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Abstract: World-wide, political polarization continues unabated, undermining collective decision-
making ability. In this issue, we have examined polarization dynamics using a (mean-field) model
borrowed from statistical physics, assuming that each individual interacted with each of the others.
We use the model to generate scenarios of polarization trends in time in the USA and explore ways to
reduce it, as measured by a polarization index that we propose. Here, we extend our work using a
more realistic assumption that individuals interact only with “neighbors” (short-range interactions).
We use agent-based Monte Carlo simulations to generate polarization scenarios, considering again
three USA political groups: Democrats, Republicans, and Independents. We find that mean-field and
Monte Carlo simulation results are quite similar. The model can be applied to other political systems
with similar polarization dynamics.

Keywords: political polarization; statistical physics model; Monte Carlo simulation; anticipatory
scenarios

1. Introduction

Political polarization in democracies has been a subject of intensive studies in recent
years [1–6]. Polarization stems from individuals forming broad and encompassing clusters
organized around cohesive packages of polotical beliefs [2]. “Political polarization” in a
word is the distance between the “left” and the “right” [3,4]. The case of the United States is
striking: political polarization has rapidly increased in recent years [6–10]. European democ-
racies were no exception [11]. In the USA, this tendency began in the 1970s [12] as reflected
in polls [9]. Political polarization did not only affect the population, but also the media [13].
Each party proposed policies to solve societal problems ranging from government aid
to the needy, race, immigration, national security, and the environment [6]. However,
conflict over solutions to societal problems led to more problems in democracies: political
polarization has serious deleterious societal [1,14–16] and economic [3] consequences. One
of these is that people gradually lose the ability to work together, to compromise, make,
and implement deals. In time, this can lead to societal breakdown [15,17].

One notable problem caused by polarization is that individuals increasingly tend to
believe only in scientific information which justifies their political perspective, regardless
of its factual basis [15,18,19]. Another negative consequence of polarization is that needed
change can no longer occur through debate and persuasion. Instead, the party in power
imposes its policies which will be undone as soon as the other party prevails [15] leading to
instability and to collective and individual losses. Since polities are complex systems [20]
within which interactions change with time, according to [21,22], empirical studies do not
suffice to help us understand political polarization dynamics. We also need theoretical
modeling to help explore conditions under which an event can happen. Agent-based
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modeling has great potential in this regard [23,24]. Modeling can help at least prepare
information that might be useful in reducing the impacts of polarization [25,26].

Amongst many methods used to investigate polarization, sociophysics—namely, ap-
plying physics tool to the study of social phenomena—has been a very effective approach.
It can handle complexity in various domains, including politics, and provide insights
complementing those gleaned from other disciplines [26]. One sociophysics approach
to modeling complex systems uses network models [25,27–30]. Such models have been
called “generative” as opposed to inductive or deductive and are arguably well-suited
to assist decision making [31]. They have already been used in studies of polarization
(e.g., [8,18,32–34]). Despite their seeming conceptual simplicity (compared to traditional,
complicated, data-intensive multi-variate regression models prevalent in social sciences)
network models allow testing of hypotheses regarding such issues as the role of the media
in social dynamics (e.g., [30]), or the use of bot agents to alter public opinion [35]. Network
models can be used to explore polarization trends and find avenues for intervention, to
avert some of its negative consequences. Since prediction in the context of a complex
system is at best limited [20], generating qualitative anticipatory scenarios which can be
queried (e.g., [36–41]) is an alternative. This entails producing a range of possible outcomes
with respect to a variable of interest, and mapping their consequences and exploring in-
tervention possibilities. The general network approach has gained currency in the first
decades of the century, as scholars have applied it to a variety of contexts. For example,
using network models we have anticipated election outcomes in the US and in Bosnia–
Hercegovina [26,40], and we examined various outcomes of labor management contract
negotiations in France [41]. As Ref. [42] has argued, anticipatory scenarios are useful in
supporting the development of robust strategies of action in the face of high levels on
uncertainty characterizing complex systems.

