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Abstract: We study the transition to synchronization in large, dense networks of chaotic circle maps,
where an exact solution of the mean-field dynamics in the infinite network and all-to-all coupling limit
is known. In dense networks of finite size and link probability of smaller than one, the incoherent
state is meta-stable for coupling strengths that are larger than the mean-field critical coupling. We
observe chaotic transients with exponentially distributed escape times and study the scaling behavior
of the mean time to synchronization.
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1. Introduction

Complex nonlinear systems often exhibit collective synchronization phenomena which
can play an important role for the overall functioning of a system [1–3]. Phase oscillator
models can elucidate key aspects of the mechanism that generates the collective motion [4].
The Kuramoto model, for instance, is particularly useful in describing groups of weakly
coupled oscillators such as Josephson junctions, and they can be analyzed in almost full
detail in the thermodynamic limit of infinitely many oscillators. Indeed, Kuramoto himself
initially studied the fully connected networks of coupled oscillators with frequency het-
erogeneity, and obtained the critical value of the coupling strength for the transition from
incoherence to synchronized collective oscillations [5].

While such predictions are obtained in the thermodynamic limit, they have been used
as fruitful approaches to describe networks with finitely many oscillators [6,7]. However,
recent work has shown that finite size fluctuations or sparse connections in the network
can significantly impact on the overall dynamics. In fact, in certain models, synchroniza-
tion cannot, even approximately, be predicted from the mean-field approximation in the
thermodynamic limit [8]. That is, in these models, a transition to synchronization occurs
or is inhibited because of finite size fluctuations [9,10]. The interplay between mean-field
predictions and finite-size fluctuations for general models remains elusive and requires
further investigation.

In this work, we study chaotic phase maps in dense networks where the mean-field
dynamics can be analyzed exactly in the thermodynamic limit. For small coupling, due to
the chaotic phase dynamics, only incoherence is stable. For a range of coupling strengths,
mean-field analysis predicts coexistence between complete chaotic synchronization and
incoherence, and for strong coupling, the incoherence becomes unstable. Then, complete
synchronization is the globally attracting state in our model. Our results are two-fold:

(i) For coupling strengths with a stable coexistence of incoherence and synchronization,
although incoherence is locally attracting, finite-size fluctuations can take the system
into the basin of attraction of the absorbing state of complete synchronization. Starting
near incoherence with uniformly distributed random oscillator phases, the distribution
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of transient times towards synchronization is exponential and scales as a power of the
system size.

(ii) Above the critical coupling strength, in dense but incomplete networks, although
linear stability analysis of the mean-field equations suggests that any nonzero mean field,
e.g., finite size fluctuations of the mean field, will grow exponentially fast, we observe
an exponentially long chaotic transient in the incoherent state. Such a delayed transition
to synchronization has so far not been described in dense networks of coupled phase
oscillators or coupled chaotic maps.

2. Model of Coupled Chaotic Maps

The local phase dynamics in each node is modelled as a Bernoulli map of the circle
with time steps t ∈ Z

ϕ(t + 1) = f (ϕ(t)) = 2ϕ(t) mod 2π, (1)

or via the abuse of notation on the complex unit circle z = exp(iϕ), we write z(t + 1) =
f (z(t)) = z(t)2. This map is chaotic and structurally stable [11]. That is, the statistical
properties of the map persist under small perturbations. Therefore, for small coupling,
the maps behave as nearly independent, and no collective dynamics is possible for small
coupling. In [12], the global coupling of the phase dynamics is implemented as a Moebius
map on the complex unit circle. The Moebius map has been shown to give exact solutions
of sinusoidally forced phase dynamics [13], including the Kuramoto model, Winfree-type
phase equations, and via a nonlinear transformation, the dynamics of theta neurons [14]. It
is therefore a meaningful alternative to the sine coupling in the standard circle map. Here,
we use a composition of (1) and a Moebius map (see Figure 1)

z(t + 1) = M( f (z(t)), Φ(t), τ(t)), (2)

where

M(w, Φ, τ) =
eiΦτ + w

1 + e−iΦτw
(3)

for a coupling intensity −1 < τ < 1, an angle of contraction Φ ∈ S1, and a point
w ∈ D = {z ∈ C : |z| < 1} on the open complex unit disc. The family of Moebius
maps is a group of biholomorphic automorphisms of D, and via analytic continuation,
these transformations map the boundary of D bijectively onto itself. The effect of (3) on
the unit disc is a contraction of almost all points towards exp(iΦ) on the boundary where
limτ→±1 M(w, Φ, τ) = ± exp(iΦ) and limτ→0 M(w, Φ, τ) = w. The parameter τ charac-
terizes the strength of the contraction. For τ → 0, the map (2) approaches the uncoupled
dynamics (1). Moreover, the family of wrapped Cauchy distributions

