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Abstract: Objective: Phase transfer entropy (TEθ) methods perform well in animal sensory–spatial
associative learning. However, their advantages and disadvantages remain unclear, constraining
their usage. Method: This paper proposes the performance baseline of the TEθ methods. Specifically,
four TEθ methods are applied to the simulated signals generated by a neural mass model and
the actual neural data from ferrets with known interaction properties to investigate the accuracy,
stability, and computational complexity of the TEθ methods in identifying the directional coupling.
Then, the most suitable method is selected based on the performance baseline and used on the
local field potential recorded from pigeons to detect the interaction between the hippocampus (Hp)
and nidopallium caudolaterale (NCL) in visual–spatial associative learning. Results: (1) This paper
obtains a performance baseline table that contains the most suitable method for different scenarios.
(2) The TEθ method identifies an information flow preferentially from Hp to NCL of pigeons at
the θ band (4–12 Hz) in visual–spatial associative learning. Significance: These outcomes provide a
reference for the TEθ methods in detecting the interactions between brain areas.

Keywords: phase transfer entropy; interaction; visual–spatial associative learning; hippocampus;
nidopallium caudolaterale; pigeon

1. Introduction

Sensory–spatial associative learning is defined as the ability to integrate sensory cues
(visual, olfactory, and auditory cues) and spatial locations together in memory [1–3]. Accu-
mulating evidence shows that a distributed brain network supports animals in realizing this
complex cognitive process [1,4,5], especially for the interaction between the hippocampus
(Hp) and prefrontal cortex (PFC) [6,7], playing a key role in sensory–spatial associative
learning. Avian Hp is homologous with mammalian Hp and the pigeons with Hp damage
are impaired in forming an association between visual cues and spatial location [8,9], which
indicates that the formation of associative memory critically depends on the integrity of Hp.
As an analogue of mammalian PFC, pigeon nidopallium caudolaterale (NCL) integrates
mnemonic information and task rules in order to direct behavior appropriately [10,11].
However, it is not yet understood whether there is information transfer between Hp and
NCL of pigeons in sensory–spatial associative learning. Revealing the coupling between Hp
and NCL not only helps to understand the mechanisms of brain areas, but also promotes
the development of brain-like intelligence [12].

The interaction between Hp and NCL can be identified by phase transfer entropy (TEθ),
which relates to calculating transfer entropy (TE) on the neural signals recorded from these
two areas. TEθ retains the advantages of TE because it is model-free and does not require
any prior knowledge on the input of the system or the target connectivity networks [13–15].
Meanwhile, owing to the phase relationships linked to neuronal synchronization and
information flow within the interconnected brain regions [16–18], compared with TE on
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the time series that combined amplitude and phase, TEθ is more suitable for investigating
coupling between brain regions.

In TEθ , the most critical assignment is to estimate the TEθ metric value. According
to its standard definition, TEθ is formulated as Shannon entropy, which quantifies the
difference between p

(
θ

y
i+1

∣∣∣θx
i , θ

y
i

)
and p

(
θ

y
i+1

∣∣∣θx
i

)
[15,19]. Hlaváčková-Schindler focused

on diverse approaches to Shannon entropy [20]. Among them, a method is proposed by
Kraskov, Stögbauer, and Grassberger (KSG) [21], in which the TE metric value can be
estimated by counting the samples in specific strips, rather than finding nearest neighbors
in each low-dimensional space [22], so that the deviations caused by the different spatial
scales in low-dimensional spaces are significantly reduced. Another widely used approach
to estimate TEθ is the binning method [19]. By partitioning the state spaces of the phase time
series into several bins and counting the number of points in each bin, various probability
density functions (PDFs) and Shannon entropy can be calculated. Besides Shannon entropy,
other techniques have also been proposed to estimate the TEθ metric value; for instance,
the symbolic technique based on permutation entropy and the kernel method with the
concept of Renyi’s α entropy. Staniek suggested to estimate TEθ by adopting a technique
of symbolization [23]. Instead of calculating PDFs directly in traditional TEθ , a symbolic
processing is carried out on the state space of phase time series [24]. With the relative
frequencies of the symbols, the PDFs of the sequence of permutation index are estimated
and the symbolic TEθ metric value is obtained. Panche proposed a kernel TEθ estimator
that expresses TEθ as a linear combination of Renyi’s entropy [25], which is approximated
by a function defined on positive definite and infinitely divisible kernel matrices. This
method sidesteps the requirement of obtaining the PDFs from the phase time series [26].
However, these methods mentioned above have their own assumptions, advantages, and
limitations [25–27], and the criteria for applying these methods are different.

Owing to performance baseline differences in TEθ methods, these methods may yield
different results even for the same datasets, let alone the neural signals recorded during
associative learning, where the short duration of a trial results in the small sample size
and the interaction lag is unknown. Therefore, benchmarking TEθ methods on various
types of data to determine their performance baseline is an urgent problem to be solved.
Though the ability of the TEθ with KSG (TEθ

KSG), symbolic (TEθ
sym), and Renyi’s entropy

(TEθ
kα) estimators to detect the directional interaction has been discussed in [25], there is no

uniform standard to evaluate the performance of these methods, and some key factors that
may have a great effect on the estimators are not analyzed, especially for the sample size
and interaction lag. The properties of the TEθ methods for suitable application are not yet
well understood.

Therefore, this paper first explores the performance baseline of TEθ
KSG, TEθ

sym, TEθ
kα,

and the binning method (TEθ
bin) on the simulated signals generated by a neural mass model

and the actual neural data from ferrets with known interaction structures. To satisfy the
validity for a non-stationary time series, we adopt the ensemble method in which multiple
independent repetition trials are taken as a set to estimate TEθ , instead of estimating
from an individual trial [28,29]. On the simulated data, the accuracy of the TEθ methods
in identifying the directional interaction and the ability of these methods to estimate the
interaction lag is analyzed. The effect of sample size and interaction lag on these methods as
well as the robustness of the TEθ estimators to noise and linear mixing is also emphasized.
Finally, the computational complexity of the four methods is compared. On the actual
neural data, the TEθ methods are applied to public datasets to assess the performance of
TEθ estimators on the actual neural signals.

Then, based on the properties, the most suitable TEθ method is applied to the local
field potential signals (LFPs) recorded from pigeons to detect the interaction between
Hp and NCL in visual–spatial associative learning. The contributions of this paper are
as follows:
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(1) By benchmarking the TEθ methods on the simulated signals and the actual neural
data, we explore the performance baseline of the TEθ methods and provide a reference
for the use of the TEθ methods on the actual neural signals.

(2) The most suitable TEθ method is applied to neural signals recorded from pigeons and
identifies the interaction between Hp and NCL of pigeons in visual–spatial associative
learning.

The remainder of this paper is organized as follows: Section 2 reviews the theoretical
foundations of the TEθ methods, the neural mass model, evaluation criteria, and the actual
neural data recording as well as analysis; Section 3 presents our results on the simulated
signal pairs, actual neural data from ferrets, and the LFPs from pigeons; Section 4 shows
the discussion; and, finally, Section 5 contains our conclusion.

