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Abstract: Understanding how systems relax to equilibrium is a core theme of statistical physics,
especially in economics, where systems are known to be subject to extrinsic noise not included
in simple agent-based models. In models of binary choice—ones not much more complicated
than Kirman’s model of ant recruitment—such relaxation dynamics become difficult to determine
analytically and require solving a three-term recurrence relation in the eigendecomposition of the
stochastic process. In this paper, we derive a concise closed-form solution to this linear three-term
recurrence relation. Its solution has traditionally relied on cumbersome continued fractions, and we
instead employ a linear algebraic approach that leverages the properties of lower-triangular and
tridiagonal matrices to express the terms in the recurrence relation using a finite set of orthogonal
polynomials. We pay special attention to the power series coefficients of Heun functions, which
are also important in fields such as quantum mechanics and general relativity, as well as the binary
choice models studied here. We then apply the solution to find equations describing the relaxation
to steady-state behavior in social choice models through eigendecomposition. This application
showcases the potential of our solution as an off-the-shelf solution to the recurrence that has not
previously been reported, allowing for the easy identification of the eigenspectra of one-dimensional,
one-step, continuous-time Markov processes.

Keywords: social choice; relaxation times; non-equilibrium; special functions

1. Introduction

Models of social choice have been a popular application of physics to economics
for many decades. Among the literature of voter models [1], where physical models
are interpreted in the light of economic agents to give qualitative predictions, one of the
most interesting contributions was made by Kirman [2]. In [2], the Moran process [3]
is reinterpreted for ants choosing between two food sources, with an explicit analogy to
systems of agents deciding between two economic decisions. From an economic perspective,
the interesting finding is that agents can coalesce on a single choice due to endogenous
forces alone, a feature that is not present in deterministic models from general equilibrium
theory [4,5].

Such simple models as Kirman’s model of ant recruitment have utility, but in reality
different economic decisions do not have the same rates of recruitment or the same random
rates of agents switching to a specific choice [6]. In short, some decisions are more appealing
when people conform to them, and others can be more capricious. The decision rules of
agents may also be dependent on more than one other agent, which can lead to very
different dynamics, e.g., in the hypothetical case of a system of vacillating voters [7].
Although Kirman’s model of ant recruitment has been solved explicitly in time [6,8],
solutions to more generalized versions of the model have been difficult to obtain. To see
why, consider the master equation for a generalized binary decision process with a fixed
number of agents N,

∂tP(n, t) = A · P(n, t), (1)
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which describes the time evolution of the probability of having n agents deciding on one
decision (with N − n deciding the opposite) at a time t, given the dynamics between the
agents specified in the (N + 1)× (N + 1) matrix A. Where only a single agent can switch
decision at any one time, the matrix A is tridiagonal. Formally, the solution can be found
via the matrix exponential [9], which subscribes to the following decomposition:

P(n, t) =
N

∑
i=0

Ci(n)eλit, (2)

where λi ≤ 0 are the eigenvalues of A and Ci(n) are the corresponding eigenvectors
(with the eigenvalue λ0 = 0 corresponding to the steady-state eigenvector). The relaxation
times to equilibrium are then clearly 1/λi (as can be seen from dimensional analysis),
with 1/λ1 being the dominant timescale where λ1 is the non-zero eigenvalue with the
smallest magnitude. In the case of Kirman’s standard model, the leading relaxation behavior is
independent of the number of agents [6], and depends only on the rate of random switching between
the two decisions [6,10]. Where the behaviors between agents occupying different decisions
become asymmetric, both Ci(n) and λi become insoluble due to the three-term recurrence
relation that defines them. In such cases, it has been shown that the fully asymmetric ant
recruitment model admits Heun function eigenvectors [6] whose series coefficients satisfy
a three-term recurrence, and whose eigenvalues satisfy a N + 1 order polynomial. The
nature of this three-term recurrence in models of social choice is the focus of our study, i.e.,

RjCj+1 − Q̃jCj + PjCj−1 = 0, j ∈ {0, 1, 2, . . . }, (3)

with the boundary conditions C0 = 1 and C−1 = 0, and where the coefficients Rj, Q̃j and Pj
have a general dependence on j.

Although commonly stated as being unsolved (e.g., see the section on Heun functions
in the handbook of Maple [11]), some papers in the past decade have made progress in
solving three-term recurrence relations. Recent work by Choun [12], from a series of studies
that include [13,14], tackles the problem of solving the three-term recurrence relation
defining the Heun function and looks to find the conditions under which Heun functions
reduce to finite polynomials. Unfortunately, the proposed solution is difficult to verify
and unwieldy (see Equation (5) [12]). Similar conclusions can be made regarding another
solution to the general three-term recurrence relation by Gonoskov [15], wherein the author
defines and utilizes recursive sum theory (see Equations (47) and (48) [15]). However, other
approaches with greater applicability are found in the seminal work of Risken et al. [16,17],
who study generalized recurrence relations, often with applications to Fokker–Planck
equations, and solve them using continued fractions. The work of Haag et al. takes a
similar approach [18], and it is shown how exact solutions to the one-dimensional master
equation can be found in terms of continued fractions (a work that precedes the cited work
of Risken).

