improves the
noise immunity and stability of DE. The calculation steps of FuzDE are as follows:

Step 1: For specific time series X = {x1, x2, . . . , xN}, the series X is transformed to a
new series Y = {y1, y2, . . . , yN} by normal cumulative distribution function (NCDF), and
the NCDF is described as follows:

yi =
1

σ
√

2π

∫ xi

−∞
e−

(t−µ)2

2σ2 dt (i = 1, 2, . . . , N) (1)

where σ and µ are the standard deviation and mean value of X respectively.
Step 2: The series Y is mapped to a new symbolic sequence Zc =

{
zc

1, zc
2, . . . , zc

N
}

according to the Formula (2):
zc

i = cyi + 0.5 (2)

where c is the number of categories.
Step 3: Introduce the fuzzy membership function on the sequence Zc as follows:

µM1(z
c
i ) =


0 zc

i ≥ 2
2− zc

i 1 ≤ zc
i < 2

1 0 ≤ zc
i < 1

(3)
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µMk (z
c
i ) =


0 zc

i ≤ k− 1
zc

i − k + 1 k− 1 < zc
i ≤ k

k + 1− zc
i k < zc

i < k + 1
0 zc

i ≥ k + 1

(4)

µMc(z
c
i ) =


0 zc

i ≤ c− 1
1 + c− zc

i c− 1 < zc
i < c

1 zc
i ≥ c

(5)

where Mk is the fuzzy membership function, and k stands for the kth class. µMk

(
zc

i
)

is the
degree of membership of zc

i for the kth class. Through the fuzzy membership function, each
zc

i will have one or two different degrees that are integers between [1, c].
Step 4: The sequence Zc of Step 3 is reconstructed into N − (m + 1)τ subsequences

Zm,c
j by phase space reconstruction as follows:

Zc,m
j =

{
zc

j , zc
j+τ , . . . , zc

j+(m−1)τ

}
, j = 1, 2, . . . , N − (m− 1)τ (6)

where m is the embedding dimension, and τ is the delay time.
Step 5: Each vector Zc,m

j is assigned to the dispersion patterns πv0v1 ...vm−1 , where v0 is
zc

j , v1 is zc
j+(1)τ , and vm−1 is zc

j+(m−1)τ . Then, the membership degree of each vector Zc,m
j is

calculated to obtain the membership degree of each dispersion pattern:

µπv0v1...vm−1

(
Zc,m

j

)
= ∏m−1

i=0 µMvi

(
zc

j+(i)τ

)
(7)

in general, the number of dispersion patterns that attributed to each vector Zc,m
j in FuzDE

is cm, which is similar to DE.
Step 6: The probability of each dispersion pattern is computed according to Equation (8),

and the equation is described as follows:

p
(
πv0v1 ...vm−1

)
=

∑
N−(m−1)d
j=1 µπv0v1...vm−1

(
Zm,c

j

)
N − (m− 1)τ

(8)

Step 7: The FuzDE can be calculated according to the theory of Shannon entropy as
follows:

FuzDE(X, m, c, τ) = −
cm

∑
π=1

p
(
πv0v1 ...vm−1

)
lnp
(
πv0v1 ...vm−1

)
(9)

Step 8: The normalized FuzDE (NFuzDE) is defined as follows:

NFuzDE(X, m, c, τ) =
FuzDE(X, m, c, τ)

ln(cm)
(10)

2.2. Variable-Step Multiscale Fuzzy Dispersion Entropy

FuzDE improves the stability and noise immunity of DE, but still has the same drawback
as DE, that it cannot explore the abundant information on the time scale. For this reason, we
adopted variable-step multiscale processing, which is free from the limitation of traditional
multiscale and refine composite multiscale processing depending on sequence length, and
combined it with FuzDE to propose VSMFuzDE, the specific steps are as follows:

Step 1: The specific time series X = {x1, x2, . . . , xN} is converted into s subsequences
by the following variable-step multiscale analysis:

y(S)d,l =
1
s

d(l−1)+S

∑
i=d(l−1)+1

xi, 1 ≤ d ≤ s, 1 ≤ l ≤ N − S
d

+ 1 (11)
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where S is the scale factor (SF), d is the moving step length, and y(S)d,l is the l-th element
when the moving step length is d. It can be found that the subsequence is the same as the
original sequence when S = 1.