2. Materials and Methods

2.1. Phase Transfer Entropy (TEθ)

For two random variables X and Y, the TE from X to Y can be defined as [30]:

TE(X → Y) = ∑yt ,y
dy
t−1,xdx

t−u
p
(

yt, ydy
t−1, xdx

t−u

)
log

p
(

yt

∣∣∣ydy
t−1, xdx

t−u

)
p
(

yt

∣∣∣ydy
t−1

) (1)

where xdx
t−u, ydy

t−1 ∈ RD×d are the time-embedded series of X and Y, respectively, and
D = T − (τ(d− 1))− u, in which d, τ ∈ N are the embedding dimension and embedding
delay, respectively. T indicates the length of X and u ∈ N represents the interaction lag
between X and Y. p(·) is the PDF. Details of TE are described in [13,14,31].

In TEθ , the time series xt and yt are replaced by instantaneous phase time series θx
t

and θ
y
t , which are extracted from xt and yt with Hilbert or Morlet wavelet transform at

frequency f . Thus, TEθ is

TEθ(X → Y, f ) = ∑θ
y
t ,θy,dy

t−1 ,θx,dx
t−u

p
(

θ
y
t , θ

y,dy
t−1 , θx,dx

t−u

)
log

p
(

θ
y
t

∣∣∣θy,dy
t−1 , θx,dx

t−u

)
p
(

θ
y
t

∣∣∣θy,dy
t−1

) (2)

where θx,dx
t−u and θ

y,dy
t−1 are the time-embedded versions of θx

t and θ
y
t .

Then, TEθ is extended to the ensemble method, in which the independent repetition tri-
als of an experimental condition are taken as an ensemble of realizations, and various PDFs
are estimated from the ensemble members. Therefore, TEθ can be written as follows [28]:

TEθ(X → Y, f ) = ∑θ
y
t (r),θ

y,dy
t−1 (r),θ

x,dx
t−u (r)

p
(

θ
y
t (r), θ

y,dy
t−1 (r), θx,dx

t−u (r)
)

log
p
(

θ
y
t (r)

∣∣∣θy,dy
t−1 (r), θx,dx

t−u (r)
)

p
(

θ
y
t (r)

∣∣∣θy,dy
t−1 (r)

) (3)

where r is the number of independent repetition trials.

2.2. TEθ Methods

2.2.1. Binning Estimator (TEθ
bin)

Formula (3) can be written as the form of Shannon entropy:

TEθ(X → Y, f ) = H
(

θx,dx
t−u (r), θ

y,dy
t−1 (r)

)
− H

(
θ

y
t (r), θx,dx

t−u (r), θ
y,dy
t−1 (r)

)
+ H

(
θ

y
t (r), θ

y,dy
t−1 (r)

)
− H

(
θ

y,dy
t−1 (r)

)
(4)

H
(

θx,dx
t−u (r), θ

y,dy
t−1 (r)

)
= −∑θx,dx

t−u (r),θ
y,dy
t−1 (r)

p
(

θx,dx
t−u (r), θ

y,dy
t−1 (r)

)
log

(
p
(

θx,dx
t−u (r), θ

y,dy
t−1 (r)

))
(5)



Entropy 2023, 25, 994 4 of 20

H
(

θ
y
t (r), θx,dx

t−u (r), θ
y,dy
t−1 (r)

)
= −∑θ

y
t (r),θ

x,dx
t−u (r),θ

y,dy
t−1 (r)

p
(

θ
y
t (r), θx,dx

t−u (r), θ
y,dy
t−1 (r)

)
log

(
p
(

θ
y
t (r), θx,dx

t−u (r), θ
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(6)

H
(

θ
y
t (r), θ

y,dy
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)
= −∑θ

y
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y,dy
t−1 (r)

p
(

θ
y
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y,dy
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)
log

(
θ

y
t (r), θ

y,dy
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)
(7)

H
(

θ
y,dy
t−1 (r)

)
= −∑θ

y,dy
t−1 (r)

p
(

θ
y,dy
t−1 (r)

)
log

(
θ

y,dy
t−1 (r)

)
(8)

where H(·) is Shannon entropy.
The histogram-based method is used to estimate various PDFs in TEθ

bin. First, the

state spaces of all trials (
(

θx,dx
t−u (r), θ

y,dy
t−1 (r)

)
,
(

θ
y
t (r), θx,dx

t−u (r), θ
y,dy
t−1 (r)

)
,
(

θ
y
t (r), θ

y,dy
t−1 (r)

)
, and(

θ
y,dy
t−1 (r)

)
) can be divided into several bins. Then, the number of points in each bin is

counted. Finally, the probability value for each bin is computed by dividing the number of
points in that bin by the total number of data points.

The bin width is the only parameter should be determined in the binning method.
According to Scott’s choice [32], bin width can be defined as follows: h = 3.5σ/N

1
3 , where

N is the number of samples for θ
y
t and σ is the standard deviation for a directional variable

as defined by Fisher. In TEθ
bin, the embedding dimension (dx, dy) is 1.

2.2.2. KSG Method (TEθ
KSG)

In the KSG estimator, the TEθ metric value can be estimated by counting the number
of samples in the strip of low-dimensional spaces. The strip is defined by the kth nearest
neighbors in high-dimensional space projecting to the low-dimensional spaces. TEθ

KSG can
be written as follows:

TEθ
KSG(X → Y, f ) = ψ(k) + 〈ψ

(
n

θ
y,dy
t−1 (r)

+ 1
)
− ψ

(
n

θ
y
t (r)θ

y,dy
t−1 (r)

+ 1
)
− ψ(n

θ
y,dy
t−1 (r)θ

x,dx
t−u (r)

+ 1)〉 (9)

where ψ is the Digamma function, ψ(x) = Γ(x)−1 dΓ(x)
dx . 〈·〉means average. n

θ
y,dy
t−1(r)

, n
θ

y
t (r)θ

y,dy
t−1(r)

,

and n
θ

y,dy
t−1(r)θ

x,dx
t−u(r)

are the number of samples falling into the strip of low-dimensional space

θ
y,dy
t−1 (r), θ

y
t (r)θ

y,dy
t−1 (r), and θ

y,dy
t−1 (r)θ

x,dx
t−u (r), respectively. k is generally 4 [21].

In the KSG method, the Rawdgitz criterion is used to calculate the embedding dimen-
sion and embedding delay [33].

2.2.3. Symbolic Estimator (TEθ
sym)

The symbolic version of TEθ is based on permutation entropy [34]. A coarse-graining
(partitioning) of state space method is used, in which the phase spaces of θx

t and θ
y
t are

arranged in an ascending order and uniquely mapped onto one of the possible permutations.
Then, the symbols are defined and, with the relative frequency of symbols, the joint and
conditional probabilities of the sequence of permutation indices can be calculated. The
symbolic TEθ method is applied to the ensemble repetitions:

TEθ
sym(X → Y, f ) = ∑θ̂

y
i (r),θ̂

y
i−1(r),θ̂

x
i−u(r)

p
(

θ̂
y
i (r), θ̂

y
i−1(r), θ̂x

i−u(r)
)

log
p
(

θ̂
y
i (r)

∣∣∣θ̂y
i−1(r), θ̂x

i−u(r)
)

p
(

θ̂
y
i (r)

∣∣∣θ̂y
i−1(r)

) (10)

where θ̂x
i and θ̂

y
i are the results of θx

t and θx
t symbolization.

