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Abstract: In this paper, we have considered some elements of the classical phenomenological theory
of thermodynamic stability, which seem controversial and ambiguous. The main focus is on the
conditions of the stability boundary; a new version of the derivation of the relations defining the
specified boundary is proposed. Although the final results, in general, coincide with the classical
relations, the described approach, from our point of view, provides a clearer and more accurate idea
of the stability conditions and their boundaries.
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1. Introduction

Thermodynamic stability conditions are a well-developed field of research, which has
been equally studied in physicochemical and mathematical terms. The inclusion of the
concept of stability in the apparatus of general thermodynamics is largely due to the work of
Gibbs, whose merit is the very definition of thermodynamic equilibrium and its stability [1].
The initial basis of the thermodynamic theory formally coincides with the concepts of
equilibrium and stability in analytical mechanics and, more precisely, with the extreme
principles of mechanics. The main difference between the thermodynamic stability analyses
is related to the involvement of the consequences of the second law of thermodynamics,
both for the formulation of the stability criteria themselves and for particular conclusions,
and important physicochemical results. One of the problems from our point of view, which
raises some questions, is the analysis of the boundaries of thermodynamic stability. In this
paper, alternative conditions for defining this boundary are considered.

2. Results and Discussion

An obvious condition of the stability boundary is that the expression, which, according
to Gibbs, is a stability criterion, is equal to zero [1]. Next, we consider the stability condition
with respect to the so-called continuous state changes, that is, infinitesimal changes. Such a
restriction, as indicated, for example, in [2], allows us to obtain more general conclusions
since it includes a study of the stability of both stable and metastable states. Otherwise,
the analysis of metastable states, by their definition, requires the involvement of data
on the limits within which these states exist. In addition, it is sufficient to consider the
stability of homogeneous states; their analysis easily extends to heterogeneous systems,
with some additional nuances [2,3]. In a fairly general form, this stability condition,
following Gibbs [1], can be represented as

U′′ −∑
i

X′iY
′′
i > 0, (1)

where U is the internal energy; Xi is the intensive parameter; Yi is the conjugate extensive
parameter; values with one stroke refer to the state being tested for stability values, with
two strokes refer to the neighboring virtual state. We emphasize that, unlike a number of
studies, for example [1–3], in which it is further assumed that the neighboring state is a
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real infinitely close equilibrium state, we do not introduce such restrictions on the virtual
state. In other words, the parameters of an infinitely close virtual state do not necessarily
correspond to the parameters of any of the real equilibrium neighboring states and may
belong to a non-equilibrium state. Apparently, this is more in line with Gibbs’ original
idea of the stability criterion [1]. Note also that in Equation (1), as in other stability studies,
including [1], the validity of the integral forms of fundamental equations is accepted, which
is a certain known limitation. The case of equilibrium between the initial and virtual phases,
that is, the corresponding phase equilibrium, is also excluded. For simplicity and clarity,
we further limit ourselves to the “conventional set” of thermodynamic parameters and
present (1) in equivalent forms [1]:

U′′ −U′ > T′(S′′ − S′)− P′
(
V ′′ −V′

)
+ µ′1

(
m′′1 −m′1

)
+ · · ·+ µ′n

(
m′′n −m′n

)
(2)

or

−T′S′′ + P′V ′′ − µ′1m′′1 − · · · − µ′nm′′n + T′′ S′′ − P′′V ′′ + µ
′′
1 m′′1 + · · ·+ µ

′′
nm′′n > 0 (3)

where T is absolute temperature, S—entropy, V—volume, P—pressure, mi is the amount
of substance i, and µi—the chemical potential of this substance. Note that the pressure in
Equation (1) should be represented as (−P), that is, with a minus sign.