p(ϕ) =
1

2π

1− R2

|1− Rei(ϕ−Θ)|2 (4)

which includes incoherence as the uniform distribution when R→ 0 and a delta distribution
at ϕ = Θ when R→ 1, is invariant under (2) and (3) [12,13,15]. This family of continuous
phase measures, in the context of phase synchronization, is known as the Ott-Antonsen
manifold, and assuming this form of phase distribution is equivalent to the so called Ott-
Antonsen ansatz [16,17]. The Ott-Antonsen manifold is parameterized using the mean-field
amplitude R and the mean-field angle Θ

Z = ReiΘ =
∫ 2π

0
eiϕ p(ϕ) dϕ. (5)

The mean-field amplitude R is the Kuramoto order parameter [18], which is zero for
incoherence, i.e., a uniform phase distribution, and R = 1 for complete synchronization
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ϕn = Θ (a.s.). Furthermore, the higher circular moments Zq on the Ott-Antonsen manifold
with q ∈ Z are integer powers of the mean field

Zq =
∫ 2π

0
eiqϕ p(ϕ) dϕ = Zq. (6)

As a consequence, phase doubling maps the circular moments as f (Zq(t)) = Z2q(t) =
Zq

2(t) = f (Z1(t))q, leaving the Ott-Antonsen manifold invariant and mapping the mean-
field amplitude and phase as R→ R2 and Θ→ 2Θ.

Z = 0.50eiπ/4

zn

Z = 0.25eiπ/2

z2
n

Z ≈ 0.67eiπ/2

M(z2
n, π/2, 0.5)

Figure 1. Dynamics of phases. N = 30 points on the complex unit circle colored by phase, and cor-
responding mean field (red dot inside the unit circle). From left to right: initial phase configuration at
the points zn with mean-field amplitude R = 0.5 and mean-field phase Θ = π/4, after chaotic phase
doubling z2

n with R2 = 0.25 and 2Θ = π/2, and after subsequent contraction toward the angle π/2
with intensity τ = 0.5.

To couple the dynamics of the Bernoulli maps (2), the parameters Φ(t) and τ(t) in (3)
should be defined as functions of the ensemble mean field. Following [12], we define the
contraction angle Φ(t) and the coupling intensity τ(t) as

Z(t) =
1
N

N

∑
n=1

zn(t) = R(t)eiΘ(t) (7)

Φ(t) = 2Θ(t) (8)

τ(t) = tanh
( ε

2
R(t)

)
, (9)

where ε is a coupling strength. For τ = 1, when εR → ∞, the phases are contracted to
a single point exp(2iΘ) on the unit circle. For small values of εR, we can expand (2) to
the linear order and obtain the more familiar form of mean-field coupled circle maps with
phase doubling

ϕn(t + 1) = 2ϕn(t) + εR(t) sin(2Θ(t)− 2ϕn(t)) + O(ε2R2(t)). (10)

The crucial observation is that on the Ott-Antonsen manifold, the mean-field
Z = R exp(iΘ) transforms exactly the same way via (2), (3) as each element z = exp(iϕ)
on the unit circle [12,13]; that is,

Z(t + 1) = M(Z2(t), Φ(t), τ(t)). (11)

It is highly unusual that a closed analytic expression for the dynamics of the mean field
can be derived and thus analyzed in coupled nonlinear dynamical systems. The reduction
in infinitely dimensional microscopic dynamics to the low-dimensional dynamics of the
mean-field [16] has been tremendously successful in the analysis of synchronization phe-
nomena over the last decade, while the effects of the finite system size N remain difficult
to analyze [19,20]. We note that the point measure of a finite ensemble of phases is never
actually on the Ott-Antonsen manifold, but can, in some sense, be arbitrarily close to the
so-called thermodynamic limit, i.e., the limit of the infinite system size N → ∞.
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Applying the Ott-Antonsen ansatz to networks of phase oscillators is possible if the
network structure allows for the partitioning of the vertices into a few classes of equivalent
vertices. Assuming that all vertices of a class are subjected to the same sinusoidal forcing,
the dynamics of the phases in the network can be reduced to the dynamics of coupled
mean fields on the Ott-Antonsen manifold for each vertex class [10,21–24]. Additionally,
heterogeneity in the oscillators and fluctuations in the forces can be incorporated into the
mean field dynamics if they follow Cauchy distributions [25–27].