In the process of phase space reconstruction, the C–C method is applied to calculate
the embedding dimension and embedding delay [35].
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2.2.4. Renyi’s α–Entropy Estimator (TEθ
kα)

For two-phase time series θx
t and θ

y
t , TEθ from X to Y can be expressed as the kernel-

based formulation of Renyi’s α–order entropy:

TEθ
κα(X → Y, f ) = Hα

(
K

θ
y,dy
t−1 (r)

, K
θx,dx

t−u (r)

)
− Hα

(
Kθ

y
t (r)

, K
θ

y,dy
t−1 (r)

, K
θx,dx

t−u (r)

)
− Hα

(
Kθ

y
t (r)

, K
θ

y,dy
t−1 (r)

)
+ Hα

(
K

θ
y,dy
t−1 (r)

)
(11)

where Hα(A, B) = Hα

(
A◦B

tr(A◦B)

)
= 1

1−α log
(

tr
((

A◦B
tr(A◦B)

)α))
is Renyi’s α-order entropy.

tr(·) stands for matrix trace. Kθ
y
t (r)

, K
θ

y,dy
t−1 (r)

, and K
θx,dx

t−u (r)
are the Gram matrixes for

θ
y
t (r), θ

y,dy
t−1 (r), and θx,dx

t−u (r), respectively, and hold elements kij = κ
(
ai, aj

)
, κ

(
ai, aj

)
=

exp
(
− ‖ai−aj‖2

2σ2

)
. For Kθ

y
t (r)

, ai, aj ∈ R are the values of θy at times i and j. In the case of

matrix K
θ

y,dy
t−1 (r)

, the vectors ai, aj ∈ Rd contain the space state reconstruction θy,dy of θy at

times i and j, likewise for K
θx,dx

t−u (r)
. ‖ · ‖ indicates Euclidean distance and σ is defined as the

kernel bandwidth, which is calculated by the median of ‖ ai − aj ‖.
The Rawdgitz criterion is used to calculate the embedding dimension and embedding

delay, and α = 3 is chosen for Renyi’s α entropy by experience.
For all estimators, TEθ is a biased estimation, and it may be non-zero even in the

absence of an interaction between X and Y. To reduce the bias, we define differential TEθ

(dTEθ) for all TEθ types:

dTEθ(X → Y, f ) = TEθ(X → Y, f )− TEθ(Y → X, f ) (12)

dTEθ(X → Y, f ) > 0 indicates information flows preferentially from X to Y and
dTEθ(X → Y, f ) < 0 indicates the reverse direction. In the case of no preferential direction
of interaction, dTEθ(X → Y, f ) = 0.

To test the statistical significance of the dTEθ value, the source variable X is shuffled
to generate the surrogate data, and the dTEθ values for 200 sets of surrogate data are
calculated to construct the null hypothesis distribution. The null hypothesis of the raw
data can be rejected or retained by comparing the dTEθ value of the raw data to the null
hypothesis distribution at the 1% level of significance.

The interaction lag δ between X and Y is a significant parameter. Here, the scanning
method is used to estimate δ. When TEθ(X → Y, f , u) is maximal [30], u is equal to δ
(Equation (13)).

δ = argmaxu

(
TEθ(X → Y, f , u)

)
(13)

The Matlab codes of the TEθ methods are provided in the Supplementary Materials.

2.3. Neural Mass Model (NMM)

Simulated data play an essential role in evaluating the competing methods against
a “ground truth”. An NMM is used to generate the simulated signal pairs with known
interaction properties [36]. The NMM simulates the connectivity between multiple regions
of interest (ROIs) through long-range excitatory connections. In the NMM, the average
spike density of pyramidal neurons of the presynaptic area (ZX) affects the postsynaptic
area by a weight factor ω and a time delay δ (Equation (14)):

vY(t) = ωX→YZX(t− δ) + nY(t) (14)

where the superscripts X and Y are represented by the source and target region, respectively.
n(t) is a Gaussian white noise.

Signal pairs generated by the NMM are nonlinear and have significant β (about 20–30 Hz)
activity (Figure 1). By changing the interaction delay and weight factor ωX→Y, ωY→X,
the simulated signal pairs with directional interaction can be obtained. In the following
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analysis, the signal pairs are first filtered in a 15 to 35 Hz pass band using a finite impulse
response filter (FIR) with order 15, and then Hilbert transform is used to extract the phase
time series from the filtered signals.

Figure 1. The simulated signal pairs generated by a neural mass model (NMM). (a) We use the NMM
to produce 1 s time series of Signal 1 and Signal 2 and the instantaneous phases from 15 to 30 Hz are
extracted by Hilbert transform; (b) power averaged over 100 simulations for each weight factor is
plotted as a function of frequency.

To test the accuracy of the TEθ methods in detecting the directional interaction for
different levels of coupling strength, ωY→X is set to 0 and ωX→Y from 0 to 70 to simulate
unidirectional coupling. The interaction lag δ is set to 20 ms. Then, the stability of these
methods in the presence of noise and linear mixing is investigated. We use the method
in [19] to add noise and linear mixing. The signal-to-noise ratio (SNR) is set to 30, 20, 10, 5,
0, and −5 dB, respectively, and the mixing strength varies from 0.1 to 0.5. For each case,
1000 simulated signal pairs are generated with a duration of 2 s. To investigate the impact
of sample size on the performance of the competing estimators, 25, 50, 75, 100, 125, 150,
175, 200, 250, and 300 signal pairs are selected to simulate varied sample size. Finally, the
interaction lag is changed from 10 to 50 ms in five steps to assess the effect of interaction
lag on the TEθ methods.

2.4. Evaluation Criteria

The dTEθ value is applied to measure the coupling strength, and the false positive
rate (FPR) and sensitivity are calculated to assess the accuracy of the TEθ estimators
in identifying the direction. By comparing the dTEθ value of the raw data to the null
hypothesis distribution, which is constructed by 200 sets of surrogate data at the significance
p (0.01) level, FPR for ωX→Y = 0 is obtained. The sensitivity (proportion of true positive for
ωX→Y 6= 0) is calculated as a function of ωX→Y and the coupling detection threshold (CDT)
for a sensitivity of 0.8 is estimated by linear interpolation. The CDT value represents the
smallest coupling value for which the estimators detect 80% of the directional interaction.
Therefore, a low CDT value indicates that a significant interaction is detected even for weak
coupling, while a high CDT value means that the coupling could be detected only for solid
coupling. δ accuracy is used to indicate the accuracy of these methods for interaction lag.

2.5. The Actual Neural Signals from Ferrets

The LFPs in the PFC and primary visual cortex (V1) of a female ferret in an awake
state are recorded by a single metal electrode that is accurately inserted into putative layer
IV. Details of the experimental process are described in [37] and the raw data are available
from http://dx.doi.org/10.5061/dryad.kk40s (accessed on 1 November 2022).

Several sessions are carried out and the LFPs from each session are separated into
epochs with a length of 4.8 s. Before detecting the interactions between PFC and V1, data
processing is performed to remove the epochs containing motion artifact, and the epochs
with large power in the delta (0.5 to 4 Hz) band (higher than 30% of the total power in 0.5

http://dx.doi.org/10.5061/dryad.kk40s
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to 50 Hz) are also rejected. Then, the LFPs are filtered in 0–20, 20–40, 40–60, 60–80, and
80–100 Hz using a two-way, zero-phase-lag FIR filter with the order defined as 3 r, where r
is the ratio of the sampling rate to the low-frequency cutoff of the filter, rounded down [38].
The phase time series of each frequency band can be obtained by Hilbert transform. Finally,
the TEθ methods are applied to the phase time series for identifying the interaction between
PFC and V1.