Equation (3) could be transformed into a known form [3](
T′′ − T′

)
S′′ −

(
P′′ − P′

)
V ′′ +

(
µ
′′
1 − µ′1

)
m′′1 + · · ·+

(
µ
′′
n − µ′n

)
m′′n > 0 (4)

that actually coincides with one of the Gibbs stability conditions ([1], p. 107, formula (148)).
Since the differences in parentheses in (4) are infinitesimal exact differences, neglecting
infinitesimal higher orders, we turn to differentials and write

S′′ dT −V ′′ dP + m′′1 dµ1 + · · ·+ m′′ndµn ≥ 0 (5)

The sign ≥ in Equation (5) appeared due to the fact that, unlike Equation (4), the contri-
bution of infinitesimal higher orders is not taken into account in Equation (5). As a result,
(5) is only a necessary stability condition of the phase (‘) with respect to continuous state
changes.

It is obvious that the left side of (5) coincides in form with—the left side of the Gibbs–
Duhem equation [2,4,5]:

SdT −VdP + m1dµ1 + · · ·+ mndµn = 0. (6)

Nevertheless, the difference between (5) and (6) is quite obvious. Equation (5), as well
as Equation (4), characterizes a virtual perturbation of a state, which in general is not
equilibrium. Formula (6) refers to the equilibrium change of state. Accordingly, the stability
analysis cannot be carried out on the basis of condition (6). In the literature, this important
point is ignored, which leads to significant errors. For example, in a book ([4], chapter
15, paragraph 14), an erroneous derivation is given, and the conclusion about zeroing the
stability determinant (at T, P = const): partial derivatives in the Jacobian are calculated
from the Gibbs–Duhem equation, which, as indicated above, is unacceptable. We also
note beforehand that Equation (6) is quite compatible with one of the conditions of the
stability boundary considered by Gibbs, namely, the relation determining the neutral
equilibrium [1,3]:

dT = dP = dµ1 = · · · dµn = 0. (7)

Another important aspect of the analysis of the stability of a thermodynamic system is
associated with the introduction or selection of a parameter that allows excluding changes
associated only with an increase/decrease in the mass of the system, and not a change
in its state, that is, intensive parameters. This “scale factor” [6] may be, for example, the
volume or total mass of the system. Such a selection of one of the parameters (in the case of
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volume) in the stability analysis based on Equations (3)–(5) is obviously superfluous since
all extensive parameters in these relationships are fixed. Nevertheless, in all works, for
example [1–3,7–9], when considering stability, the specified “scale factor” is introduced in
different forms, possibly in order to circumvent the condition of “zeroing” the determinant.
It is also not entirely clear what Gibbs meant when discussing the stability condition

∆U > T∆S− P∆V + µ1∆m1 + · · ·+ µn∆mn = 0 (8)

([1], p. 106, Equation (145)), and indicated that “If only the quantity of the body which
determines the value of the variables should vary and not its phase, the value of the first
member of (145) would evidently be zero”. Obviously, the value of the left side (8), that is,
the change in the internal energy of the system, when its mass changes, will not be zero, but
will also change. Here, as before, the formulas from Gibbs’ works are given in accordance
with modern notation.

We have already noted above that the determinant that defines stability, in accordance
with the condition δ2U > 0, that is, the Hessian (for the set of n + 2 pairs of parameters
chosen above) ∣∣∣∣∣∣∣∣∣∣∣∣

∂2U
∂Y2

1

∂2U
∂Y1∂Y2

· · · ∂2U
∂Y1∂Yn+2

∂2U
∂Y2∂Y1

∂2U
∂Y2

2
· · · ∂2U

∂Y2∂Yn+2

...
...

. . .
...

∂2U
∂Yn+2∂Y1

∂2U
∂Yn+2∂Y2

· · · ∂2U
∂Y2

n+2

∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (9)

is generally not zero, since the derivatives in (9) are taken when the equilibrium is perturbed
and, accordingly, are not limited by the relationships

Y1
∂2U
∂Y1

2 + Y2
∂2U

∂Y1∂Y2
+ · · ·+ Yn+2

∂2U
∂Y1∂Yn+2

= 0

Y1
∂2U

∂Y2∂Y1
+ Y2

∂2U
∂Y2

2
+ · · ·+ Yn+2

∂2U
∂Y2∂Yn+2

= 0
...