2.1. Mean-Field Analysis

The mean-field dynamics (11) can be written in terms of the polar representation

Θ(t + 1) = f (Θ(t)) and R(t + 1) =
τ(t) + R2(t)

1 + τ(t)R2(t)
. (12)

This means that the dynamics of the phase Θ decouples from the amplitude and will
evolve chaotically. Using Equations (9) and (12), we obtain the amplitude dynamics

R(t + 1) =
tanh

(
1
2 εR(t)

)
+ R2(t)

1 + tanh
(

1
2 εR(t)

)
R2(t)

(13)

which describes the exact evolution of the order parameter R in a closed form. We can
readily determine the fixed points of the mean-field amplitude R(t) and their linear stability.
Both the complete synchronization R = 1 and the complete desynchronization R = 0 are
fixed points of (13), and change stability at unique critical points ε1 = ln(2) ≈ 0.69 and
ε0 = 2, respectively, as determined by the eigenvalues of Jacobian of Equation (13) at
these fixed points. These critical points are connected by an unstable fixed point branch
(ε(Ru), Ru), where

ε(Ru) =
1

Ru
log
(
(1 + Ru)2

1 + R2
u

)
. (14)

This expression is derived from (13) by setting R(t + 1) = R(t) = Ru and resolving
the equation for ε.

This means that this system of all-to-all coupled, identical chaotic phase maps will
always evolve to complete synchronization or complete desynchronization, with a small
region ln(2) < ε < 2 of bistability (Figure 2a).

2.2. Extension to Networks

Next, we have studied the same phase dynamics on a random network of N maps
which are coupled to exactly k different, random neighbors. Here, each phase ϕn couples
to a local mean field

Qn = RneiΘn =
1
k

N

∑
n=1

Anmzm (15)

where Anm are the entries of the adjacency matrix, i.e., equal to one if there is a link from
vertex m to vertex n, but zero otherwise, and k = ∑N

m=1 Anm is the in-degree of node n,
which, for computational simplicity, we assume to be identical for all nodes. Thus, with
τn = tanh

(
ε
2 Rn

)
, the dynamics of the phases coupled through a network are

zn(t + 1) =
e2iΘn(t)τn(t) + z2

n(t)
1 + e−2iΘn(t)τn(t)z2

n(t)
. (16)

A class of networks is dense if limN→∞〈k〉/N = p > 0, where 〈k〉 is the mean
node degree. Therefore, p is the fraction of nodes, in relation to the system size N, that
an oscillator is coupled to. Since dense networks are defined in the limit of N → ∞,
there is no sharp distinction between sparse and dense networks of finite size. We refer
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to a finite network as dense if two nodes share more than one neighbor on average,
i.e., 〈k〉2/N = p2N > 1. In large dense networks, the local mean fields of the oscillators in
the neighborhood of each node (15) are equal to the global mean field, with a deviation of
O(1/

√
k), where k is the size of the neighborhood, i.e., the in-degree of the node. Therefore,

mean-field theory should be exact for dense networks in the thermodynamic limit where
〈k〉 → ∞.

The network model. First, we wish to compare the simulation results directly with our
mean-field analysis. For large random networks with a link density p = k/N and 0 < p < 1,
the numerical simulations are time-consuming since the N local mean fields at each node in
the network need to be computed in each time step. To simplify these computations, we use
a random network where each node couples to exactly k different random neighbors. This
model with a unique in-degree of k for each node is slightly different from the Erdös Renyi
model, with a Poissonian in-degree distribution of small relative width std(k)/〈k〉 ∼ 1/

√
k.

For large k, the results of the simulations in our random network model and other random
networks with uncorrelated node degrees and a vanishing relative width of the degree
distribution are expected to be identical.

0 1 2 3 4

ε

0.0

0.2

0.4

0.6

0.8

1.0

R

(a) (b)

Figure 2. Bifurcation diagram of the mean-field amplitude and a representation of the network
interaction. In (a), the bifurcation diagram of the all-to-all coupling mean-field dynamics (12), i.e., on
the Ott-Antonsen manifold. Dotted lines show linearly unstable fixed points and solid lines show
linearly stable fixed points in the thermodynamic limit. (b) Venn diagram of a dense network with
N vertices and connection probability p. The sets of neighbors of nodes m and n are of size pN
and their overlap is of size p2N, resulting in correlated local mean fields Qm = Rm exp(iΘm) and
Qn = Rn exp(iΘn) acting on the states zm and zn. The ratio of the amplitudes of the local mean fields
and the global mean field are independent of the network size N.