To explore the performance baseline of these methods on the actual neural signals with
a small and large sample size, 2 and 30 epochs are drawn randomly from each session as a
set to estimate TEθ , respectively, and search the interaction lag in the range of 1 to 20 ms.
This procedure is repeated 10 times and results in 10 dTEθ values for each session. We
first test the dTEθ values for their significance (p < 0.05) within individual sessions against
200 surrogate datasets at each frequency band, and then use a binomial test to establish the
statistical significance over recordings.

2.6. The LFP Recorded from Pigeons and Analysis

The LFPs are recorded from Hp and NCL of six pigeons while they perform a
visual–spatial associative learning task in a Y maze (Figure 2a). Figure 2c shows the
schematic of the spatial associative learning task. A detailed description of subjects, surgi-
cal implantation of electrodes, data acquisition, and behavioral tasks are provided in the
Supplementary Materials.

Figure 2. Behavioral task and experiment procedures. (a) Schematic diagram of the Y maze. Pigeons
learn to start from the home area, then decide on the left arm or right arm according to the light
color. A red light corresponds to the right arm and green light to left arm. S1, S2, and S3 are the
infrared sensors. (b) A pigeon learning the associative task in the maze. (c) Diagram of the visual–
spatial learning task. The red dashed line is the epochs to be analyzed. Because the animals enter
into a critical decision-making place when the door is opened, 0.5 s after the end of the delay is
considered to be a decision-making period. The inter trial interval (ITI) is 2 s, the visual cue period
is 3 s, the delay period is 0.5 s, the decision-making period is 0.5 s, and the tuning period is 1 s.
(d) Examples of simultaneous local field potential signals (LFPs) recorded from the hippocampus
(Hp) and nidopallium caudolaterale (NCL).

Data processing is performed before analysis. First, combined with video, only the
trials in which pigeons are ready to enter the next trial in the inter-trial interval (ITI) are
reserved. The trials containing strong motion artifact are also removed. Then, the adaptive
common average reference is used for all channels of the remaining trials to remove the
spatially correlated noise [39]. θ (4–12 Hz), β (12–30 Hz), slow-γ (30–45 Hz), and fast-γ
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(55–80 Hz) bands of LFPs are extracted by the zero-phase-lag FIR filter with the order
defined as 3 r, where r is the ratio of the sampling rate (2000 Hz) to the low-frequency cutoff
of the filter, rounded down. The phase time series for each frequency band is extracted by
Hilbert transform. Finally, the phase time series from ITI (the last 2 s) to the turning period
(a total of 7 s) is divided into 14 non-overlapping bins, and the coupling between Hp and
NCL is calculated for each bin.

For each pigeon, only one session (about 30 trials) with a correct rate of 75–80%
is applied to detect the interactions in brain areas (Table 1). All trials in a session are
assumed to have the equivalent brain activity. Thus, LFPs (recorded with two 16-channel
microelectrode arrays from Hp and NCL) for all of the correct trials in a session are pooled
together. For each frequency band and each bin, 200 signal pairs are drawn randomly to
estimate TEθ and the interaction lag is searched in the range of 1 to 30 ms. This process is
repeated 30 times. The significance of dTEθ value is tested against those of 200 surrogate
datasets (p < 0.05) for each estimation, and then the binomial test is used to establish the
statistical significance over all estimations.

Table 1. Detailed information on pigeons, trials, correct rate, and available channels.

Pigeon Number Total Trials Correct Trial Correct Rate Available Channels (Hp/NCL)

p21 33 26 78.8% 16/16
p22 35 28 80% 16/16
p23 42 32 76.2% 16/16
p24 37 29 78.4% 15/16
p25 46 35 76.1% 15/16
p26 30 23 76.7% 15/16

3. Results
3.1. The Performance Baseline Based on the Simulated Data

3.1.1. Accuracy of the TEθ Methods for the Directional Interaction Detection

To investigate the accuracy of the competing methods for the directional interaction recogni-
tion, the simulated signal pairs with ωX→Y = 0, 10, 20, 30, 40, 50, 60, and 70; ωY→X = 0; δ = 20 ms;
and trial length = 2 s are used. For each ωX→Y value, 1000 simulated signal pairs are pooled
together, and 100 pairs are drawn randomly as a set to estimate TEθ and search for the
interaction lag δ in the range of 10 to 70 ms. The dTEθ distribution, FPR, sensitivity, and δ
accuracy of the TEθ methods are computed by 200 sets of signal pairs. This procedure is
repeated 20 times to result in the mean and variance of the FPR, CDT values, and δ accuracy.

As shown in Figure 3, the dTEθ values are clustered around 0 for ωX→Y = 0 and
increase monotonically with ωX→Y from 0 to 70 for all methods. The dTEθ values for
TEθ

KSG in the range of 0 to 0.05 are lower than those of other methods. The FPR values
of the TEθ methods have no significant difference and are at a low level (below 0.01), but
there is a dramatic difference in the sensitivity of these estimators. The CDT values of
TEθ

bin and TEθ
sym are around 17.5, which are significantly lower than those of other methods.

The second is TEθ
kα, followed by TEθ

KSG. The CDT values of TEθ
KSG are higher than 50,

indicating that the validity of TEθ
KSG in the directional coupling detection is lower than

other methods. Finally, the δ accuracy of these methods is also analyzed. For TEθ
bin, TEθ

KSG,
and TEθ

kα, the δ accuracy is increased in ωX→Y. TEθ
bin and TEθ

kα have the same performance
in detecting the interaction lag, followed by TEθ

KSG. The δ values estimated by the TEθ
sym

method are clustered around 30 ms rather than 20 ms, as we set. Thus, TEθ
sym cannot

estimate the interaction lag correctly.
To sum up, TEθ

bin, TEθ
sym, and TEθ

kα can accurately detect the directional interaction
with a low FPR and high sensitivity, but TEθ

sym cannot identify the interaction lag cor-
rectly. Though TEθ

KSG behaves well for ωX→Y = 0, it has poor reliability in the directional
identification for ωX→Y > 0.
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Figure 3. Accuracy of the phase transfer entropy (TEθ) methods in identifying and quantifying the
directional interaction. (a) The differential TEθ (dTEθ) values of these methods increase monotonically
with weight factor ωX→Y from 0 to 70. (b) False positive rate (FPR) values of the competing methods
have no significant difference and are lower than 0.01. (c) The sensitivity of the estimators is plotted
against ωX→Y , and that of TEθ

bin is stronger than that of other methods. (d) The coupling detection
threshold (CDT) values of TEθ

KSG are significantly larger than those of other methods. (e) The
interaction lag (δ) accuracy for these estimators is improved with an increase in ωX→Y , and TEθ

sym
cannot identify the interaction lag correctly. All results (except for the interaction lag accuracy) in
Figures 3–10 are presented as mean ± s.d. (shading or error bar) for multiple estimates.