Step 2: The NFuzDE value for the subsequence with step length d is calculated by the
as following formula:

NFuzDE
(

y(S)d , m, c, τ
)
=

FuzDE
(

y(S)d , m, c, τ
)

ln(cm)
(12)

Step 3: The NFuzDE values of all subsequences obtained in Step 1 are calculated and
the mean value of NFuzDE of all subsequences is defined as the VSMFuzDE value:

VSMFuzDE(X, m, c, τ, S) =
1
S

S

∑
d=1

NFuzDE
(

y(S)d , m, c, τ
)

(13)

For a more intuitive understanding of the variable-step coarse-grained analysis, the
coarse-grained process for a scale factor of three is drawn. Figure 1 shows the variable-step
multiscale analysis for scale factor S = 3.
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3. Validation of Simulation Signal

In this section, the superior performance in signal analysis of the proposed VSMFuzDE
is demonstrated by conducting two sets of synthetic signal experiments. Among them,
the synthetic signals include noise signals and chirp signals, and the entropies used for
comparison contain RCMFuzDE, MFuzDE, RCMDE, and MDE. To ensure the reliability of
the experiments, these parameters are set consistently, the embedding dimension m and
time delay τ are three and one, respectively, and the number of categories c is uniformly
set to six [24].

3.1. Validation of Separability

In this section, a classical noises separation experiment is performed with reference
to [25]. Overall, 50 independent white noises and pink noises are taken as 50 samples, and
the sample length is 2048, and then the different entropy values of these noises on a scale of
1 to 10 are calculated, respectively. The mean and standard deviation of the entropy values
are obtained by calculating them as shown in Figure 2. In addition, the experiment uses
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ANOVA on entropy mean curves with signal type as an independent factor to assess the
separability of the five entropies for white noise and pink noise. The p-values obtained by
ANOVA for different entropy are shown in Table 1.
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Table 1. The p-values obtained by ANOVA for different entropy.

Metric p-Value

VSMFuzDE 0.0029
RCMFuzDE 7.853 × 10−5

MFuzDE 0.0015
RCMDE 0.2459

MDE 0.3376
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Figure 2 and Table 1 show that the mean entropy curves of MDE and RCMDE are very
close to each other when scale factor is 4, and the p-values obtained by ANOVA are greater
than 0.05, which indicates that there is no significant difference between white noise and
pink noise; for MFuzDE, RCMFuzDE and the proposed VSMFuzDE, the mean curves are
obviously different, and there is a significant difference between the two noise signals as
the p-values are less than the confidence level of 0.05; in addition, compared with MFuzDE
and RCMFuzDE, the proposed VSMFuzDE has the smaller standard deviation of the
two noises at each scale factor and no overlapping parts, which indicates that VSMFuzDE
has stronger stability. In summary, the proposed VSMFuzDE has better separability and
stronger stability compared to the other four entropies.

3.2. Validation of the Ability to Detect Dynamic Changes

The ability to detect dynamic changes is an important property of nonlinear dynamic
metrics. In this experiment, the property of the proposed VSMFuzDE is verified by choosing
the chirp signal. And the chirp signal is defined as:

x(t) = exp
(

j2π

(
f0t +

1
2

kt2
))

(14)

where f0 is the initial frequency, taken as 10 Hz, and k is the modulation frequency, taken
as 3. The frequency of the chirp signal was set from 10 Hz to 100 Hz and made to last for
20 s at a sampling frequency of 1000 Hz; thus, 20,000 sampling points can be obtained.

The length of the sliding window is taken as 1000 sampling samples, and then the
sliding sampling is performed at 90% overlap rate, thus the 20,000 sampling points are
divided into a total of 190 samples by sliding sampling. The VSMFuzDE value of each
sample was calculated. The chirp signals and the corresponding different entropy curves
are shown in Figures 3 and 4, respectively.
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According to Figure 4, it can be seen that the curves of the multiscale version of
DE fluctuate greatly under all scale factors, the different multiscale versions of FuzDE
can reflect the change of signal complexity, and the dynamic change detection ability is
better than the various multiscale versions of DE; among them, when S = 5, the curves of
RCMFuzDE and MFuzDE appear in a downwards trend, which is not in consistent with the
signal complexity growth trend, only the proposed VSMFuzDE has the most stable trend,
and the corresponding curve is smoother. Therefore, it can be inferred from the experiment
that VSMFuzDE is more sensitive to changes in signal complexity than other entropies.



Entropy 2023, 25, 997 7 of 15Entropy 2023, 25, x FOR PEER REVIEW 7 of 17 
 

 

 
(a) 𝑆 = 2 

 
(b) 𝑆 = 3 

 
(c) 𝑆 = 4 

 
(d) 𝑆 = 5 

Figure 4. The different entropy curves of chirp signals. 