Within Western democracies political polarization is on the increase, undermining col-
lective decision making abiity (e.g., [15,43,44]. We have examined polarization dynamics in
the USA between Democratic- and Republican-affiliated individuals, using an agent-based
model borrowed from statistical physics and mean-field theory (see Kaufman et al. [45] in
this issue). We considered the effect of non-affiliated independents [9,10] who sometimes
lean toward one of the two other groups in specific conflicts and during elections. Using
that agent-based model [45] and past patterns [43,44], we generated scenarios of the three
groups’ attitude trajectories in time. Since in [45], polarization trends continued unabated
in the absence of any intervention, we explored what might reduce polarization, such as
leaders bringing people together, or focusing events such as natural disasters.

In our previous article, agents’ interactions had a wide range (mean-field), meaning
that each individual interacted with each of the others. Here, we extend our work by
assuming, instead, that individuals interact only with their “neighbors”. We explore the
insights to be gained with the short-range interactions assumption on a Bravais lattice,
which may be more realistic in terms of how individuals communicate and try to persuade
others of their political stance. Moreover, this kind of short-range interaction matches a
“massively parallel” approach proposed by [46] as a means of reducing polarization. It
consists of numerous individuals acting purposely in their physical, social, and professional
neighborhoods to combat polarization by breaking through the currently prevailing acute
homophily [5] and engaging with out-groups (people with differing political affiliations and
perspectives than their own). Our model may help assess the extent to which the massively
parallel approach can be effective in reducing polarization. Note that agent-based modeling
has been used to study attitude change in societies [47].

In Section 2, we describe the initial model [45] and the Monte Carlo simulation ap-
proach we use here. Then in Section 3, we present the simulation results and discuss
their meaning in terms of polarization trends scenarios. We conclude in Section 4 with a
summary of findings and some directions for future developments.
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2. Model and Method
2.1. Model

In our recent paper in this issue ([45]), we used agent-based modeling to extend a
sociophysics two-group network model of conflict dynamics [36] to three political groups in
the US: Democrats (group 1), Republicans (group 2), and Independents (group 3). Groups 1
and 2, homophilic [5,6] drive polarization, which we have measured as the gap between
their average attitudes toward a composite of key political issues (such as how the economy
and the environment should be managed). Although the Independents (group 3) are
unaffiliated, they matter: since 2004 their share of the adult population has ranged between
27% and 50% (most recently, in February 2023, 44%, [43]), and at any moment in time
they may lean toward, and strengthen group 1 or group 2 [43,44]. Thus, they represent
recruitment pools for the other two groups, and gain importance especially at election times.

To describe the political stance of an individual in a society, we use a spin S model,
where the attitude S ranges between−1 (extreme left) and 1 (extreme right). An individual’s
stance can take any value on the continuum within this range. Such a model is called a
”continuous Ising model” ([48,49]), as opposed to the discrete Ising model, where S could
only take two values, −1 and 1. We used this continuous S model to examine polarization
trends within the framework of the mean-field theory (MFT) (Kaufman et al. [45]). Here
we use Monte Carlo (MC) simulations with short-range interactions between individuals,
with real-time fluctuations, and then we compare the MC results with those of MFT, where
long-range interactions with no fluctuations are the basis of the approximation.

Each individual in group i (i = 1, 2, 3) has a stance compatible with the group’s attitude
Si regarding a specific issue under debate—economics, social issues, defense, etc.—or (here)
a package of such issues (in the [1,6] sense). The individual stances have values between−1
and +1, where −1 corresponds to the democrats/progressive/left position (i = 1), while +1
corresponds to the republicans/conservative/right position (i = 2). Individuals thus align
with the group whose average stance is compatible and closest to their own [1].

Inside groups 1 and 2, individuals are homophilic [5]; they tend to prefer to commu-
nicate with each other, rather than with individuals from a different group. We denote Ji
the link between members of group i. It quantifies the cohesiveness of group i. Through Ji,
members inside each group attempt to persuade each other of their own stance, effectively
diminishing intra-group differences and causing stances to converge.