3. Results
3.1. Distributions of Transient Times

We perform a large number M of simulations m = 1 . . . M from independent, uni-
formly distributed random initial phases over a maximum of T steps and record in each
simulation the first time step tm when R ≥ 0.5, i.e., the transition time from an incoherent
state to complete synchronization. Finite-size scaling for such a discontinuous transition is
challenging [28]. The exponential distribution of the times tm, according to some character-
istic transition rate, can be checked in a rank plot of time points tm, which gives the sample
complementary cumulative distribution C(t) = prob(t ≥ tm) = rank(tm)/M (Figure 3a,d).

An exponential tail distribution C(t) up to observation time T indicates an exponential
distribution of transient times. Since the simulation time is finite, transition times tm ≥ T
are not observed, which represents a problem when we are interested in the average time
to synchronization. However, assuming a discrete exponential, i.e., geometric distribution,
a maximum likelihood estimation of the average transition time is possible up to values
considerably exceeding the observation time T (see Appendix A).
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Figure 3. Statistics of transient times tm to synchronization. (a–c) In the fully connected network;
(d–f) in random networks of various link densities p = k/N. The left panels show straight lines in
semi-logarithmic plots of cumulative tail distributions of the transient times, demonstrating the rate
character of the transition process. The middle panels show the estimated average transient times for
various combinations of system sizes N, coupling strengths ε, and link densities p. The mean field
critical coupling strength ε0 = 2.0 and the maximum observation time T are marked by dashed lines.
In the globally coupled system in pannels (a–c), the transient time depends strongly on the system
size N, whereas in dense networks and above ε0 (d–f), the transient time depends strongly on the
link density p = k/N, but not on the system size. We demonstrate the scaling of the transient times
in panels (c) and (f) on the right. In the globally coupled system, the exponential divergence of the
transient times below ε0 appears to be a function of (ε− ε0)N

1
3 . In dense networks, the exponential

divergence is roughly a function of (ε− ε0)p.

Denoting the number of simulations that synchronize at times tm < T as MT , and defin-
ing the observable values lm = min(tm, T), the maximum likelihood estimation of the
expected value Tesc = E[tm] for the geometric distribution is

Tesc =
〈lm〉M

MT
. (17)

with the sample mean 〈lm〉. If the transition to synchronization is observed in all simula-
tions, i.e., MT = M, the estimator is simply the sample mean of tm, which is an estimator of
Tesc for arbitrary transient time distributions. However, when most runs do not synchro-
nize within the finite simulation time T, the ratio M/MT contains additional information,
and the estimated mean escape time can be much larger than the observation time.

3.2. During Coexistence: Escape over the Unstable Branch

In [29], it was reported that the transition from incoherence to collective dynamics in
sparse networks of coupled logistic maps is of the mean-field type. The analysis in [30]
predicts a shift in the critical coupling strength in random networks of Kuramoto phase
oscillators of the order 〈k〉2/〈k2〉 due to degree inhomogeneity, and 1/〈k〉 due to finite
size fluctuations of the local mean fields. That is, in dense, homogeneous networks with
〈k〉2/〈k2〉 → 1 and 〈k〉 → ∞, the critical coupling strength does not change. We expected to
find similar behaviors for network-coupled Bernoulli maps. In complete or almost complete
networks k/N = p ≈ 1 for ε < 2, there is a small probability that finite size fluctuations
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bring the order parameter R above the unstable branch, leading to a spontaneous transition
to complete synchronization, as shown in Figure 4a. We first observe the scaling of the
transient time in fully connected networks with p = 1. For values of ε < ε0 = 2.0, the tran-
sition rate to synchronization scales strongly with the size N of the system (Figure 3b,c).
However, for values ε > ε0, the average transition time depends very weakly on N, as the
system grows exponentially fast from a state of incoherence, with R ≈ 1/

√
N. We estimate

a finite size scaling exponent β below the transition threshold by collapsing the curves
Tesc(ε, N) using the ansatz Tesc(ε, N) = Tesc