According to Figure 4, it can be seen that the curves of the multiscale version of DE 
fluctuate greatly under all scale factors, the different multiscale versions of FuzDE can reflect 
the change of signal complexity, and the dynamic change detection ability is better than the 
various multiscale versions of DE; among them, when 𝑆 = 5, the curves of RCMFuzDE and 
MFuzDE appear in a downwards trend, which is not in consistent with the signal complex-
ity growth trend, only the proposed VSMFuzDE has the most stable trend, and the corre-
sponding curve is smoother. Therefore, it can be inferred from the experiment that VSM-
FuzDE is more sensitive to changes in signal complexity than other entropies. 

4. Validation of the Realistic Signal 
To demonstrate the effectiveness of the proposed VSMFuzDE in signal analysis, fea-

ture extraction experiments are conducted for the gear signal and ship-radiated noise, 

Figure 4. The different entropy curves of chirp signals.

4. Validation of the Realistic Signal

To demonstrate the effectiveness of the proposed VSMFuzDE in signal analysis, fea-
ture extraction experiments are conducted for the gear signal and ship-radiated noise,
respectively, in this section. Moreover, the complexity metrics used for comparison and the
corresponding parameter settings are consistent with those in the simulation experiments.

4.1. Validation of Gear Signal

In this section, five gear signals from the Southeastern University [26] are chosen,
which are Health working state, Missing tooth, Chipped tooth, Root fault, and Surface fault.
For convenience, these five gear signals are named as Health, Missing, Chipped, Root, and
Surface. The time domain waveform of the gear signal is demonstrated in Figure 5.

For each state of the gear signal, 409,600 sampling points are intercepted and equally
divided into 200 samples without overlap, with each sample containing 2048 sampling points.

Then, different entropy values of each signal are calculated as its features, the scale
factor is taken as 10, so each signal will obtain a feature set with dimension (200× 10); to
facilitate comparison, 50% of the samples are randomly selected as the training set and the
rest as the test set, and obtain the average recognition rates of the five gear signals at each
scale by the K-nearest neighbor algorithm (KNN) [27]. Figure 6 shows the entropy values
and standard deviations of five entropy indicators for gear signals at different scales. The
average recognition rate of the five gear signals at each scale are presented in Table 2.
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As can be seen from Figure 6, the interval of the feature value curves of the signals is
obvious only in the plot of VSMFuzDE, and the feature value curves of the signals of the
remaining metrics are almost mingled together; as the scale increases the differentiation
performance of VSMFuzDE on the signal increases significantly, and the remaining four
indicators do not change obviously on the differentiation performance of the signal. There-
fore, the following conclusion can be obtained: VSMFuzDE has the best differentiation
effect on the five gear signals.

Table 2. The average recognition rate of the five gear signals at each scale (%).

Metric
Scale Factor

1 2 3 4 5 6 7 8 9 10

VSMFuzDE 57.6 53.4 53.4 48.0 54.8 68.4 79.0 82.2 75.8 70.0
RCMFuzDE 57.6 33.0 32.0 34.6 37.4 46.0 45.0 39.6 34.4 25.4
MFuzDE 57.6 32.8 30.0 26.8 35.6 47.6 41.0 30.8 27.8 25.0
RCMDE 53.8 32.6 31.8 30.0 34.0 47.2 41.8 33.4 28.2 26.0

MDE 53.8 34.2 26.4 25.4 34.2 39.0 33.0 27.0 26.8 21.6

From Table 2, it can be seen that the proposed VSMFuzDE has the highest average
recognition rate at each scale; except for VSMFuzDE, the average recognition rate of entropy
decreases significantly when the scale factor is large, and the lowest recognition rate occurs
at S = 10; in addition, only VSMFuzDE maintains excellent recognition performance when
the scale factor is large, and reaches a maximum of 82.2% at a scale factor of 8. As a result,
the proposed VSMFuzDE has the best outstanding performance in feature extraction at
each scale.

Although the above results reveal that VSMFuzDE has better classification perfor-
mance at different scales, the above classification experiments are discussed only from a
single feature and the recognition rate of five gear signals is not desirable. For this reason,
this experiment combines different scales for multifeature classification and recognition.
Here, (1, 7) to represent the combination of features with scale factors of 1 and 7, (1, 3, 8)
to represent the combination of features with scale factors of 1, 3 and 8, and so on. The
highest recognition rates of gear signals under different numbers of extracted features are
shown in Table 3.