Individuals in each group also keep an eye on the other groups’ average attitudes,
which in turn influence their own, either nudging the group average to a more extreme
value or to a more moderate one. These inter-group interactions are described by parame-
ters Kij. For group 1, the inter-group interaction terms,−K12S1 < S2 > and−K13S1 < S3 >,
represent the influence of the mean stances of groups 2 and 3, < S2 > and < S3 > re-
spectively, on an individual in group 1. The inter-group interactions K12 and K21 are not
necessarily equal. At times, members of one group may feel cooperative toward the other,
who might not reciprocate. Therefore, in general, Kij 6= Kji. While physics phenomena obey
Newton’s third law, the magnitudes of human action and reaction do not have to be equal.
Rather, the effect of group i on group j can be different in magnitude and sign from the
effect group j has on group i. Hence our model is not described by a single Hamiltonian and
its dynamics is not the Glauber dynamics (our spin is not Ising +/−1 but is continuous). A
temperature, reflecting contextual factors, drives the variability in individual preferences in
a group. Our dynamic model captures the evolution of group preferences by assuming that
the intensity of interactions involves the product of individuals’ preferences at a current
time and average preferences of opposing groups at an earlier time. This lag reasonably
reflects the fact that results of individual persuasion efforts in one time-period materialize
at a later time.

The intra-group cohesion parameters J and the inter-group influence parameters K
affect the average group attitudes in time. For instance, according to the recent Gallup
polls [43], in early 2023, 40% of adults declared themselves independent—with zero internal
cohesion J3, since they are not organized or formally linked, like Democrats or Republicans,
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but rather a bin for the non-affiliated. However, in February 2023 all but 7% of them leaned
either Democrats or Republicans, at least partly in response to persuasion efforts by the
other two groups.

We also use a magnetic field hi to represents the effect of group i’s leadership on
group’s members. When hi > 0, group i’s mean stance is nudged toward positive values;
when hi < 0 the mean stance is nudged to negative values.

In [45] we defined a polarization measure P as the distance between the mean stances
of groups 1 and 2 at a given time t:

P = (< S2 > − < S1 >)/2 (1)

such that −1 ≤ P ≤ 1. < Si > is the average individual stance of group i calculated at a
time t. When P = 0, there is no polarization. It occurs when groups 1 and 2 have equal
average stances < S1 >=< S2 >. When P = 1, polarization is extreme (also called hyper-
polarization (e.g., Burgess et al. [15]). This can occur when Democrats’ stance < S1 >= −1
(most progressive/left) and Republicans’ stance < S2 >= 1 (most conservative/right). It
can also occur, rather paradoxically, when P = −1, because Democrats’ stance < S1 >= 1
and Republicans’ stance < S2 >= −1.

The general model has twelve parameters: three J, one for each of the three groups’
respective internal cohesiveness, six K capturing the three groups’ relationships with each
other, and three hi to describe leadership effects, if any. The J and K parameters can
be selected qualitatively, as we have done here, using publicly available poll data (see
[6,31,37,45]).

We solved this model using the mean-field approximation [45]. One finding was that
Independents (group 3) can alter the result of an election. Here, we use a similar model,
but with short-range intra-group interactions and perform MC simulations. The model’s
Hamiltonian of group i is:

Hi(t) = −Ji ∑
m,n

Si(m, t) · Si(n, t)− hi ∑
m

Si(m, t) (2)

where i indexes group i, and Si(m, t) is the stance of an individual m in group i at time t.
The sum is performed over the nearest neighbors (NN) m and n belonging to group i. Note
that for group 3 (Independents), the first sum is zero because J3 = 0. Also, a group at t
interacts with the average stances of the other groups at t− 1.

When the three groups interact, the Hamiltonians of each group is as follows:

H1(t) = H1(t)− K12 ∑
m

S1(m, t) < S2(t− 1) > −K13 ∑
m

S1(m, t) < S3(t− 1) > (3)

H2(t) = H2(t)− K21 ∑
m

S2(m, t) < S1(t− 1) > −K23 ∑
m

S2(m, t) < S3(t− 1) > (4)

H3(t) = H3(t)− K31 ∑
m

S3(m, t) < S1(t− 1) > −K32 ∑
m

S3(m, t) < S2(t− 1) > (5)

Before proceeding to the simulation method, let us discuss the role of the “political”
temperature T which we introduce below, and which we borrowed from statistical physics.
There, the temperature represents thermal agitations of the particles (spins, for example).
Thus, T acts as a disordering factor: at low T, particles stay in the lowest energy state (or
very close to it), while at high T, they vigorously change their state in an independent
manner, causing disorder in the system in spite of the inter-particle interaction which favors
order. Examples in physics are numerous. Here are a few: coupled atoms in a crystal
are ordered at low T and they cause melting at high T; spins in ferromagnets are parallel
at low T but become disordered at high T. In the context of political groups considered
here, T represents the political ambiance of the society. When an election is not imminent,
or in otherwise calm, prosperous times, T is low. Each group is relatively stable, with
no significant effect of inter-party interaction. Close to an election or during politically
fraught times with important issues at stake (such as strained economies or international
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tensions), intra-party cohesiveness may wane, due to the fluctuation of individual stances
of its members, equivalent to high “political” temperature T. Then, each group might
attempt to take advantage of the weakened cohesiveness of the other groups to enhance its
influence in the competition. As we shall see below, T plays an important role in outcomes
of political contests.

