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Abstract: In this study, we investigate the position and momentum Shannon entropy, denoted as
Sx and Sp, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic
double well potential (HDWP). We explore various values of the fractional derivative represented by
k in our analysis. Our findings reveal intriguing behavior concerning the localization properties of
the position entropy density, ρs(x), and the momentum entropy density, ρs(p), for low-lying states.
Specifically, as the fractional derivative k decreases, ρs(x) becomes more localized, whereas ρs(p)
becomes more delocalized. Moreover, we observe that as the derivative k decreases, the position
entropy Sx decreases, while the momentum entropy Sp increases. In particular, the sum of these
entropies consistently increases with decreasing fractional derivative k. It is noteworthy that, despite
the increase in position Shannon entropy Sx and the decrease in momentum Shannon entropy Sp with
an increase in the depth u of the HDWP, the Beckner–Bialynicki-Birula–Mycielski (BBM) inequality
relation remains satisfied. Furthermore, we examine the Fisher entropy and its dependence on the
depth u of the HDWP and the fractional derivative k. Our results indicate that the Fisher entropy
increases as the depth u of the HDWP is increased and the fractional derivative k is decreased.

Keywords: hyperbolic double well potential; fractional Schrödinger equation; Shannon entropy;
Fisher entropy

1. Introduction

In recent years, Shannon entropy has garnered significant attention among many re-
searchers in quantum physics, primarily due to its extensive utilization in modern quantum
communication systems [1–31]. These investigations span various branches of physics,
such as molecular physics, nuclear physics, atomic physics, and others. The significance
of Shannon entropy lies in its role as a generalized version of Heisenberg’s uncertainty
principle, offering a quantification of uncertainty in quantum systems and characterizing
other physical properties. Of particular interest is the ability of the Shannon entropy to elu-
cidate the localization and delocalization behaviors of particles moving within a confined
quantum system. However, it is worth noting that the majority of research on Shannon
information entropy has focused on the standard Schrödinger equation, with only a few
recent studies delving into its application in the fractional Schrödinger equation [32,33].
The limited exploration of the fractional Schrödinger equation is primarily due to the
challenges associated with numerically calculating its solutions.

As we know, the fractional derivative k appearing in the kinetic energy operator
∂k/∂|x|k is taken to be equal to 2 for the usual Schrödinger equation. The FSE emerges as
a fundamental framework in fractional quantum mechanics, replacing the conventional
kinetic energy operator, ∂2/∂x2, with a fractional derivative indexed by k [34]. Initially,
the FSE was introduced as a quantum-mechanical model to investigate particle motion
governed by Lévy flights, employing the Feynman-integral formalism [34]. Although
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almost all contributions to this have been developed along with the traditional Schrödinger
equation, the FSE exhibits intriguing quantum phenomena due to its fractional derivative
index k [35–46]. These investigations cover a wide range of topics, including energy band
structures, light beam propagation dynamics, position-dependent mass FSE, the nuclear
dynamics of molecular ion H2

+, Rabi oscillations, spatial soliton propagation, fractional
harmonic oscillators, and others. Recent experimental achievements in implementing
the FSE in the temporal domain have further bolstered our confidence in exploring this
field [47]. These developments undoubtedly enhance our understanding and provide
valuable insights into the study of fractional quantum mechanics.

To date, extensive research has been performed on the Shannon entropy in various
solvable quantum systems [1–30,33]. Notably, hyperbolic soluble potentials hold particular
significance in semiconductor physics [18,48–51]. In a recent study, we investigated the
quantum information entropies within the framework of the fractional Schrödinger equa-
tion (FSE) for hyperbolic single quantum well potential systems [33], considering fractional
derivative values within the range k ∈ (0, 2]. At that time, because numerical calculations
of results were affected by the presence of wave functions with parity symmetry, we were
unable to study the Shannon entropy for the HDWP case. The motivation in studying the
double well problem stems from its importance as a toy model in both heterostructure
physics and Bose–Einstein condensates [52,53]. Furthermore, its importance has also been
demonstrated in other areas of research, such as the Bose–Hubbard model [54,55] and non-
linear Schrödinger equation problems [56,57]. For instance, Lingua and coauthors [54,55]
analyzed Shannon-like entropy indicators in a double well system, considering both the
position and momentum bases within the framework of the Bose–Hubbard model. They
also evaluated the degree of localization and mixing of the ground state in a more complex
three-well potential. Similarly, Zhao and his coauthors [56,57] investigated the Shannon
entropy for the ground state in nonlinear Schrödinger equation problems.