Table 3. The highest recognition rates of gear signals under different numbers of extracted features (%).

Metric ARR/SF
Number of Extracted Features

2 3 4 5

VSMFuzDE
ARR 97.4 99.2 99.2 99.2

SF (1, 7) (1, 3, 8) (1, 2, 3, 8) (1, 2, 3, 4, 8)

RCMFuzDE
ARR 77.0 88.2 91.8 92.4

SF (1, 6) (1, 2, 7) (1, 2, 3, 6) (1, 2, 3, 5, 6)

MFuzDE
ARR 77.0 86.4 88.6 88.8

SF (1, 7) (1, 2, 6) (1, 2, 3, 7) (1, 2, 3, 4, 7)

RCMDE
ARR 79.8 85.6 89.8 90.4

SF (1, 7) (1, 2, 7) (1, 2, 4, 7) (1, 2, 4, 5, 7)

MDE
ARR 73.8 79.0 80.0 84.2

SF (1, 7) (1, 2, 6) (1, 2, 5, 7) (1, 2, 5, 7, 9)

Table 3 indicates that the recognition rate of each entropy increases with the number of
scales; among them, the recognition rate of MDE is the lowest with only 84.2% for different
numbers of features, which shows that the MDE has the worst ability to distinguish the five
gear states; and the proposed VSMFuzDE has the highest recognition rate and reaches a high
of 99.2% when the number of features is three, which is much higher than RCMFuzDE and
MFUzDE. This experiment shows that the combination of multiple features for VSMFuzDE
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improves the separability of gear signals and further confirms the effectiveness of the
proposed VSMFuzDE in analyzing complex signals.

To intuitively express the effect of feature extraction with different entropies, the
obtained features of 10 scales are reduced to two dimensions by t-stochastic neighbor
embedding (t-SNE), and then the visualization of the features is carried out. Figure 7 shows
the visualization of the features for gear signals by t-SNE.
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From Figure 7, it can be concluded that the Missing fault state has a large overlap area
with the other four states for RCMFuzDE, MFuzDE, RCMDE and MDE, making it difficult
to distinguish; among them, MDE has the largest overlap area and the worst classification
effect; in addition, only the proposed VSMFuzDE has the best effect on the identification
of the five fault states, having the least overlapping samples. In general, the visualization
results of VSMFuzDE show the smallest overlap and the best clustering, which indicates
that VSMFuzDE has a stronger ability to discriminate five types of gear signals.

4.2. Validation of Ship-Radiated Noise

In this section, the data from the national parks [27] were adopted, and they have
been named Ship-1, Ship-2, Ship-3, and Ship-4. The length of each signal and the number
and length of samples are the same as in Section 4.1. The time domain waveform of the
ship-radiated noise signal is presented in Figure 8.
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Figure 8. The time domain waveform of the ship-radiated noise signal.

To reflect the degree of differentiation of these metrics more accurately on the signal,
KNN was employed for classification experimental knowledge. The entropy values and
standard deviations of five entropy metrics for ship-radiated noise signals at different
scales are shown in Figure 9. Table 4 illustrates the average recognition rate of the four
ship-radiated noise signals at each scale, and Table 5 shows the highest recognition rates of
the ship-radiated noise signal under different numbers of extracted features.

It can be seen from Figure 9, that in general, the entropy curves of all signals first rise
with increasing scale and then stabilize; with the increase in scale, only the distance of the
entropy curves of the signals in the VSMFuzDE figure increases, and the entropy curves in
the rest of the figures decrease, among which the decreasing trend of MDE and DE is the most
obvious; Ship-2 is the most difficult to distinguish in all subplots with the rest of the radiated
noise signals having overlapping parts. In general, VSMFuzDE has the best separation of the
four ship radiation noise signals compared to the other four entropy metrics.

As can be seen from Table 4, the recognition rate of most of the indicators for the
signals under 10 scales appeared to be less than 65%, and only the recognition rate of
VSMFuzDE signals was higher than 65% under each scale; VSMFuzDE had the highest
recognition rate for the signals under scale factor 8 and reached 81.5%, RCMFuzDE and
MFuzDE had the highest recognition rate for the signals under only one scale. It can be
concluded that VSMFuzDE has a better performance in distinguishing signals compared to
other metrics.
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Table 4. The average recognition rate of the four ship-radiated noise signals at each scale.
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Scale Factor
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As shown in Tables 4 and 5, compared with the recognition rate in Table 4, the
recognition rates of all metrics in Table 5 have improved dramatically; only the recognition
rate of VSMFuzDE for signals reaches 99.5% above the recognition rate under different
numbers of features and reaches 100% under the combination of three feature numbers. In
short, compared with other metrics, VSMFuzDE has the highest recognition rate for signals
and better classification performance.
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Table 4. The average recognition rate of the four ship-radiated noise signals at each scale.