Figure 4. Robustness of the TEθ methods on noise. (a–d) Noise reduces the dTEθ values of estimators,
especially for the strong noise. (e) The FPR values of these methods remain at a low level regardless
of the noise power. (f) The CDT values of the four methods are increased with the SNR changing from
30 to −5 dB. (g) The δ accuracy of these estimators shows the same trend as that of the sensitivity and
reduces with an increase in noise power.
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Figure 5. Stability of the TEθ methods in detecting the directional interaction in the presence of linear
mixing. (a–d) Strong linear mixing (m = 0.5) reduces the dTEθ metric values of the estimators, except
for TEθ

kα. (e) The FPR values of TEθ
bin, TEθ

KSG, and TEθ
sym are affected by strong linear mixing, but

those of TEθ
kα remain at a low level. (f) The CDT values of the TEθ methods increase with m from

0.1 to 0.5, but those of TEθ
kα are stable regardless of m. (g) Linear mixing affects the δ accuracy of

the estimators.

Figure 6. The sample size improves the effectiveness of the TEθ methods. (a–d) The mean values
of dTEθ for all estimators remain stable, but the variances reduce with an increase in sample size.
(e) The FPR values of TEθ

bin, TEθ
KSG, and TEθ

kα fluctuate around 0.01 for varied sample size, while
those of TEθ

sym are increased from 0.01 to 0.05. (f) The sample size has a positive effect on the CDT
values of methods. (g) The δ accuracy of these methods improves with an increase in sample size,
except for that of TEθ

sym.
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Figure 7. Robustness of the TEθ methods on interaction lag. (a–d) The dTEθ values of these estimators
show different changing characteristics for varied interaction lag. (e) The FPR values of the TEθ

methods are below 0.01 for any δ value. (f) The CDT values of the TEθ methods are affected
by interaction lag. (g) The δ accuracy of these estimators has complex characteristics for varied
interaction lag.

Figure 8. The computational complexity of the TEθ methods. They are calculated for a complete
estimation, which includes scanning the interaction lag in the range of 10 to 70 ms, estimating the
dTEθ value, and constructing the null hypothesis distribution.

Figure 9. Performance baseline of the TEθ methods on the actual neural data with known interaction
properties. (a,b) The dTEθ values of the TEθ estimators are calculated for varied frequency bands
with a large (a) and small sample size (b), respectively. ‘*’ represents a significant interaction between
PFC and V1. ‘*’ above curves indicates the information flow preferentially from PFC to V1, and
‘*’ below curves indicates the interaction from V1 to PFC. ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05.
(c) The δ values of TEθ

bin with a large sample size are clustered around 5 and 20 ms for PFC→ V1 and
around 1 ms for V1→ PFC. (d) The δ values of TEθ

sym with a large sample size are more dispersed
than those of TEθ

bin.
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Figure 10. The interaction between Hp and NCL of pigeons in visual–spatial associative learning.
(a–f) The dTEθ values from Hp to NCL for six pigeons (p21, p22, p23, p24, p25, and p26) are calculated
by TEθ

bin. The information flow is predominantly from Hp to NCL at the θ band in the decision-
making period. The solid line is the mean value of dTEθ and the shaded area represents the standard
deviation of dTEθ , ‘**’ p < 0.01, ‘*’ p < 0.05. 1©, 2©, 3©, 4©, and 5© indicate the ITI period (2 s), the
visual cue (3 s), the delay period (0.5 s), the decision-making period (0.5 s), and the turning period
(1 s), respectively. Time 0 means the end of the delay period and the point at which the animal
enters the critical decision-making place. (g) The interaction lag between Hp and NCL of pigeons in
visual–spatial associative learning.

3.1.2. Stability of the TEθ Methods to the Directional Interaction Estimation

(1) Robustness of the TEθ methods to the directional interaction identification in the
presence of noise and linear mixing.

Noise is inevitably introduced into the process of neural signals’ acquisition and,
owing to volume conduction between adjacent brain regions, there may be linear mixing in
the neural signals. To investigate whether the competing TEθ methods can reliably detect
the strength and the direction of the interaction in the presence of noise and linear mixing,
the simulated signal pairs (ωX→Y = 0, 10, 20, 30, 40, 50, 60, and 70; ωY→X = 0; δ = 20 ms; trial
length = 2 s) with varied SNR and linear mixing values (m) are applied for TEθ estimation.

Figure 4 shows the behavior of estimators with SNR = 30, 20, 10, 5, 0, and −5 dB,
with m = 0. Low power noise (SNR = 30, 20 dB) has a little effect on the dTEθ values of
the competing methods, and the dTEθ values decrease moderately for SNR = 10, 5 dB.
However, for strong noise (SNR = 0, −5 dB), they reduce greatly. The FPR values of the
four estimators are not affected by noise. They all remain at a low level regardless of
the noise power. However, the sensitivity of these estimators is seriously influenced by
noise. Especially for TEθ

KSG and TEθ
kα, the direction cannot be detected even for a strong

interaction when SNR is −5 dB. Although TEθ
bin, TEθ

sym, and TEθ
kα behave well for an SNR

higher than 5 dB, their CDT values increase sharply when the SNR is lower than 5 dB. The
δ accuracy for TEθ

bin, TEθ
KSG, and TEθ

kα shows the same trend as that of sensitivity, which
increases with ωX→Y from 0 to 70 and reduces with an increase in noise. The δ accuracy of
TEθ

bin as well as TEθ
kα is significantly higher than that of other methods, followed by TEθ

KSG,
and TEθ

sym has the worst performance in identifying the interaction lag.
Figure 5 shows the effect of linear mixing (m = 0.1, 0.2, 0.3, and 0.5; SNR = 20 dB)

on the TEθ methods. The dTEθ values of the estimators increase with ωX→Y from 0 to 70
even in the presence of linear mixing, and they are not affected by a low mixing strength
(m = 0.1, 0.2, and 0.3), but are reduced for a strong mixing strength (m = 0.5). The FPR and
the sensitivity of the competing methods with varied linear mixing strength are calculated.
The FPR values of TEθ

kα remain at a low level regardless of the mixing strength. Those of
TEθ

bin and TEθ
KSG are below 0.01 for m = 0.1 and 0.2 and are higher than 0.01 when m is 0.3

and 0.5. The FPR values of TEθ
sym increase monotonically with mixing strength from 0.1 to
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0.5 and reach 0.38 for m = 0.5. However, the sensitivity of TEθ
bin, TEθ

KSG, and TEθ
sym shows

the opposite trend and reduces with an increase in m. The CDT values of TEθ
bin and TEθ

sym

are below 20 for m = 0.1 and 0.2 and increase to 30 when m is 0.5. Those of TEθ
KSG are lower

than 50 for m = 0.1, 0.2, and 0.3, but TEθ
KSG cannot detect the directional interaction when

m is 0.5. Linear mixing has little effect on TEθ
kα and the CDT values remain at a low level

regardless of m. However, the δ accuracy of TEθ
bin and TEθ

kα decreases with m from 0.1 to
0.5. That of TEθ

KSG presents unexpected results and improves with an increase in m. TEθ
sym

cannot detect the interaction lag irrespective of the effect of linear mixing (m).
Above all, low, realistic noise (SNR = 30, 20, 10, and 5 dB) and mixing (m = 0.1 and 0.2)

have little effect on the TEθ methods, but the validity of the estimators is greatly reduced
for strong noise and mixing. Compared with other methods, TEθ

bin with a low false positive
rate and high sensitivity performs the best for strong noise, while the robustness of TEθ

kα to
linear mixing is better than that of other methods. The FPR of TEθ

sym is seriously influenced
by linear mixing. The performance of TEθ

KSG is the most unstable and the directional
interaction cannot be detected for strong noise as well as linear mixing.