In this paper, we solve a general three-term recurrence relation using a simple linear
algebraic method reliant on analytic results from the inversion of tridiagonal matrices [19].
This leads to expressions for the sequence Cj in terms of determinants of the tridiagonal
matrix, which can be conveniently expressed in terms of the products of orthogonal poly-
nomials. These expressions allow one to see the analytic structure of the Cj in terms of
well-known mathematical operations, and to easily derive the solutions of the three-term
recurrence for the generating function describing the eigenvectors and eigenvalues of
generalized models of discrete binary choice.

An application of recurrence relations of particular importance can be found in provid-
ing closed-form expressions for the Frobenius solutions of higher-order functions, whose
coefficients in a series expansion are described by three-term (or higher-order) recurrence
relations. These higher-order functions have been shown to be particularly relevant in
the solutions of the master equations describing non-trivial models of binary choice [6]
and community assembly [8]. By higher-order, we mean that the number of singularities
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defining the function is greater than the number defining the hypergeometric differential
equation (i.e., more than three), in which case the coefficients in the series expansion sat-
isfy a two-term recurrence relation and can be solved by either Pochhammer or gamma
functions [Chapter 15] [20]. The next highest order Fuchsian differential equation with four
regular singularities defines the general Heun function, whose Frobenius solutions satisfy a
three-term recurrence relation. Due to the increasing complexity of problems considered in
the physics literature, Heun functions are becoming increasingly common and describe
solutions to problems in quantum mechanics [21–23] and general relativity [21,24], and
have some applications to stochastic processes [25] (see the review of Hortaccsu [26] and
the references therein for further examples). A closed-form derivation of the series coef-
ficients in the Frobenius solutions of Heun functions would allow researchers to easily
obtain expressions defining polynomial solutions to Heun’s differential equation, and in
the process determine the relaxation spectra of non-trivial social choice models.

In Section 2, we solve the recurrence relation in Equation (3) using linear algebraic
methods, leading to the main result of our paper, as given by Equation (15), and we
relate this solution to the previous work on the solution of the recurrence via continued
fractions [17] in Section 3. Then, in Section 4, we review both Heun’s general and confluent
differential equations, and show how our general solution solves for the coefficients in the
Frobenius solutions in closed form. In Section 5, we return to the master equations described
in this introduction and show how our results in Sections 2–4 allow one to determine the
relaxation rates to equilibrium in two models of social choice that have eigenfunctions
described by functions for which the Frobenius solutions satisfy the three-term recurrence
relation. Finally, in Section 6 we conclude the study.

2. Closed-Form Solution of a Three-Term Recurrence Relation

We begin by re-writing the three-term recurrence relation in Equation (3) as a matrix
equation. First, we define

A =


R0
−Q̃1 R1

P2 −Q̃2 R2
0 P3 −Q̃3 R3
...

. . .

 (4)

where A is a square infinite-dimensional lower-triangular matrix. Note that because A
is lower-triangular, the eigenvalues of A are Ri for i ∈ {0, 1, 2, . . .}. Then, the recurrence
relation in Equation (3) is equivalent to the following:

A · ~C =~l, (5)

where we have defined the infinite-dimensional column vectors,

~C =


C1
C2
C3
C4
...

, ~l =


Q̃0
−P1

0
0
...

, (6)

where the only two non-zero elements of~l are l1 and l2. Then, ~C is given by

~C = A−1 ·~l. (7)
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Therefore, if we can find the inverse of A then we have solved for the general three-term
recurrence relation in Equation (3). In the following, we denote the inverse elements of A
as θi,j ≡ [A−1]i,j, and carrying out the multiplication in Equation (7), we find

Ci = Q̃0θi,1 − P1θi,2. (8)

Hence, there are two sets of inverse elements that we require, those in the first and second
columns of A−1. To find the matrix inverse, we make use of Cramer’s rule [27],

θi,j =
(−1)i+j Mj,i

det(A) , (9)

where Mj,i is a minor of A, i.e., the determinant of A with row j and column i removed,
and the determinant of A is simply the product of the eigenvalues of A that is given by

det(A) =
∞

∏
i=0

Ri. (10)