(
(ε− ε0)Nβ

)
. The data are consistent with an

ad hoc exponent of β = 1/3 (Figure 3c).
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Figure 4. Transient to synchronization for N = 10,000 coupled maps in (a,b), a fully connected
network with coupling strength ε = 1.81 below the critical coupling ε0 = 2, and (c,d), in a random
network with connection probability p = 0.1 for a coupling strength of ε = 2.3 above the critical
coupling. The upper panels (a,c) show the order parameter R(t), and the lower panels (b,d), the real
part of the ratio of the first two circular moments Re[Z2

1/Z2]. This serves as a visual measure of the
alignment of the system state with the Ott-Antonsen manifold, where the ratio is exactly equal to
one. The dashed line in (a) marks the value of the unstable fixed point of the mean-field dynamics,
Ru = 0.098. Above that value, the state of complete synchronization is attractive on the Ott-Antonsen
manifold. In (b,d), the incoherent state R = 0 is unstable; however, finite size fluctuations do not
grow exponentially. Instead, we observe a long chaotic transient.

3.3. Above the Critical Coupling Strength: Long Chaotic Transient

Above the critical coupling strength ε > ε0 = 2, we expected finite size fluctuations to
grow exponentially fast and independently of N, as predicted by linear stability analysis
of the mean-field Equations (13). Instead, for small connection probabilities 0 < p < 1,
we have observed a chaotic transient with seemingly stationary finite size fluctuations
O(1/

√
N) of the mean field (Figure 4). In the large N limit, the distribution of the transient

times depends on the link density p with increasingly long transients as p is decreased, but
it is otherwise independent of N.

A coupling strength for which a transition to complete synchronization could still be
observed within the simulation time was considerably larger than the mean-field critical
coupling ε0 = 2. That is, even in dense networks and above the mean-field critical coupling,
finite size fluctuations will not necessarily result in the nucleation and exponential growth
of a collective mode. Such a delayed transition to synchronization [31] has so far not been
described in systems of coupled phase oscillators [30,32,33] or coupled logistic maps [29].
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In Figure 3f, we plot Tesc over (ε− ε0)p to demonstrate that the average transition
time is roughly scaling as 1/p. We do not look for higher-order corrections such as a weak
dependence of ε0 on p, although the curves do not collapse perfectly. Note that the escape
time is largely independent of the network size (Figure 3e,f). For p = 0.1, 0.05, and 0.025
we have performed simulations with N = 104 (circles) and with N = 5× 104 (crosses)
for comparison. For p = 0.01, we compare network sizes N = 104 (circles) with very
time-consuming simulations in networks with N = 105 (crosses).

3.4. Discussion of Finite Size Scaling

Mean field theory assumes a phase distribution on the Ott-Antonsen manifold. The
characteristic function of a wrapped Cauchy distribution is the geometric sequence Zq = Zq

of circular moments (6). However, in the incoherent state with N independent uniformly
distributed phases ϕn the circular moments of an ensemble

Zq =
1
N

N

∑
n=1

eiqϕn (18)

are almost independent complex numbers with a Gaussian distribution of mean zero and
a variance of 1/N by virtue of the central limit theorem. The action of the Bernoulli map
on the circular moments is the shift

Zq → Z2q, (19)

that is, it is achieved by discarding all odd circular moments. The exponential growth of the
order parameter in accordance to mean field theory is expected after the distribution comes
close to the Ott-Antonsen manifold, i.e., when the first few circular moments align by chance
sufficiently under the mapping (19); in particular, Z2(t) ≈ Z2

1(t). Unless the directions of
Z2 and Z2

1 align by chance, as they would on the Ott-Antonsen manifold, the subsequent
contraction of strength εR in the direction of Z2

1 after the phase doubling may even decrease
the amplitude of the order parameter. In addition, for coupling strengths ε below the critical
value, R = |Z1|must be above the unstable branch R > Ru(ε) ∼ (ε0 − ε).

The rate of such a random event should depend on the ratio between Ru(ε) and the
standard deviation 1/

√
N of the Gaussian distribution of the complex mean field. Based on

this scaling argument, the expected time to synchronize should scale as
Tesc = Tesc((ε− ε0)

√
N) below the critical coupling. The best collapse of the estimated

escape times in fully connected networks of coupled Bernoulli maps was observed by
scaling the distance to ε0 with N1/3 (Figure 4c), i.e., the exponential divergence of the
escape time approaches ε0 slower than 1/

√
N in the thermodynamic limit. One possibility

for this discrepancy is that the scaling argument only considers the chance of R > Ru and
not the alignment process of the higher-order circular moments.