In this work, our focus is specifically on the study of the HDWP, which is defined
as described in Ref. [58]. By exploring this particular potential, we contribute to the
understanding of its unique characteristics and shed light on its behavior within the context
of the fractional Schrödinger equation. The potential that we study has the form

U(x) =
h̄2

2M

(
−u sinh2(x)

cosh4(x)

)
. (1)

This HDWP, as depicted in Figure 1, exhibits a maximum depth of the potential well equal
to u/4 (scaled by the unit 2M/h̄2). It is important to note that the form of the HDWP
utilized in this work (see Equation (1)) differs from our previous study [16], where the
HDWP was represented as −U0 sinh4(x)/ cosh6(x). In our previous study [16], the Bethe
ansatz method was employed, resulting in solutions that are only quasi-exactly solvable.

In order to fill the gap left by the study of a single hyperbolic well in Ref. [33], our
current research focuses on investigating the Shannon entropy associated with this double
well potential. By examining the global characteristics captured by the Shannon entropy,
we aim to compare and contrast them with the local characteristics of the system described
by the Fisher entropy. This analysis will provide a comprehensive understanding of the
behavior and properties of the double well potential system.

The remainder of this work is structured as follows. Section 2 introduces a fundamental
formalism for the solution of the fractional Schrödinger equation (FSE) associated with
the hyperbolic potential U(x). In Section 3, we present the results obtained from our
analysis. These results encompass the wave functions, the entropy densities ρs(x) and
ρs(p), and the Shannon entropies Sx and Sp for both the low-lying states and the 10th
excited state. We also verify the Beckner–Bialynicki-Birula–Mycielski (BBM) inequality
relation. Furthermore, we examine the behavior of the Fisher entropy Fx as the derivative k
and the depth u of the HDWP vary. Finally, in Section 4, we summarize our findings and
draw our conclusions.
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Figure 1. (Color online) Plot of the HDWP given in (1) V(x) (2M U(x)/h̄2) with respect to x. Its
maximum depth is u/4 (u = 300).

2. Formalism

The dimensional FSE is defined as(
− h̄2

2M
∂k

∂|x|k
+ U(x)

)
ϕ(x) = Eϕ(x), (2)

where the fractional derivative k is usually taken as the value k ∈ (0, 2] and the eigenvalues
and the eigenfunctions are represented by E and ϕ(x), respectively. For numerical solutions
of the equation, the fractional derivative can be defined as a second derivative of the
wave function ϕ(x) with respect to a definite integral, incorporating a weighted factor of
|x− ξ|1−k.

∂k ϕ(x)
∂|x|k

= Ck
d2

dx2

∫ ∞

−∞
|x− ξ|1−k ϕ(ξ)dξ, (3)

where
Ck =

1
2 cos( kπ

2 )Γ(2− k)
, (4)

which implies that the k ≤ 2.
Now, let us show this numerical method in detail. We first define a factor related to

the fractional derivative k

gm =
(−1)mΓ(k + 1)

Γ
(

k
2 −m + 1

)
Γ
(

k
2 + m + 1

) , (5)

where m = 0, 1, 2, ...k > 0 and the Γ(x) denotes the Gamma function. This factor gm has the
following properties:

g0 ≥ 0, g−m = gm ≤ 0, |m| ≥ 1. (6)