Although the determinant of an infinite matrix is not formally well-defined, we show in the
Appendix A that one does not have to evaluate this infinite product as cancellation occurs
with the minors Mj,i in the numerator of θi,j. The remaining task is then to find the minors
M1,i and M2,i. In Appendices A and B, we explicitly find expressions for M1,i and M2,i in
terms of a sequence of polynomials in x,

φi
0(x) = 1, φi

1(x) = x + Q̃i, (11)

φi
j(x) = (Q̃i−(j−1) + x)φi

j−1(x)− Ri−(j−1)Pi−(j−2)φ
i
j−2(x), j ∈ {2, 3, . . . , i− 1, i}. (12)

where the superscript i (plus 1) gives the number of polynomials in the set, and the subscript
j denotes the (j + 1)-th recursively defined polynomial. This result was first shown by [19],
and allows one to express the determinant of a tridiagonal matrix in an analytic and
computationally convenient way. Note that the polynomials φi

j(x) are orthogonal following
Shohat–Favard theorem [28], although we do not use this property directly. Then, we can
express θi,1 and θi,2 as

θi,1 =
φi−1

i−1(0)

∏i−1
j=0 Rj

, (13)

θi,2 =
φi−1

i−2(0)

∏i−1
j=1 Rj

. (14)

This gives us our closed-form expression for Ci in terms of the recursively defined orthogo-
nal polynomials φi

j(x),

Ci =
Q̃0φi−1

i−1(0)− R0P1φi−1
i−2(0)

∏i−1
j=0 Rj

, (15)

which is the main result of the paper. It elucidates the functional dependence of Ci on
the coefficients Pj, Qj and Rj in the recurrence relation itself. Note that this result is much
more compact, and its derivation much easier, than other solutions to three-term recurrence
relations described in [12,15]. It also avoid restrictions on the Ci, such as those imposed in
the solution of Risken [17], wherein the authors require that for some N it is large enough
that CN+1 = 0. We will see in the final section of the paper that this result allows us to easily
find the conditions under which polynomial solutions to Heun’s differential equations,
or indeed any function defined by a three-term recurrence relation, occur. However, first,
we establish the connection between Equation (15) and the work of Risken et al. [16,17].
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3. Relationship to Continued Fractions

As stated in the introduction, the most useful previous solutions to the three-term
recurrence come in the form of continued fractions, which are more cumbersome than
the results derived in the previous section. Here, we show the relationship between our
solution and that of [16], showing how the coefficients Ci are equivalently given by a finite
product over a set of continued fractions.

In [16], Risken and Vollmer study the non-stationary recurrence relations of the scalar
and vector type. The scalar type is defined by

dCj(t)
dt

= RjCj+1(t)− Q̃jCj(t) + PjCj−1(t), j ∈ {0, 1, 2, . . . }, (16)

where for some finite value of N, CN+1(t) = 0, which can either be an artificial trunca-
tion leading to approximate Cj(t), or exact in some special cases. Such time-dependent
recurrence relations are common in the study of one-dimensional master equations and
first-passage time processes [29–33]. To solve Equation (16), one can treat it as an initial
value problem (as was also carried out in [18]), but the easiest way to solve it is as an eigen-
value problem. To achieve this, one makes the separation ansatz Cj(t) = C̃je−λt, which
leads to a homogeneous three-term recurrence relation of the type seen in Equation (3),
explicitly,

RjC̃j+1 − (Q̃j − λ)C̃j + PjC̃j−1 = 0. (17)

The problem of finding Cj(t) is then split into two. First, one needs to find the expression
governing the C̃j. Second, one must find the eigenvalue λ. Finding λ is a classic problem of
linear algebra, and amounts to finding the values of λ under which the following holds:∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ− Q̃0) R0
P1 (λ− Q̃1) R1

P2 (λ− Q̃2)
. . .

(λ− Q̃N−1) RN−1
PN (λ− Q̃N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (18)

for which there will be N + 1 solutions for λ where C̃N+1 = 0. Generally, this can be
achieved numerically. Clearly, usage of the exponential ansatz reduces the problem of
calculating the C̃j to the same problem as we initially consider in Equation (3), but Risken
et al. [16,17] solve it using continued fraction methods, as opposed to the method of
orthogonal polynomials introduced above. Consider the transformation Sj = C̃j+1/C̃j,
which transforms Equation (17) into

RjSj + (λ− Q̃j) +
Pj

Sj−1
= 0, (19)

which can be solved for Sj to give the recursive relationship

Sj =
−Pj+1

(λ− Q̃j+1) + Rj+1Sj+1
. (20)

This relationship can be iterated to give an expression for Sj in terms of a continued fraction,

Sj =
−Pj+1

λ− Q̃j+1−
Rj+1Pj+2

λ− Q̃j+2−
. . .