Y1
∂2U

∂Yn+2∂Y1
+ Y2

∂2U
∂Yn+2∂Y2

+ · · ·+ Yn+2
∂2U

∂Y2
n+2

= 0


, (10)

that are consequences of the Gibbs–Duhem equation

Y1d
∂U
∂Y1

+ Y2d
∂U
∂Y2

+ · · ·+ Yn+2d
∂U

∂Yn+2
= 0. (11)

It is the particular variant of the relationships in (10) that were used in [4] to prove, for
special cases (T, P = const), the identical equality to zero of the determinant of the
quadratic form of the increments of extensive parameters. Respectively, the proof given
in [4] is incorrect.

Accordingly, since it is the determinant in (9) that vanishes first, and not its minors,
the stability boundary is equal to zero. It is important to note that in the above conclusions,
the condition of constancy of one of the parameters or their combination, for example, the
total amount of substances, was not used. The correctness of the result is also obvious from
the fact that (9) includes derivatives of intensive quantities (by extensive parameters).

Finally, we consider another condition of the stability boundary obtained by converting
the determinant in (9) into a product of partial derivatives [1,10,11]∣∣∣∣∣∣∣∣∣∣∣∣

∂2U
∂Y2

1

∂2U
∂Y1∂Y2

· · · ∂2U
∂Y1∂Yn+2

∂2U
∂Y2∂Y1

∂2U
∂Y2

2
· · · ∂2U

∂Y2∂Yn+2

...
...

. . .
...

∂2U
∂Yn+2∂Y1

∂2U
∂Yn+2∂Y2

· · · ∂2U
∂Y2

n+2

∣∣∣∣∣∣∣∣∣∣∣∣
= ∏n+2

i=1

(
∂2U
∂Y2

i

)
∂U

∂Yj=1,...i−1
, Yk=i+1,...,n+2

> 0 (12)
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Despite the fact that the determinant, as follows from (12), vanishes when any of the
multipliers in the middle part is equal to zero, the condition of the stability boundary must
correspond to the equality to zero of one particular multiplier from this product.

For greater clarity, let us consider a binary system, presenting Yi and derivatives ∂2U
∂Y2

i
by means of specific variables:∣∣∣∣∣∣∣∣∣∣

∂T
∂S

∂T
∂V

∂T
∂m1

∂T
∂m2

∂(−P)
∂S

∂(−P)
∂V

∂(−P)
∂m1

∂(−P)
∂m2

∂µ1
∂S

∂µ1
∂V

∂µ1
∂m1

∂µ1
∂m2

∂µ2
∂S

∂µ2
∂V

∂µ2
∂m1

∂µ2
∂m2

∣∣∣∣∣∣∣∣∣∣
=

(
∂T
∂S

)
V,m1,m2

·
(

∂(−P)
∂V

)
T,m1,m2

·
(

∂µ1

∂m1

)
T,P,m2

·
(

∂µ2

∂m2

)
T,P,µ1

> 0. (13)

The multiplier
(

∂µ2
∂m2

)
T,P,µ1

in this relation, at first glance, is equal to zero, in accordance

with the Gibbs–Duhem Equation (6). However, this is not the case, because, as before,
a non-equilibrium virtual perturbation is considered, for which the inequality in (5) is
fulfilled. Let us show that equality to zero of the specified derivative corresponds to the
boundary of stability.