2.2. Simulation Method

Of the three groups, 1 (Democrats), 2 (Republicans), and 3 (Independents) in the US
political system, whose interactions we model, we assume group 1 to have a stronger
cohesiveness (largest J), and to be governing. Group 2 has weaker cohesiveness and is in
opposition. Group 3 is composed of individuals having no unified political framework or
formal communication links. The independents are at times (though not always) attracted
to the stances of the opposition party, playing a contrarian role.

For the MC simulations, we represent each of the three groups with a triangular lattice
of size N × N, where each site is occupied by a member. Each member interacts with its six
nearest neighbors (NN) at time t, and considers the average stances of the other groups
calculated at t− 1 (a realistic lag). Regarding the choice of lattice, here we have applied the
Monte Carlo methodology testing it on a relatively simple geometry: the triangular lattice.
The choice of this lattice allows for a maximum number of NN in 2D. We can use a 3D lattice
to have more NN such as a FCC or a HCP with 12 NN. However we believe it will not give
new phenomena. For each group, we use the periodic boundary conditions to reduce the
size effects. In general, we take the size of 60 × 60 lattice sites for each group. See Figure 1
for the interaction parameters described in the previous section. Note that the notion of
NN interactions in politics does not necessarily mean that people are geometrically close to
each other. Rather, it refers to the number of people generally in contact with an individual.

Figure 1. Interaction parameters. Note that J3, intra-group interaction among the Independents, is
zero. See text for comments.

To simulate the three groups’ interactions, we first thermalize each group to determine
their intrinsic cohesiveness at a given T. The simulation is done as follows: for a group we
generate initial individual stances −1 (Democrats) for group 1, 1 for group 2 (Replublicans),
and 0 (Independents) for group 3. We then use the Metropolis algorithm to find their col-
lective state separately (no inter-group interactions) at a given T using the Hamiltonians 2.
When they are at equilbrium, we turn on the inter-group interactions Kij and we follow the
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evolution of each group with time t taking into account its interactions with the average
stances of two other groups calculated at time t− 1 (MC time).

The Metropolis algorithm used for updating the individual stance of a member is
as follows: at a time t, we calculate the interaction energy Eold of a member with its NN
and with an effective field resulting from the two other groups at time t− 1. We make a
trial change of its state by choosing a random stance between −1 and 1. We calculate the
member’s trial new energy Enew. If Enew < Eold, the trial state is accepted. If Enew > Eold,
it is accepted with the probability exp[−(Enew − Eold)/(kBT)]. We repeat this updating
procedure for all individuals in each of the three groups. Note that the Metropolis algorithm
obeys the detailed balance only when the system is at equilibrium, namely when there is a
probability conservation: state A to state B has the same probability with that from B to
A. Our purpose is to study the time dependence of the polarization, so there is no such
probability conservation. Note that there are several popular dynamics such as Glauber
dynamics and Kawasaki dynamics, but to our knowledge all of them have been devised for
discrete spins, not for continuous spins used in this paper. The advantage of the Metropolis
algorithm is that it does not depend on the nature of spin, it can be used for any kind of
spin such as continuous spins used here, XY spins or Heisenberg spins.

3. Results and Discussion

As seen, our model has nine principal interaction parameters Ji(i = 1, 2, 3) and Kij
(i 6= j, i = 1, 2, 3, j = 1, 2, 3) in addition to hi(i = 1, 2, 3). However, in applications the choice
of the parameters is limited. As discussed in [45], this choice is guided by polls [43,44]
and by political common attitudes of the people: to produce anticipatory scenarios of
polarization, we made the following assumptions:

- The Democrats (group 1) are more cohesive than Republicans (group 2), i.e., J1 > J2;
- Independents (group 3) have no cohesion (J3 = 0) because they have no structure

or means of identifying with each other, do not communicate, and do not recruit;
therefore, they exert no influence on the other two groups and, as such,K13 = K23 = 0;

- Independents tend to be contrarian to the party in power (here, group 1), thus K31 < 0,
and are not influenced by the opposition party, thus K32 = 0 (see [50–52] of other
examples of contrarian used in a model).