RN−1PN

λ− Q̃N
, j ∈ {1, 2, . . . , N − 2}, (21)
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with SN = 0 and SN−1 = −PN/(λ− Q̃N). One can then recover the C̃j by noticing that

C̃j = C̃0

j−1

∏
i=0

Si. (22)

From here, it is clear that Equation (15) is equivalent to a finite product over a set of
continued fractions. The benefit of the result in Equation (15) is that it is valid even
for non-physical recurrence relations that grow unboundedly, and there is no restriction
that CN+1(t) = 0 for some values of N. The results of Risken et al. for scalar three-term
recurrence can hence be seen as a special case of Equation (15). Of course, for many physical
applications the recurrence does not grow unboundedly, as often the recurrence variable
represents physical variables or probabilities. This, however, is not a restriction on the
special functions considered in the next section.

4. Heun Functions

Heun functions have had increased popularity in the study of Markov processes
as researchers attempt to make their models more general, and eigenfunctions of the
master equation or Fokker–Planck equations they consider can no longer be described by
hypergeometric or lesser-order functions. They are the solution to a differential equation
with four regular singularities, given by the ODE [34,35],

d2y
dz2 +

(γ

z
+

δ

z− 1
+

ε

z− a

)dy
dz

+
αβz− q

z(z− 1)(z− a)
y = 0, (23)

whose singularities are at z = 0, 1, a and ∞, around each of which one can form a Frobenius
solution of two linearly independent general Heun functions. To ensure that the Frobenius
indices at z = ∞ are {α, β}, the relation α + β + 1 = γ + δ + ε must be satisfied. This ODE
is known as Heun’s general equation, and it is the natural extension of the hypergeometric
differential equation ([20], Section 15.2), being a second-order linear Fuchsian equation
with four singularities. For clarity, we show the associated radii of convergence of each
Frobenius solution of the general Heun equation in Figure 1. Confluent forms of the Heun
function also arise through limits of the solution to Heun’s general equation. For example,
merging the singularities of the general Heun function at z = a and z = ∞, by taking
a → ∞ and simultaneously q, αβ, ε → ∞ in such a way that ε/a → −ε′, q/a → q′ and
αβ/a→ α′, one arrives at the confluent Heun equation,

d2y
dz2 +

(
ε′ +

γ

z
+

δ

z− 1

)dy
dz

+
α′z− q′

z(z− 1)
y = 0, (24)

which has two regular singularities at z = 0, 1 and an irregular singularity of rank 1 at
z = ∞.

In what follows, we simply relabel the parameters of the confluent Heun function by
dropping the prime, i.e., ε′ → ε, α′ → α and q′ → q. One can then merge the singularities
in the confluent Heun equation to derive further confluent types of Heun functions ([20],
Section 31.12). The Frobenius indices for each of Equations (23) and (24) around each regular
singularity are well reported [20,34], and here we consider series solutions to Equations (23)
and (24) with the Frobenius index of 0 (note that our results below can be trivially applied
to the solution defined by the second Frobenius exponent at each singularity, but with the
re-defined parameters Pj, Qj and Rj). This means assuming that y(z) around z = 0 has
the form

y(z) =
∞

∑
j=0

Cjzj. (25)
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Substituting this into Equations (23) and (24) results in the three-term recurrence relation
defining the solution at z = 0 with the Frobenius index of 0,

RjCj+1 − (Qj + q)Cj + PjCj−1 = 0, j ∈ {0, 1, 2, . . . }, (26)

with the boundary conditions C0 = 1 and C−1 = 0. The coefficients in the recurrence
relation are different for the general and confluent Heun equations, and can be derived
through the standard substitution of Equation (25) into the respective Heun differential
equation. For the general Heun equation in Equation (23), we have

Pj = (j− 1 + α)(j− 1 + β),

Qj = j((j− 1 + γ)(1 + a) + aδ + ε),

Rj = a(j + 1)(j + γ),

whereas for the confluent Heun equation, we have

Pj = (1− j)ε− α,

Qj = j(1− j) + j(ε− γ− δ),

Rj = (j + 1)(j + γ).

Figure 1. Illustration showing the radii of convergence of the Frobenius solutions of the general
Heun equation about z = 0, 1 and a. The parameter a can take any complex value. Each Frobenius
solution is valid in a circle in the complex plane (centered at the respective singularity) until the next
singularity. Ordinary series expansions, not about singularities, are also valid in a circle extending up
to the next singularity. Note that in cases where the Heun functions simplify to polynomials, or even
Frobenius solutions valid at two singularities, the radii of convergence will extend beyond those in
the illustration. The radius of convergence of the solution at z = ∞ can be seen clearly through the
independent variable transformation z→ 1/x, as shown in ([34], p. 15). For further details, see [36].