On the other hand, the fractional centered difference can be defined as

∆k
h f (x) =

∞

∑
m=−∞

gm f (x−mh). (7)

As a result, one has

− 1
hk ∆k

h f (x) =
∂k

∂|x|k
f (x) +O

(
h2
)

. (8)

When h moves to 0, ∂k

∂|x|k f (x) can be transformed into a fractional derivative with respect

to |x|k (k ∈ (0, 2]). Thus, we can rewrite Equation (2) in matrix form:

N

∑
l=0

Ail ϕl = Eϕl . (9)

The eigenvalue problem associated with the fractional Schrödinger equation can be diago-
nalized, as demonstrated in Ref. [59]. This diagonalization technique allows us to examine
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the normalized wave functions as a function of the fractional derivative k, as illustrated in
Figure 2. Notably, for the low-lying states, the wave functions exhibit definite parity. When
the value of k decreases, the wave functions become more localized towards the double
potential wells, and their peaks become more prominent.
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Figure 2. (Color online) Plots of the normalized wave functions for the HDWP (1). The fractional
derivative k is taken as the values 2.0, 1.5, 1.1, 0.8. The solid blue line, the red dotted line, the green
dashed line, and the black dash-dotted line denote the ground state and the 1st, 2nd, and 3rd excited
states, respectively. Here, we take h̄ = 2M = 1.

Furthermore, an intriguing observation is that the wave functions of the ground state
and the first excited state overlap within the rightmost well, while the wave functions of
the second and third excited states overlap within the leftmost well. This spatial overlap of
the wave functions within each well adds to the complexity and richness of the system’s
behavior.

To study the Shannon entropy, we have to calculate the position and momentum
entropy densities ρs(x) and ρs(p), which are defined by [12]

ρs(x) = |ψ(x)|2 ln
(
|ψ(x)|2

)
,

ρs(p) = |φ(p)|2 ln
(
|φ(p)|2

)
.

(10)

Generally, the momentum wave function φ(p) can be obtained by the Fourier transfor-
mation of the wave function ψ(x),

φ(p) =
1√
2π

∫
ψ(x)e−ipxdx. (11)

In the present study, however, we employ the Fast Fourier algorithm to numerically calcu-
late φ(p). Although the wave function can be analytically expressed using the confluent
Heun function [58], unfortunately, we do not have access to the Fourier transformation of
this function. Therefore, the Fast Fourier algorithm [59] provides an efficient numerical
approach to compute the Fourier transform of the wave function, allowing us to analyze
the momentum space characteristics of the system.

According to Equation (10), the position Shannon information entropy Sx and the
momentum Shannon information entropy Sp can be calculated by

Sx = −
∫ ∞

−∞
ρs(x)dx, Sp = −

∫ ∞

−∞
ρs(p)dp, (12)

from which Beckner et al. have obtained an important inequality relation [60,61]

Sx + Sp ≥ D(1 + ln π), (13)
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where D denotes the spatial dimension. In this work, we take D = 1. This uncertainty
relation implies that one of either Sx or Sp increases but the other will decrease, and vice
versa. This relation always remains invariant.

Before concluding this section, it is important to mention the Fisher information, which
provides a measure of the local characteristics of quantum systems [62,63], in addition to
the Shannon entropy. The Fisher information is defined as [64]

IF =
∫ b

a

[ρ′(x)]2

ρ(x)
dx = 4

∫ b

a
[ψ′(x)]2dx, (14)

where ρ(x) = |ψ(x)|2 denotes the probability density of the wave function.

3. Results and Discussion

In this section, we present the results obtained in this study. As shown earlier, the
wave functions for the low-lying states are displayed in Figure 2. Utilizing these wave
functions, we examine the position and momentum entropy densities, ρs(x) and ρs(p)
(see Figures 3 and 4), as well as their corresponding Shannon entropies, Sx and Sp. To
investigate the behavior of the position and momentum entropy densities for higher excited
states, we also analyze the 10th excited state (see Figures 5 and 6).