With respect to parameter value selection, guided by media and professional, longi-
tudinal polling reports, we assigned parameter values such that they qualitatively mimic
general polls results [43,44]. To enable a comparison of MC results with those obtained
with the MFT model [45], we selected the same values for parameters J and K, as follows:

- Intra-group interactions: J1 = 5, J2 = 3, J3 = 0
- Inter-group interactions: K12 = −4, K21 = −5, K13 = 0, K31 = −3, K23 = 0 and

K32 = 0.

Note that a negative Kij indicates hostility (or resistance) of group i toward group j,
while a positive sign indicates attraction or potential agreement between two groups. Note
that a variation of the above values respecting their signs will not alter qualitatively the
results shown in the following.

Each group is thermalized at temperature T in order to determine the temperature
range in which each group has a cohesiveness. The initial configuration is that of the lowest
energy (namely at T = 0, all Democrats are −1 and all Republicans +1). The following
quantities have been calculated:

- Cohesive energy per individual Ei(T) =< Hi(T)/N2 where < Hi(T) > is the thermal
average at T given by

< Hi(T) >=
t2

∑
t=t1
Hi(t)/(t2− t1) (6)
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where t1 is the starting averaging time and t2 the averaging end time, taken after the
equilibrating time ' 105 MC step/spin with t2− t1 = 105 MC steps/spin,

- Stance of each group (sublattice magnetization) as a function of T:

Mi(T) =< Si(T) >=
t2

∑
t=t1

∑
n

Si(n, t)/(t2− t1)/N2 (7)

where n belongs to group i. Within the assumption of the parameters given above
one has M1 < 0, M2 > 0 and M3 > 0. We define the strength of group i by Qi(T) =
| < Si > |,

- Susceptibility or fluctuations of the stance of group i at T:

χ(T) = [< Mi(T)2 > − < Mi(T) >2]/(kBT) (8)

The equilibrium cohesive energies of three groups are shown in Figure 2 as a function
of temperature T: the larger the J (stronger cohesiveness), the lower the energy. We see
that for each group there exists a temperature at which that group becomes disordered:
T1 ' 8.6, T2 ' 8.5, T3 ' 8.4. Note that the energy of group 3 is due to its interaction
with group 1. This is confirmed in Figure 3, showing the absolute values of stances
Q1 = | < S1 > |, Q2 = | < S2 > | and Q3 = | < S3 > |: we see that Q is higher
for larger J, and drops to zero (i.e., no cohesiveness) at T1, T2 and T3, respectively. In
statistical physics, these temperatures are called transition temperatures [49] above which
the systems become disordered. Around these temperatures, the stances of the groups
strongly fluctuate as shown in Figure 4. These fluctuations of the order parameter in
statistical physics correspond to the so-called susceptibilities which are the fluctuations of
Mi, namely, (< M2

i > − < Mi >
2)/(kBT).

Figure 2. Internal energy of three groups as functions of political temperature T. See text for comments.
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Figure 3. Strengths Q of three groups as functions of political temperature T.

Figure 4. Fluctuations of the three groups’ stances as functions of political temperature T.

Now, we study the dynamics of the inter-group interactions at various T below T1, T2,
T3 starting from a random initial configuration for each group. For example, let us take
T = 5.9746, one of the simulated temperatures. Figure 5 shows the time dependence of
the groups’ stances. The stances evolve with time t to their stable values: S1 → −0.78,
S2 → 0.60 and S3 → 0.15. These are the values of the curves in Figure 3 at T = 5.9746. This
is an indication that our model is very robust, since convergence to the stable values needs
just 200 MC steps/individual. Note that, due to the (assumed) resistance to the governing
Democrats, the Independents tend to lean toward the Republicans’ stance (positive value).
This in turn enhances the stance of the Republicans, giving rise to the polarization P which
is shown in Figure 6. These results are in agreement with the results of the mean-field
model [45].
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Figure 5. Stances of three groups as functions of time t taken at T = 5.9746. Violet, green and blue
colors correspond respectively to group 1 (Democrats), 2 (Republicans) and 3 (Independents).