Metric
Scale Factor

1 2 3 4 5 6 7 8 9 10

VSMFuzDE 72.25 76.5 74.75 66.00 76.50 78.5 79.50 78.25 81.5 78.25
RCMFuzDE 72.25 73.5 70.25 70.00 68.25 66.25 64.25 63.25 57.75 51.25
MFuzDE 72.25 70.25 68.00 67.00 65.00 64.50 59.50 58.25 55.25 52.75
RCMDE 75.75 72.00 74.25 65.50 66.50 62.75 60.50 61.75 48.75 46.25

MDE 75.25 70.50 68.75 69.00 64.75 62.25 55.25 44.75 45.75 39.50

As shown in Tables 4 and 5, compared with the recognition rate in Table 4, the
recognition rates of all metrics in Table 5 have improved dramatically; only the recognition
rate of VSMFuzDE for signals reaches 99.5% above the recognition rate under different
numbers of features and reaches 100% under the combination of three feature numbers. In
short, compared with other metrics, VSMFuzDE has the highest recognition rate for signals
and better classification performance.
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Table 5. The highest recognition rates of ship-radiated noise signals under different numbers of
extracted features (%).

Metric ARR/SF
Number of Extracted Features

2 3 4 5

VSMFuzDE
ARR 99.75 100 99.75 99.75

SF (1, 3) (1, 2, 3) (1, 2, 3, 5) (1, 2, 3, 4, 5)

RCMFuzDE
ARR 99.00 99.75 99.75 99.75

SF (1, 5) (1, 3, 6) (1, 2, 5, 7) (1, 2, 3, 4, 6)

MFuzDE
ARR 98.75 99.75 99.75 99.75

SF (1, 3) (1, 4, 8) (1, 2, 3, 8) (1, 2, 3, 5, 8)

RCMDE
ARR 99.25 99.50 99.50 99.25

SF (1, 3) (1, 2, 3) (1, 3, 9, 10) (1, 2, 3, 4, 9)

MDE
ARR 99.25 99.50 99.75 99.75

SF (1, 3) (1, 3, 8) (1, 4, 8, 9) (1, 2, 4, 8, 9)

This experiment is the same as the gear signal experiment, representing the distribution of
signal characteristics more intuitively. The features obtained at 10 scales by t-SNE visualization;
Figure 10 displays the visualization of the ship-radiated noise features by t-SNE.
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From Figure 10, Ship-2 is the most independent among all sub-figures, and Ship-1 always
overlaps with other signals; the Ship-1 and Ship-3 signals in RCMFuzDE and MFuzDE,
respectively, appear to have chunking into two blocks; the signal in VSMFuzDE has the
densest feature distribution with the least overlapping samples; moreover, the aggregation
performance of the samples of Ship-4 of RCMDE is not strong, and the samples of Ship-2,
Ship-3, and Ship-4 of MDE have overlapping phenomena. Therefore, it can be proven that
VSMFuzDE has a better ability to distinguish the ship-radiated noise than other metrics.

5. Conclusions

A new metric, called VSMFuzDE, was developed in this paper, which enhances the
ability of FuzDE to analyze signals from a coarse-grained processing perspective; moreover,
VSMFuzDE is validated by simulated signals and applied to feature extraction real-word
signals. The main conclusions can be generalized as follows:

(1) The VSMFuzDE is proposed by combining the variable-step multiscale process,
which not only solves the problem that the FuzDE cannot respond to the multiscale in-
formation of the signal but also improves the problem of information loss caused by the
increase in scale factor in the calculation process of the traditional multiscale method.

(2) The experimental simulation results show that VSMFuzDE has significantly better
separability for noise signals than other metrics and has the most sensitive dynamic change
detection for chirp signals. The effectiveness of VSMFuzDE in the signal analysis is verified
by these studies.

(3) The real-world signal experiments show that in the same number of features
compared with other metrics, VSMFuzDE has the best ability to distinguish the signal.
In particular, when identifying gear signals, the recognition rate of the feature extraction
method based on VSMFuzDE reaches 99.5% when taking three features, which is at least
11% higher than the other methods.
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