(2) The impact of sample size on the performance of the TEθ methods.

An accurate TEθ estimation requires enough samples. We, therefore, investigate the
effect of sample size on the performance of the TEθ methods by drawing varied trials as a
subset to estimate TEθ (trial number = 25, 50, 75, 100, 125, 150, 175, 200, 250, and 300; trial
length = 2 s). It should be emphasized that the Gram matrices’ operation in TEθ

kα requires a
large amount of internal memory, so only small samples (trial number = 25, 50, 75, 100, and
125) are used in TEθ

kα.
As expected, the mean values of dTEθ are not affected by sample size and scale up

monotonically with ωX→Y from 0 to 70, but the variances reduce with an increase in sample
size, which indicates that a large sample size improves the stability of the TEθ methods on
the coupling strength quantification (Figure 6). The FPR values of TEθ

bin, TEθ
KSG, and TEθ

kα

remain at a low level irrespective of the sample size. However, those of TEθ
sym increase with

the sample size from 5 × 103 to 60 × 103 and are higher than 0.05 when the sample size is
60 × 103. A large sample capacity has a positive effect on the sensitivity of all methods and
the CDT values of TEθ

bin, TEθ
sym, and TEθ

kα below 15 for sample size = 60 × 103, indicating
that these methods can detect the directional interaction even for weak coupling strength
under the condition of enormous sample size. The δ accuracy of TEθ

bin, TEθ
KSG, and TEθ

kα

is also improved by the sample size, but even for large samples, TEθ
sym is still unable to

correctly identify the interaction lag.

(3) The effect of interaction lag on the TEθ methods.

The interaction lag between brain areas is unknown. To analyze whether the validity
of these estimators is affected by interaction lag, the simulated signal pairs (ωX→Y = 0,
10, 20, 30, 40, 50, 60, and 70; ωY→X = 0; SNR = 20 dB; m = 0.1; trial length = 2 s) with
varied interaction lag (δ = 10, 20, 30, 40, and 50 ms) are generated by the NMM. For each
estimation, we draw 100 pairs as a set from 1000 signal pairs and scan the interaction lag in
the range of 10 to 70 ms.

As shown in Figure 7, the dTEθ values of these methods display different changing
characteristics. Those of TEθ

bin and TEθ
KSG scale up with an increase in interaction lag. While

for TEθ
sym and TEθ

kα, the dTEθ values are at the maximum when the interaction lag is in the
middle (δ = 30 ms) and decrease in both directions (δ = 10, 20, 40, and 50 ms). The FPR
values of these methods are not influenced by interaction lag, and they are below 0.01. The
sensitivity of TEθ

KSG is improved for δ from 10 to 50 ms, and the CDT values decrease from
higher than 70 to 25, indicating that TEθ

KSG may be more suitable for the neural signals
with large interaction lag. The sensitivity of TEθ

sym is the best when δ is 30 ms and reduces
on both sides. For TEθ

bin and TEθ
kα, the CDT values for δ = 10 ms are higher than those of

other δ values. Finally, the δ accuracy of the estimators is calculated. The interaction lag
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has a great effect on the δ accuracy of TEθ
bin and TEθ

KSG. TEθ
sym cannot detect the interaction

lag, irrespective of the analysis lag.

3.1.3. The Computational Complexity of the TEθ Methods

TEθ is a biased estimation and the dTEθ values are not zero even in the absence
of interaction, so it is necessary to construct the null hypothesis distribution to test the
significance of the dTEθ metric value. Generally, the surrogate signal pairs are shuffled
200 times to construct a null hypothesis distribution. So, the TEθ methods should be
time-saving. Here, the time consumption of these TEθ estimators with varied sample sizes
is compared. One complete directional interaction detection includes estimating the dTEθ

value as well as scanning the interaction lag in the range of 10 to 70 ms and constructing
the null hypothesis distribution with 200 surrogate signal pairs.

The results are shown in Figure 8. The time consumption of the methods is scaled up
with an increase in sample size. TEθ

bin consumes the least time. It takes only 20.1118 s for
sample size = 5 × 103 and increases to 124.3577 when the sample capability is 60 × 103.
TEθ

sym also has an acceptable time consumption (167.1969 s for sample size = 5 × 103 and
524.7998 s for 60 × 103). The third is TEθ

KSG (194.9923 s and 5.2436 × 103 s for sample
capability = 5 × 103 and 60 × 103, respectively). TEθ

kα has the highest time cost. It takes
4.2735 × 104 s for sample size = 5 × 103, which is much greater than TEθ

bin. Thus, TEθ
kα may

not be suitable for the signal pairs with a large sample size.

3.2. The Performance Baseline of the TEθ Methods Based on the Actual Neural Signals

To explore the properties of the TEθ estimators on the actual neural signals, we apply
the methods to the LFPs, which are recorded from PFC and V1 of a ferret in an awake state
with a large and small sample size. Owing to the large time consumption of TEθ

KSG and
TEθ

kα, only the small sample size is used on TEθ
KSG and TEθ

kα.
For the large sample size (30 epochs as a set to estimate TEθ), TEθ

bin as well as TEθ
sym

detect bidirectional coupling between PFC and V1 for the ferret in an awake state, and
the information flows preferentially from V1 to PFC (known as feed-forward FF) in the
low-frequency band (0–20 Hz), with p < 0.001 for TEθ

bin and p < 0.01 for TEθ
sym, respectively,

while the direction is reversed (from PFC to V1, called as feedback FB) in the γ band
(40–60 Hz) with p < 0.001 (Figure 9). These results are in line with previous studies finding
that there are bidirectional interactions between PFC and V1 in ferret brains in an awake
state [40]. The δ values of TEθ

bin for FF are clustered around 5 and 20 ms, and those of FB
fluctuate around 1 ms (almost consistent with the results in [40]). However, the δ values of
TEθ

sym are distributed in the range of 0 to 20 ms, more dispersed than those of TEθ
bin. No

method can identify the coupling between PFC and V1 with a small sample size (2 epochs
as a set to estimate TEθ), except for TEθ

sym. An information flow predominantly from PFC
to V1 at 60–80 Hz is detected by TEθ

sym. However, owing to its disappearance with an
increase in sample size, it may be a false positive. The outcomes on the actual neural data
are in line with those on the simulated signal pairs. Sample size has a positive effect on the
applicability criteria of TEθ methods, and TEθ

bin performs better than other methods. TEθ
sym

may produce a high false positive rate, and the large time consumption of TEθ
kα hinders its

application in neural signals.
Based on the above analysis, the performance baseline of these methods is proposed

in Table 2.
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Table 2. Performance baseline table for the TEθ methods. ‘
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𝜃   is unstable and easily affected by interaction lag. Then, the 𝑇𝐸𝑏𝑖𝑛