Figure 6. Political polarization as a function of time t at T = 5.9746. See text for comments.

Let us consider now the case where K12 is positive, namely, Democrats can attract a
number of Republicans to their stance. We use the same parameter value K12 = +4 as
in Ref. [45] for comparison. The MC result shows that < S1 > and < S2 > oscillate with
time as shown in Figure 7 at a given T. This is again in agreement with the mean-field
theory [45].

The polarization P, defined in Equation (1), is shown in Figure 8, which displays
oscillation: as the time evolves, the polarization changes its sign and oscillates in a regular
manner. This curve is calculated at T = 4.2034 but this phenomenon is seen in a large
temperature region far below the transition temperatures ' 8.4. Near the transition
temperatures, the oscillations are very fast and less regular, as seen in Figure 9, due to
strong fluctuations of Si near the transition, as mentioned earlier.

The polarization observed in Figure 6 is well defined by the adhesion of the Indepen-
dents to the Republicans and against the governing Democrats, giving the Republicans an
advantage in elections since P = (< S2 > − < S1 >)/2 is very positive. In contrast, in the
case K12 > 0, the attraction of the Republicans to the Democrats causes an oscillation of P
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in time (see Figure 8): if an election occurs while P is positive, the Republicans are likely to
win, while if P is negative at election time, the Democrats are likely to stay in power.

To conclude this section, we have performed MC simulations on the same statistical
physics model as the one where we used the mean-field approximation (see [45] in this
issue). Despite the fact that the mean-field model neglects fluctuations while MC simula-
tions take into account space and time fluctuations, the two methods yield qualitatively the
same patterns of political polarization.

Figure 7. Stances S1 and S2 as function of time t, T = 4.2034. The same color code as in the previous
figures is used: violet for Group 1, green for Group 2.

Figure 8. Oscillation of the political polarization P as function of time t, observed at T = 4.2034. See
text for comments.
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Figure 9. Oscillation of the political polarization P (circles) as function of time t, observed at
T = 6.1525. Line is guide to the eye. See text for comments.

4. Conclusions

We have studied political polarization between Democrats and Republicans in the
USA as a function of time, using MC simulations. The model is borrowed from statistical
physics where each individual is represented by a continuous Ising spin taking its values
from −1 (left wing) to +1 (right wing). We have considered three groups with initial
different political stances: Democrats, Republicans, and Independents. An individual
within any of these groups interacts with a limited number of people sharing the same
political viewpoint. At any time, individuals also consider the average stance of other
groups in the previous time period, causing them to either become firmer or soften their
stance. Although the model represents the political structure in the USA, it can be adapted
to other three-group dynamics.

The MC simulation results show that polarization depends on the nature of the inter-
group interactions. It may advantage the party in opposition and help it win an election.
It may also give rise to an oscillation of the polarization (whose sign changes in time).
Therefore, the outcome of an election depends on the moment in time when it occurs. One
example is the Brexit referendum of 2016, modeled in [37].

It is interesting and perhaps surprising to note that the MC and mean-field models
yield qualitatively very similar results, though each may also offer some additional insights
into polarization dynamics. Both approaches can be used to generate scenarios that include
various interventions to reduce polarization. Using the mean-field model [45], we explored
effects on polarization of group leaders, and of focusing events such as severe natural
disasters. The MC near-neighbor approach lends itself to generating scenarios for another
kind of intervention proposed by [15,46], where it is called “massively parallel”. It consists
of independent individuals and groups taking initiatives locally to reach out and initiate
dialogues with people with opposite stances, thereby reducing the current acute homophily.
Such initiatives are already taking place around the USA (see [46]).

We intend to explore whether (in our model) the massively parallel approach results in
a longer-lasting effect than leadership, whose impact appeared rather limited in time [45].
We intend to apply the model to a non-Bravais network such as a random network with
a variable number of NN that matches reality better than a triangular lattice. Note that
our present model conserves each party population. It would be interesting to define the
conditions under which a member of a given party can leave his party. Though rare, this
corresponds to a reality. This will be considered in a near future.
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In general, models borrowed from statistical physics contain sufficient ingredients
to describe some complex situations in social sciences which may appear intractable (for
example, in terms of number of variables and data) when studied with traditional, non-
dynamic methods. New domains such as sociophysics and econophysics can help shed
light on problems.
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