Figure 3. (Color online) Plots of ρs(x) as a function of the variable x for different values of the k. k is
taken as the values 2.0, 1.5, 1.1, 0.8. The notations of the different lines are the same as in Figure 2.

Figure 4. (Color online) Plots of momentum entropy density ρs(p) as a function of the variable p.

We observe that the position entropy density, ρs(x), for the ground state and the first
excited state is nearly identical, as depicted in Figure 4. This behavior can be explained by
referring to the wave function plots in Figure 2. As the derivative k becomes very small,
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their differences gradually become apparent. However, it is important to note that these
slight differences primarily arise from the numerical calculations.

Furthermore, we find that the position entropy density, ρs(x), for higher excited
states, such as the 10th excited state, becomes more localized as the derivative k decreases.
Conversely, the momentum entropy density, ρs(p), exhibits the opposite trend, becoming
more delocalized as the derivative k decreases.

The Shannon entropies, Sx and Sp, calculated using Equation (11), are illustrated in
Figures 7 and 8, respectively. It is evident that Sx increases with increasing k for a given
parameter u, while Sp decreases. Additionally, as the depth u of the potential well increases,
Sx decreases, whereas Sp increases. This behavior can be attributed to the increased
confinement of the particle within the respective well as the potential well becomes deeper,
resulting in greater stability.

Importantly, it is worth noting that the sum of the Shannon entropies, Sx and Sp, still
satisfies the Beckner–Bialynicki-Birula–Mycielski (BBM) inequality given in Equation (12),
as demonstrated in Figure 9.

Finally, we investigate the Fisher entropy, IF, as shown in Figure 10, and observe
that it increases with an increase in the depth u of the double well potential. Conversely,
the Fisher entropy decreases as the derivative k increases. This behavior indicates that as
the potential well becomes deeper, the local characteristic of the system becomes more
prominent, leading to an increase in the Fisher entropy. Conversely, as the derivative k
increases, the system exhibits a reduced local characteristic, resulting in a decrease in the
Fisher entropy.

Figure 5. (Color online) Position entropy density ρs(x) plots as a function of the position x for
normalized 10th excited state. The variable k takes the values of 2, 1.5, 1.1, 0.8 for the fractional
derivative.

Figure 6. (Color online) Same as Figure 5 but for the momentum entropy density ρs(p) for the 10th
excited state.
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Figure 7. (Color online) Plot of position entropy Sx for the ground state. The values of the fractional
derivative k are taken as above.

Figure 8. (Color online) Same as Figure 7 but for the plots of momentum entropy Sp for the
ground state.

Figure 9. (Color online) Same as Figures 7 and 8 but for their sum Sx + Sp for the ground state.

Figure 10. (Color online) Plot of the Fisher entropy for different values of the depth parameter u and
fractional derivative k.

4. Concluding Remarks

In this work, we have investigated the Shannon entropy Sx and Sp for a hyperbolic
double well potential using the time-independent fractional Schrödinger equation. We have
examined the variations of the wave function, entropy density ρx and ρp, and Shannon
entropy Sx and Sp with respect to the fractional derivative k. Additionally, we have
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verified the satisfaction of the BBM inequality relation and illustrated the behavior of these
quantities as the depth u of the double well increases. Notably, due to the definite parity of
the wave function, these physical quantities exhibit symmetric properties around the point
x = 0.

We have observed that the wave functions for the ground state and the first excited
state overlap in the rightmost well, while those of the second and third excited states
overlap in the leftmost well. Furthermore, we have found that as the depth u of the
potential well increases, the particle becomes more confined within the respective well,
resulting in increased stability. Moreover, decreasing the depth u of the HDWP and the
fractional derivative k also contributes to increased particle stability.

Finally, it is worth mentioning that the formalism presented in this work can be widely
applied to various quantum systems, including unsolvable ones, due to the numerical
approach employed in our study.
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