Clearly, for functions of the Heun class, Equation (26) is essentially Equation (3) but
with Q̃j = Qj + q, meaning that the Cj can be solved directly by a slight modification to
Equation (15),

Ci =
qφi−1

i−1(q)− R0P1φi−1
i−2(q)

∏i−1
k=0 Rk

, (27)

where the orthogonal polynomials are now evaluated at the accessory parameter x = q.
This result shows explicitly why we must have γ /∈ {0,−1,−2, . . .}, since this would lead
to a zero in the denominator of Ci. Note that in cases where the parameters of the Heun
functions are such that they reduce to polynomials, or to solutions valid at more than one
singularity, the Ci will consist of a convergent series as i→ ∞, even outside the standard
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radius of convergence [34]. However, in general, the results of Risken do not apply for
general Heun or confluent Heun functions outside the standard radius of convergence [16].

5. Application to Relaxation Times in Models of Social Choice

In this section, we apply the above analytics to explore the relaxation times to equilib-
rium in two distinct models of social choice, modeled as continuous-time Markov processes.
Using the generating function approach to the master equation, one can show that the
eigenspectra that define the time-dependence in the dynamics can be found through impos-
ing physical restrictions on the generating function, which accounts for the finite size of the
agent populations. This also allows one to connect continued fractions to their equivalent
polynomial expressions that define the eigenspectra. The key references for the examples
in this section are [2,6,7].

5.1. Fully Asymmetric Binary Choice Model

Many social choices are well described by binary choice situations wherein a fixed
number of N agents decide between a left choice and a right choice with respect to two
influences, (1) a random switching of decision of each agent, and (2) a recruitment whereby
agents deciding one way can recruit others to the same decision. Such models have become
increasingly common as they are much more analytically tractable than multiple-choice
scenarios [37], and many social decisions can be approximated as being for-or-against a
specific choice (even in a multiple-choice scenario). This situation describes the model of ant
recruitment used by Kirman [2] to show how endogenous interactions can induce polarity in
the collective decisions of agents and that polarity does not necessarily require an exogenous
force. The same model has been used in other contexts to describe genetic drift [3] and
the dynamics of migration [8,38]. In simpler cases where the effects of recruitment are
symmetric in both decisions, the binary choice model has been solved [6,8]. However,
making the effects of recruitment asymmetric leads to non-trivial relaxation rates and
eigenfunctions for the stochastic process [6]. The fully asymmetric system defining the
binary choice model is given by

L
(N−n)ε1+n(N−n)µ1−−−−−−−−−−−−⇀↽−−−−−−−−−−−−

nε2+n(N−n)µ2

R, (28)

where the expressions above and below the arrows indicate the propensity (per agent per
unit of time) for a reaction to occur (determined from mass-action kinetics [39]), L and
R denote an agent deciding left or right, respectively, and it is assumed that each agent
is equally likely to interact with any other, meaning network effects can be ignored [8].
ε1 and ε2 are the random switching rates from left-to-right and right-to-left, respectively,
and µ1 and µ2 are the respective rates of recruitment. In the propensities, n denotes the
number of agents deciding right, meaning that (N − n) agents decide left. Note that this is
a second-order reaction scheme due to the interactions between L and R agents.

This reaction scheme corresponds to the master equation,

∂tP(n, t) =[(N − (n− 1))ε1 + µ1(n− 1)(N − (n− 1))]P(n− 1, t)

+ [(n + 1)ε2 + µ2(n + 1)(N − (n + 1))]P(n + 1, t)

− [(N − n)ε1 + nε2 + (µ1 + µ2)n(N − n)]P(n, t),

(29)

where P(n, t) is the probability of observing n right-deciding agents at a time t. The standard
next step is to introduce the generating function G(z, t) = ∑n P(n, t)zn which converts the
master Equation (a set of coupled first-order ODEs) into a single PDE, which we give in
Appendix C.1. Using separation of variables one can show that G(z, t) ∼ fλ(z)e−λt, and the
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PDE defining G(z, t) reduces to a second-order ODE in fλ(z) whose solution is a general
Heun function (also see [6]),

fλ(z) = H(a, q(λ); α, β, γ, 0; z), (30)

where we have defined,

a = µ2/µ1,

q(λ) =
(λ− Nε1)(N − 1)

µ1
,

α = −N,

β =
(N − 1)ε1

µ1
,

γ = −(N − 1)
(

1 +
ε2

µ2

)
,

(31)

where the parameters have the same meaning as introduced for the general Heun function
in Section 4. Note that δ = 0. In order for the fλ(z) to be physical, we require that the λ
be chosen such that fλ(z) is a polynomial of order N in z. This amounts to choosing λ
such that P(N + 1, t) = 0, for which we can easily find a polynomial defining this from
Equation (27),