𝜃  

method is applied to the LFPs recorded from Hp and NCL of pigeons to detect the cou-

pling between these two brain regions while pigeons perform a visual–spatial associative 

learning task. 𝑇𝐸𝑏𝑖𝑛
𝜃  identifies an information flow from Hp to NCL at the θ band when 

pigeons enter the critical decision-making place. 
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 𝑻𝑬𝒃𝒊𝒏
𝜽  𝑻𝑬𝑲𝑺𝑮

𝜽  𝑻𝑬𝒔𝒚𝒎
𝜽  𝑻𝑬𝒌𝜶

𝜽  

Accuracy on the directional interaction     
Accuracy on the interaction lag     

Robustness to noise 
SNR ≥ 5 dB     
SNR < 5 dB     

Robustness to linear mixing 
m ≤ 0.3     
m > 0.3     

Stability to the sample size 
Sample size ≤ 10 × 103     
Sample size > 10 × 103     

Stability to the interaction lag 
Short interaction lag     
Long interaction lag     

Computational complexity     
Suitable for the following: (1) 𝑇𝐸𝑏𝑖𝑛

𝜃 —strong noise, large sample size, any interaction lag; (2) 

𝑇𝐸𝐾𝑆𝐺
𝜃 —small sample size, long interaction lag; (3) 𝑇𝐸𝑠𝑦𝑚

𝜃 —weak linear mixing, large sample size; 

(4) 𝑇𝐸𝑘𝛼
𝜃 —strong linear mixing, small sample size, any interaction lag. 

3.3. Implementing a Suitable 𝑇𝐸𝜃  Estimation Method on the Interaction between Hp and NCL 

of Pigeons in Visual–Spatial Associative Learning 

𝑇𝐸𝑏𝑖𝑛
𝜃  is selected by the performance baseline table to explore the coupling between 

Hp and NCL of pigeons in spatial associative learning. The 𝑇𝐸𝑏𝑖𝑛
𝜃  method is applied on 

the LFPs recorded from Hp and NCL of six pigeons (p21 to p26) while they perform a 

visual–spatial associative learning task. The LFPs from ITI to the turning period (a total of 

7 s) are divided into 14 non-overlapping bins, then the 𝑑𝑇𝐸𝜃  value is calculated, and the 

null hypothesis distribution is constructed for each bin. 

The results are shown in Figure 10. For all pigeons, the 𝑑𝑇𝐸θ values in the period 

where the door is opened and animals enter the critical decision-making place are actually 

larger than those in other periods for the θ  band (4–12 Hz). By comparing the 𝑑𝑇𝐸𝜃  

value with the null hypothesis distribution for each bin, we find there exists coupling be-

tween Hp and NCL in the decision-making period at the θ band, and the information 

flow is predominately from Hp to NCL. The scan method is used to detect the interaction 

lag between Hp and NCL, finding that different pigeons have varied interaction lag val-

ues. For pigeons p21 to p26, the interaction lag values are clustered around 27, 23, 15, 24, 

11, and 29 ms, respectively (Figure 10g). The coupling between Hp and NCL during asso-

ciative learning may indicate that the spatially related associative information formed in 

Hp is transmitted to NCL for decision-making. 

4. Discussion 

This paper investigates the performance baseline of four commonly used 𝑇𝐸𝜃  meth-

ods (𝑇𝐸𝑏𝑖𝑛
𝜃 , 𝑇𝐸𝐾𝑆𝐺

𝜃 , 𝑇𝐸𝑠𝑦𝑚
𝜃 , and 𝑇𝐸𝑘𝛼

𝜃 ) on the simulated signals and actual neural data. The 

results are shown in Table 2 and, for a large sample size, 𝑇𝐸𝑏𝑖𝑛
𝜃  with less time consump-

tion, a low false positive rate, and high sensitivity performs better than other methods. 

𝑇𝐸𝑘𝛼
𝜃  is robust to linear mixing. It is a good choice for small samples. 𝑇𝐸𝑠𝑦𝑚

𝜃  is extremely 

susceptible to linear mixing and cannot accurately detect the interaction lag. The perfor-

mance of 𝑇𝐸𝐾𝑆𝐺
𝜃   is unstable and easily affected by interaction lag. Then, the 𝑇𝐸𝑏𝑖𝑛

𝜃  

method is applied to the LFPs recorded from Hp and NCL of pigeons to detect the cou-

pling between these two brain regions while pigeons perform a visual–spatial associative 

learning task. 𝑇𝐸𝑏𝑖𝑛
𝜃  identifies an information flow from Hp to NCL at the θ band when 

pigeons enter the critical decision-making place. 
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method is applied to the LFPs recorded from Hp and NCL of pigeons to detect the cou-
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learning task. 𝑇𝐸𝑏𝑖𝑛
𝜃  identifies an information flow from Hp to NCL at the θ band when 

pigeons enter the critical decision-making place. 
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𝜃  identifies an information flow from Hp to NCL at the θ band when 

pigeons enter the critical decision-making place. 
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pigeons enter the critical decision-making place. 
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bin—strong noise, large sample size, any interaction lag; (2) TEθ

KSG—small
sample size, long interaction lag; (3) TEθ

sym—weak linear mixing, large sample size; (4) TEθ
kα—strong linear mixing,

small sample size, any interaction lag.

3.3. Implementing a Suitable TEθ Estimation Method on the Interaction between Hp and NCL of
Pigeons in Visual–Spatial Associative Learning

TEθ
bin is selected by the performance baseline table to explore the coupling between

Hp and NCL of pigeons in spatial associative learning. The TEθ
bin method is applied on

the LFPs recorded from Hp and NCL of six pigeons (p21 to p26) while they perform a
visual–spatial associative learning task. The LFPs from ITI to the turning period (a total of
7 s) are divided into 14 non-overlapping bins, then the dTEθ value is calculated, and the
null hypothesis distribution is constructed for each bin.

The results are shown in Figure 10. For all pigeons, the dTEθ values in the period
where the door is opened and animals enter the critical decision-making place are actually
larger than those in other periods for the θ band (4–12 Hz). By comparing the dTEθ value
with the null hypothesis distribution for each bin, we find there exists coupling between
Hp and NCL in the decision-making period at the θ band, and the information flow is
predominately from Hp to NCL. The scan method is used to detect the interaction lag
between Hp and NCL, finding that different pigeons have varied interaction lag values.
For pigeons p21 to p26, the interaction lag values are clustered around 27, 23, 15, 24, 11, and
29 ms, respectively (Figure 10g). The coupling between Hp and NCL during associative
learning may indicate that the spatially related associative information formed in Hp is
transmitted to NCL for decision-making.

4. Discussion

This paper investigates the performance baseline of four commonly used TEθ methods
(TEθ

bin, TEθ
KSG, TEθ

sym, and TEθ
kα) on the simulated signals and actual neural data. The results

are shown in Table 2 and, for a large sample size, TEθ
bin with less time consumption, a low

false positive rate, and high sensitivity performs better than other methods. TEθ
kα is robust

to linear mixing. It is a good choice for small samples. TEθ
sym is extremely susceptible to

linear mixing and cannot accurately detect the interaction lag. The performance of TEθ
KSG

is unstable and easily affected by interaction lag. Then, the TEθ
bin method is applied to

the LFPs recorded from Hp and NCL of pigeons to detect the coupling between these
two brain regions while pigeons perform a visual–spatial associative learning task. TEθ

bin
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identifies an information flow from Hp to NCL at the θ band when pigeons enter the critical
decision-making place.