Above the critical coupling strength, there is only the condition of the alignment of
circular moments with the Ott-Antonsen manifold for the initiation of exponential growth.
Since in the incoherent state, all circular moments are random Gaussian with identical
variance, the alignment process (19) is strictly independent of the system size N. Once
exponential growth in the direction of the Ott-Antonsen manifold occurs, the time to
synchronization is logarithmic, that is, it is weakly dependent on N. However, it appears
that the alignment with the Ott-Antonsen manifold needs to be stronger for networks with
link densities of p < 1. For small link densities, the divergence of the escape time occurs
at larger values ε > ε0. This is reminiscent of stabilization by noise [34], where a system
is driven away from a low-dimensional unstable manifold of a fixed point into stronger
attracting stable directions.

In simulations of dense random networks of coupled Bernoulli maps, we could see
the independence of the mean escape time from the network size and the scaling of the
escape time with roughly ∼ 1/p (Figure 3f). To explain this scaling, we argue that mean
field theory might be extended to dense networks, where each node couples to a finite
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neighborhood of pN nodes in the network, and for every two nodes, these neighborhoods
overlap on a set of size p2N (Figure 2b). The local mean fields are Gaussian random
forces of mean value Z, variance 1/k = 1/pN, and a pairwise correlation of p, which is
the relative size of the overlap. The decrease in correlation between the local mean fields in
networks with link densities p < 1 can be interpreted as individual, finite size noise on the
maps, which couple to the global mean field, plus some uncorrelated random deviation.
Therefore, the contractions of the phases do not occur in the same direction for different
nodes in the network. The strength of the contraction in the direction of the mean field is
effectively reduced by the factor p, i.e.,

τ = tanh
(

1
2

εR
)

p ≈ 1
2

εpR (20)

shifting the coupling strength dependence of the transition time (above ε0) by a factor of 1/p.

4. Conclusions

We have investigated the synchronization of coupled chaotic maps in dense random
networks, utilizing mean-field equations and examining network configurations with
different link probabilities. Firstly, we noticed the existence of chaotic transients to syn-
chronization within these networks. This means that the incoherent state can persist for
extended periods before transitioning into synchronization. This finding led us to study the
statistics of transient times and their scaling behaviors in the process of synchronization.
The transition times follow exponential distributions, indicating spontaneous transitions
at a constant rate. It is noteworthy that the transition from incoherence to complete syn-
chronization only occurs spontaneously in networks of finite size. Additionally, we have
observed a remarkable dependence of the transient times to synchronization on the link
probability p, represented by the ratio of the in-degree to the total number of nodes, at cou-
pling strengths where an immediate transition to synchrony would be expected from mean
field theory. Whether such a delayed transition is due to the specifics of our model or is
typical for a more general class of dynamics remains an open question.
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Appendix A

Here, we calculate the maximum likelihood estimation for the mean value of a geo-
metric distribution P(t; α) = (1− α)αt for discrete values t = 0, 1, . . . of time steps when
only times t < T can be observed. The expected value for the geometric distribution is

E[t] = (1− α)
∞

∑
t=0

tαt =
α

1− α
. (A1)

Since the times tm, m = 1 . . . M are only observable up to step T − 1, we define
lm = min(tm, T). The probabilities for the possible values of lm are
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P(lm = T; α) = 1− (1− α)
T−1

∑
t=0

αt = αT (A2)

P(lm = t < T; α) = (1− α)αt. (A3)

The derivative of the log-likelihood of M independent observations lm with respect to the
parameter α is

∂αP(l1, l2, . . . , lM; α)

P(l1, l2, . . . , lM; α)
=

M

∑
m=1

∂αP(lm; α)

P(lm; α)
. (A4)

For the probabilities (A2) and (A3), the derivatives are

∂αP(lm = T, α)

P(lm = T, α)
=

T
α

(A5)

∂αP(lm = t < T, α)

P(lm = t < T, α)
=

t
α
− 1

1− α
. (A6)

For a maximum of the log-likelihood for the observed values lm, the sum in (A4) is required
to be zero. Inserting M − MT times the term (A5) for all observations lm = T and MT
terms (A6), one for each observation lm = t < T, we obtain

(M−MT)
T
α
+ ∑

lm<T

lm
α
−MT

1
1− α

= 0. (A7)

With

〈lm〉 =
1
M

M

∑
m=1

lm =
1
M

(
(M−MT)T + ∑

lm<T
lm

)
(A8)

we can divide (A7) by the number M of observations and re-order the equation to obtain

〈lm〉M
MT

=
α

1− α
. (A9)

However, this is exactly the expected value E[t] of time steps for the full geometric distribution (A1).
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