P(N + 1, t) ∝ q(λ)φN
N(q(λ))− R0P1φN

N−1(q(λ)) = 0, (32)

which is a polynomial in λ of order N + 1, whose roots define the eigenspectrum of relax-
ation to the equilibrium state. The most salient aspect of this equation is that the eigenvalues,
and hence the relaxation timescales, no longer have a trivial dependence on the random switching
and recruitment rates or even on the system size. Therefore, the key results relating to the
relaxation timescales for Kirman’s symmetric ant recruitment model, i.e., the leading relax-
ation behavior being dependent only on the random switching rate and relaxation being
independent of the size of the system [6,10], no longer hold. One can show the equivalence
between the finite continued fractions and the polynomials defining the eigenspectrum,
where using the formula in terms of continued fractions in ([6], Equation (28)) and equating
the q(λ) terms in each expression, one finds

1
Q1 + q−

R1P2

Q2 + q− . . .
RN−1PN
QN + q

=
φN

N−1(q)
φN

N(q)
. (33)

This allows one to easily find the rational fraction corresponding to a continued fraction of
the above form in terms of orthogonal polynomials in q. This holds for any Pj, Qj or Rj for
which there is some CN+1 = 0.

5.2. The Vacillating Voter Model

We can also use our method to easily derive polynomials describing the eigenspectra
of models whose eigenfunctions satisfy generating function ODEs that are more complex
than Heun functions, as long as the special functions defining them have series expansions
whose coefficients are described by a three-term recurrence. For example, consider the
following third-order reaction scheme that describes so-called vacillating voters [7],

L
pd(N−n)+(1−pd)

(N−n)n
N−1 (1+ N−n

N−1 )−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−
pdn+(1−pd)

(N−n)n
N−1 (1+ n

N−1 )
R, (34)

where L and R again correspond to two different decisions, but now with different dy-
namical rules as compared to the asymmetric binary choice model. The model was solved
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semi-analytically in [6]. The rules described by this process are as follows. An agent is
chosen at random from the population, and with probability pd changes their decision.
However, with probability (1− pd) the agent looks at the decision of another agent. If this
agent agrees with the originally chosen agent nothing happens, but if there is a disagree-
ment the original agent will then select another agent at random and perform the same
procedure again. Only if both other agents selected by the original agent disagree with
their current view will the original agent change their mind. As one might expect, this
leads to quite different behaviors from the original voter model [40], including transient
and steady-state trimodality [6,7].

Again, one can construct a master equation describing the dynamics of the vacillating
voters and can write the corresponding generating function equation. In Appendix C.2
we show this, and again use the separation of variables to define the equation which fλ(z)
satisfies, which is a third-order ODE in fλ(z) and the unspecified spectral parameter λ.
Employing a series solution about z = 0, i.e., fλ(z) = ∑j Cjzj, one then finds the following
recursion relation for the coefficients Cj:

C0 = 1, (N − 1)((N − 1)pd + N(1− pd))C1 − q(λ)C0 = 0,

RjCj+1 − (Qj + q(λ))Cj + PjCj−1 = 0,
(35)

with the condition that CN+1 = 0, and where we re-define

q(λ) =(N − 1)(pdN − λ),

Rj =(j + 1)
(

j
(
− j2 + j− 2

)
(1− pd)

+ (1− pd)N(N − 1) + (N − 1)2 pd

)
,

Qj =− j(1− pd)(3N − 2)(N − j),

Pj =(j− 1)(1− pd)(j− 2N)(j− N − 1)

− (N − 1)pd((j− 2)N − j + 1),

(36)

which has been taken directly from [6]. Again, the polynomial describing the eigenspectra
will be given by Equation (32), but now with the redefined q(λ), Rj, Qj and Pj.

6. Discussion

In this paper, we provided a closed-form solution to a general three-term recurrence
relation that determines the relaxation spectra in non-trivial models of binary choice. This
allowed us to express the sequence defined by the recurrence in terms of orthogonal poly-
nomials that allow one to easily see the analytic structure of terms in the sequence. Our
solution is not reliant on the convergence of the recurrence, unlike that of the continued
fraction solution, meaning that it can be applied even in situations where the sequence
defined by the recurrence grows unboundedly. We then showed how this result provides
the series coefficients in the Frobenius expansions of Heun functions. In the final section,
we used these analytics for Heun functions, and other special functions whose Frobenius so-
lutions satisfy a three-term recurrence, to derive concise polynomial expressions that define
the eigenspectra for relaxation to the steady state in two distinct models of social choice.