Recently, TEθ has become a research focus in identifying animal brain area interactions,
and various TEθ methods have been proposed to estimate the TEθ metric value. How-
ever, these methods with distinct underlying mathematical assumptions or measures of
dependency show various characteristics. The characterization of TEθ methods is unclear,
which limits their use in the actual neural signals. This paper explores the performance
baseline of TEθ methods and provide a reference for researchers when using these methods,
promoting the usage of TEθ methods in neural signals.

The accuracy of TEθ estimators in identifying and quantifying the directional interac-
tion is first analyzed in an ideal state (no noise and linear mixing). The estimators show
almost the same results, except for TEθ

KSG, in which the validity is significantly lower
than that of other methods for weak coupling. Transfer entropy with the KSG estimator
(TEKSG) is a widely used method for signal pairs combining amplitude and phase [31].
Though some researchers note it may be not applicable for phase time series because of the
periodicity of the phase spectrum [20], the KSG estimator has been successfully used to
estimate mutual information on phase time series [41]. In this study, TEθ

KSG behaves well
for a large interaction lag (δ = 50 ms). Therefore, TEθ

KSG may be more suitable for analyzing
the coupling with a large interaction lag.

The neural signals are corrupted by measurement noise and biological noise in their
acquisition and transmission [39]. Though some measures have been taken to reduce the
noise [42], we cannot take them out completely from neural signals owing to some noise being
sufficiently complex. The presence of noise can mask the features of the neural signals and
affect the analysis of the coupling between them. So, the TEθ methods should be robust to
noise. In this study, the performance of TEθ estimators reduce with an increased in noise
power, especially for TEθ

KSG and TEθ
kα, which cannot detect the coupling with a high noise

power. This may be due to the discretization in TEθ
bin and TEθ

sym, making them less sensitive
to noise. For low, realistic noise, TEθ

bin, TEθ
sym, and TEθ

kα can accurately detect the directional
interaction. Because of volume conduction in the brain, there may be linear mixing in adjacent
brain areas. Linear mixing leads to a decrease in dTEθ values for ωX→Y > 0, which could
result in low sensitivity, and inflates the dTEθ values, increasing the risk of false positives.
These may result from the reduction of useful information in X to predict Y for ωX→Y > 0
and self-prediction information in Y added to X for ωX→Y = 0. The false positive rate of
TEθ

sym is increased with an increase in the mixing strength, which is significantly higher
than that of the other methods. This may be related to the symbolization in TEθ

sym, which
makes TEθ

sym more sensitive to the change in signal asymmetry. In TEθ
sym, increasing the

samples also improves the false positive rate, even for weak linear mixing. Therefore, we
should pay more attention to the erroneous judgement when applying TEθ

sym to detect
the interaction between adjacent brain areas. TEθ

kα provides substantial robustness to
linear mixing. This phenomenon is probably due to Renyi’s entropy, instead of Shannon
entropy used in TEθ

kα, and a functional defined on positive definite and infinitely divisible
kernel matrices is applied to approximate Renyi’s entropy, which can capture the similarity
relations among signal pairs and detect slow changing features in data [43].

The sample size is also an important factor affecting the performance of the methods.
Accumulating evidence shows that accurate recognition of directional interaction relies
on a sufficient sample size [44]. The results in this study show that increasing the sample
size effectively improves the validity of the estimators. However, expanding the sample
capability also leads to a great time cost. As shown in Figure 8, the time consumption of the
estimators scales up with an increase in sample size. Because of the trace operator on Gram
matrix (G) to power α (tr(Gα)) in TEθ

kα, it poses a great challenge in terms of both storage
and computing when using TEθ

kα in practice [45]. In TEθ
bin, a sample binning method

rather than more complex technology is used to reconstruct the time series state-space, so,
compared with other methods, the time cost of TEθ

bin is within an acceptable range.
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The performance baseline of the competing methods is investigated on the actual
neural signals, which are recorded from PFC and V1 for a ferret in an awake state. TEθ

bin and
TEθ

sym with a large sample size identify the bidirectional interactions between PFC and V1
and, for TEθ

bin, the interaction lag values are clustered around 5 and 20 ms for FF and around
1 ms for FB, consistent with the results in [40]. We also detect FF in the low frequency
band (0–20 Hz) and FB in the high frequency band (40–60 Hz). Unexpectedly, these
results are different from those in humans and monkeys. Studies have shown that a low
frequency mediates FB, while a high frequency mediates FF, when humans and monkeys
perform cognitive tasks such as memory encoding and recall [46–48]. This is consistent
with the functional interpretation under the hierarchical predictive coding framework.
According to predictive coding, the main function of FB is to provide predictions of input
signals by integrating memory and expectations, which mainly operate on slow time scales.
Meanwhile, FB operates on faster time scales, because FB has to respond to fast sensory
inputs [49]. However, in the ferret experiment, although the animals receive the visual
stimuli, they do not need to respond to the visual stimuli. Therefore, the inter-regional
interactions of ferrets may be different from those of animals with task requirements.
Another reason for the difference in results between ferrets and other animals may be that
only data from one ferret are used in this manuscript, which is not statistically significant.
In subsequent studies, we hope to use more data to reveal the neural mechanisms behind
FF and FB of ferrets.

Accumulating evidence shows that the θ frequency mediates the spatial information
processing and communication between Hp and PFC [7,50–53]. Studies investigating the
interaction between brain areas of rodents suggest that the θ band mediates the spatially
related information from Hp to PFC in odor–spatial associative tasks [54]. This pattern of the
θ band modulation spatial information has also been reported in Hp and NCL of pigeons,
supporting the formation of a stable route for homing [55]. In our report, an information
flow preferentially from Hp to NCL at the θ band is detected by TEθ

bin, indicating that, like
in mammals, the spatially related information is transferred from Hp to NCL for decision-
making, and avian Hp-NCL may have the same information processing and interaction
mode as those of mammalian Hp-PFC in sensory–spatial associative learning.

A limitation of this paper is that TEθ is not suitable for neural activity with the learning
process [28]. However, pigeons take a long time to learn the visual–spatial associative
task (about 30 days). So, we assume that the neural activity in a session is stable. We look
forward to further research on the application of TEθ in slow learning processes. Just one
session with a 75% to 80% accuracy rate is applied to detect the interaction between Hp
and NCL of pigeons in visual–spatial associative learning. In the future, we will investigate
the dynamics of Hp and NCL interactions in associative learning.

5. Conclusions

In the study, we investigate the performance of four commonly used TEθ methods
(TEθ

bin, TEθ
KSG, TEθ

sym, and TEθ
kα) on the simulated signal pairs and the actual neural data

with known interaction properties. The results show a performance baseline table that
contains the most suitable method for different scenarios. Then, TEθ

bin is applied for the local
field potential recorded from pigeons and detects an information flow predominantly from
Hp to NCL at the θ band during the decision-making period in visual–spatial associative
learning. These outcomes highlight the importance of choosing the appropriate method for
detecting the interactions between brain regions and provide a reference for researchers
when using these methods.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/e25070994/s1. The Matlab codes of the TEθ methods and pigeon
experimental procedure.

https://www.mdpi.com/article/10.3390/e25070994/s1
https://www.mdpi.com/article/10.3390/e25070994/s1
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