Our result has clear analytic use, e.g., easily computing the polynomial satisfied by
the eigenspectrum of a continuous-time Markov process (Section 5) or expressing finite
continued fractions as a rational fraction (Equation (33)). However, a computational
limitation of our solution is that each Cj will take the same order of time to compute a direct
forward substitution on the triangular matrix equation in Equation (5), although solving
via this method does not lead to a closed-form solution (i.e., each Cj would depend on
all Ci<j preceding it). We note that the same restriction applies to the continued fraction
solution to the three-term recurrence relation provided by Risken [16]. However, it is often
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the analytical structure that is of interest to us in solving physical problems—as we have shown
in Section 5.

Several avenues for further study remain open. The first is the extension of the results
presented herein to higher-order recurrence relations. Such an approach has been previously
considered by Risken [16], wherein higher-order recurrence relations are converted into
three-term vector recurrence relations that can be solved by continued fraction methods very
similar to those used for three-term scalar recurrence relations. Using a similar approach, it
may be possible to generalize the results in this paper to higher-order recurrence relations
in a way that does not require the usage of matrix continued fractions. The results that we
have presented also allow for connections to be drawn to other parts of the Markov process
literature involved in solving one-dimensional master equations for various problems, such
as its time-dependent solution with arbitrary rates, or the one-dimensional first-passage
time probabilities with absorbing [32] and reflecting [41] boundaries [42]. These papers
highlight the utility of studying the three-term recurrence under different boundary and
initial conditions, and the results that we have found possibly allow for a unification of the
results found therein. Finally, and most optimistically, it may be possible to use our methods
to derive time-dependent solutions to chemical reaction networks involving reactions of
bimolecular form, and multi-step reactions, and provide an extension to the generalized
solutions of monomolecular reaction systems provided by Jahnke et al. in [43] and the
solution to the one-dimensional, linear, one-step master equation [31]. The calculation
of these results would rely on finding an appropriate representation of reaction schemes
involving bimolecular reactions, possibly in the form of a vector recurrence relation, that
then allows for linear algebraic methods to become computationally useful.
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Appendix A. Calculation of Minors Mi,1

We start by calculating the minors M1,1, M1,2 and M1,3 before presenting the pattern
for general M1,i. For M1,1 we trivially find that

M1,1 =

∣∣∣∣∣∣∣∣∣
R1
−Q̃2 R2

P3 −Q̃3 R3
...

. . .

∣∣∣∣∣∣∣∣∣ =
∞

∏
i=1

Ri, (A1)

where even though the determinant of an infinite matrix is not formally well defined, the
result holds for our calculations below and in the main text. For M1,2, we find that

M1,2 =

∣∣∣∣∣∣∣∣∣
−Q̃1

P2 R2
−Q̃3 R3

...
. . .

∣∣∣∣∣∣∣∣∣ = −Q̃1

∞

∏
i=2

Ri, (A2)
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And for M1,3,

M1,3 =

∣∣∣∣∣∣∣∣∣∣∣

−Q̃1 R1
P2 −Q̃2

P3 R3
−Q̃4 R4

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣Q̃1 R1
P2 Q̃2

∣∣∣∣ · ∞

∏
i=3

Ri, (A3)

where we have made use of Schur’s formula [44] for the determinants of block matrices,
which states that if one has the block matrix,

E =

(
A B
C D

)
. (A4)

For invertible A and D, we have

det(E) = det(A) · det(D− C ·A−1 · B), (A5)

which, when either B or C consist entirely of zeros, reduces to

det(E) = det(A) · det(D). (A6)

We hence see the emergence of a pattern whereby the minors are the product of the
determinant of a tridiagonal matrix multiplied by a product over Ri. By defining Di as the
following determinant,

Di ≡

∣∣∣∣∣∣∣∣∣∣∣

Q̃1 R1
P2 Q̃2

. . .
Q̃i−1 Ri−1

Pi Q̃i

∣∣∣∣∣∣∣∣∣∣∣
, (A7)

with D0 = 1, we can then express the minors M1,i,

M1,i = Di−1(−1)i−1
∞

∏
j=i

Rj. (A8)

This formula recovers the cases already shown above for i = 1, 2, 3 and can be shown to
agree for any value of i ∈ N1. The usage of Cramer’s rule from Equation (9) then gives us
the elements θi,1,

θi,1 =
Di−1

∏i−1
j=0 Rj

. (A9)

One can express the tridiagonal determinant defining Di−1 in terms of recursively defined
polynomials following the work of [19]. The set of polynomials φi

j(x) is defined by

φi
0(x) = 1, φi

1(x) = x + Q̃i, (A10)

φi
j(x) = (Q̃i−(j−1) + x)φi

j−1(x)− Ri−(j−1)Pi−(j−2)φ
i
j−2(x), j ∈ {2, 3, . . . , i− 1, i}. (A11)

This allows us to identify Di = φi
i(0), and therefore we find the result contained in the

main text,



Entropy 2023, 25, 996 13 of 16

θi,1 =
φi−1

i−1(0)

∏i−1
j=0 Rj

. (A12)

Appendix B. Calculation of Minors Mi,2

Similar to Appendix A, we begin by calculating M2,1, M2,2, M2,3 and M2,4 and then
identify the pattern for general M2,i. First, for M2,1, we find

M2,1 =

∣∣∣∣∣∣∣
0
−Q̃2 R2

. . .

∣∣∣∣∣∣∣ = 0, (A13)

due to the zero on the diagonal. For the minor M2,2, we find

M2,2 =

∣∣∣∣∣∣∣∣∣∣∣

R0
P2 R2
−Q̃3 R3

P4 −Q̃4 R4
. . .

∣∣∣∣∣∣∣∣∣∣∣
= R0

∞

∏
i=2

Ri, (A14)

and for minor M2,3,

M2,3 =

∣∣∣∣∣∣∣∣∣∣∣

R0
P2 −Q̃2

P3 R3
−Q̃4 R4

. . .

∣∣∣∣∣∣∣∣∣∣∣
= −R0Q̃2

∞

∏
i=3

Ri, (A15)

where we have again made use of Schur’s formula shown in Appendix A. To see the
emergent pattern, it is instructive to also calculate M2,4, which the application of Schur’s
formula finds as

M2,4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

R0
P2 −Q̃2 R2

P3 −Q̃3
P4 R4

−Q̃5 R5
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
= R0

∣∣∣∣Q̃2 R2
P3 Q̃3

∣∣∣∣ · ∞

∏
i=4

Ri. (A16)

If we define Ei as the following determinant,

Ei ≡

∣∣∣∣∣∣∣∣∣∣∣

Q̃2 R2
P3 Q̃3

. . .
Q̃i−1 Ri−1

Pi Q̃i

∣∣∣∣∣∣∣∣∣∣∣
, (A17)

with E0 = 0 and E1 = 1, we can then express the minors M2,i as

M2,i = Ei−1(−1)iR0

∞

∏
j=i

Rj. (A18)
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The usage of Cramer’s rule from Equation (9) then gives us the elements θi,2,

θi,2 =
Ei−1

∏i−1
j=1 Rj

. (A19)

One can also express this in terms of the set of orthogonal polynomials defined in
Equation (11) to give

θi,2 =
φi−1

i−2(0)

∏i−1
j=1 Rj

. (A20)

Appendix C. Generating Function Equations

Appendix C.1. Asymmetric Social Choice

In the model of asymmetric social choice shown in the main text, the generating
function PDE corresponding to Equation (29) is given by

∂tG =
(
(Nε1 − µ1(N + 1))z + (ε2 + µ2(N − 1))z−1 − Nε1

)
G

+ (z∂z) ·
{(

(µ1(N + 1)− ε1)z + (ε2 + µ2(N − 1))z−1 − (ε2 − ε1 + N(µ1 + µ2))
)

G
}

(A21)

+ (z∂z)
2 ·
{(

µ1 + µ2 − µ1z− µ2z−1
)

G
}

,

where we have dropped the dependence of G on z and t for brevity, and which was
previously studied in [6]. Using the separation of variables, one can show that G has the
form G ∼ f (z)e−λt, which converts this PDE into a second-order ODE in terms of fλ(z).
The eigenspectrum λ is determined by imposing the finite nature of the population on each
fλ(z), i.e., enforcing that it is a polynomial of order N in z.

Appendix C.2. Vacillating Voters

The generating function PDE corresponding to the vacillating voter model is given by

∂tG
N − 1

=
(1− pd)

N − 1
z2(z + 1)(z− 1)∂3

zG

+
(1− pd)

N − 1
z(z− 1)(2 + 4z− 3Nz)∂2

zG

− (z− 1)((N − 1)(z + 1)pd + (1− pd)(N + 2z(1− N)))∂zG

+ N(z− 1)pdG,

(A22)

where we notice the appearance of a third-order term in the generating function ODE
whose origin is in the third-order nature of the dynamics of the vacillating voters. Again,
one can use the separation of variables to convert this PDE into an ODE in terms of fλ(z)
and an as yet unidentified spectral parameter λ,

(1− pd)z2(z + 1)(z− 1)∂3
z fλ(z)

+ (1− pd)z(z− 1)(2 + 4z− 3Nz)∂2
z fλ(z)

− (N − 1)(z− 1)((N − 1)(z + 1)pd + (1− pd)(N + 2z(1− N)))∂z fλ(z)

+ (N − 1)(λ + N(z− 1)pd) fλ(z) = 0,

(A23)

which is a third-order ODE.
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