First of all, we note that the determinant in (13) can be represented as a product of
derivatives in various ways. The sequence of parameter pairs is not limited to the one
given in relation (13). For example, it is obvious that(

∂T
∂S

)
V,m1,m2

·
(

∂(−P)
∂V

)
T,m1,m2

·
(

∂µ1
∂m1

)
T,P,m2

·
(

∂µ2
∂m2

)
T,P,µ1

=
(

∂µ2
∂m2

)
S,V,m1(

∂µ1
∂m1

)
S,V,µ2

·
(

∂(−P)
∂V

)
S,µ1,µ2

·
(

∂T
∂S

)
P,µ1,µ2

.
(14)

Other combinations of derivatives in the transformation of the determinant in (13) are also
possible. At the same time, under the condition

(
∂µ2
∂m2

)
T,P,µ1

= 0, other similar conditions

will also be valid, namely:(
∂µ2

∂m2

)
T,P,µ1

=

(
∂T
∂S

)
P,µ1,µ2

=

(
∂(−P)

∂V

)
T,µ1,µ2

=

(
∂µ1

∂m1

)
T,P,µ2

= 0. (15)

As indicated in Gibbs’ work [1] and subsequent studies, for example [3], the relations in
(15) or their consequences are, with disregard for infinitesimal higher orders, conditions of
neutral equilibrium. In this case (neutral equilibrium), we can already use the results for
equilibrium processes, for example [10–12]:(

∂Xi
∂Yi

)
Y1,Y2,··· ,Yi−1,Yi+1,··· ,Yn+1,Yn+2

≥
(

∂Xi
∂Yi

)
Y1,Y2,··· ,Yi−1,Yi+1,··· ,Yn+1,Xn+2

≥ · · ·

≥
(

∂Xi
∂Yi

)
Y1,X2,··· ,Xi−1,Xi+1,··· ,Xn+2

≥
(

∂Xi
∂Yi

)
X1,X2,··· ,Xi−1,Xi+1,··· ,Xn+2

= 0.
(16)

Note that in this case, taking into account the previous discussion, we have expanded
the options for fixing independent parameters (in comparison with [1–3,10,11] and other
works) by including the condition X1, X2, · · · , Xi−1, Xi+1, · · · , Xn+2 = const in (16). It
follows from the inequality in (16) that, in particular, for derivatives in relation (13), the
following conditions are satisfied at the stability boundary(

∂T
∂S

)
V,m1,m2

≥
(

∂T
∂S

)
P,µ1,µ2

= 0,
(

∂(−P)
∂V

)
T,m1,m2

≥
(

∂(−P)
∂V

)
T,µ1,µ2

= 0;(
∂µ1
∂m1

)
T,P,m2

≥
(

∂µ1
∂m1

)
T,P,µ2

= 0.
(17)

Thus, we have proven that all the multipliers in the ratio (16) will be greater than the last of
them,

(
∂µ2
∂m2

)
T,P,µ1

, which determines the stability boundary. Obviously, this result can be
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easily generalized to the case of an arbitrary number of pairs of thermodynamic parameters.
In all cases, the condition of the stability boundary is that the determinant in Equation (13)
is equal to zero, or the condition(

∂2U
∂Y2

i

)
∂U
∂Y1

, ∂U
∂Y2

, ··· , ∂U
∂Yi−1

, ∂U
∂Yi+1

,··· , ∂U
∂Yn+2

=

(
∂2U
∂Y2

i

)
X1,X2,··· ,Xi−1,Xi+1,··· ,Xn+2

= 0. (18)

These conditions, in general, coincide with the results of Gibbs [1] and the conclusions
of subsequent works defining the stability boundary as a state of neutral equilibrium
(with disregard for infinitesimal higher orders). Note that special cases where higher-
order variations should be taken into account, for example, in a critical condition, require
additional analysis.

3. Conclusions

The results are useful for analyzing the stability of the homogeneous state of a mul-
ticomponent thermodynamic system. From a methodological point of view, the novelty
elements are associated with the rejection of the traditional approach to the study of stability,
which requires the introduction of a “scale factor”, that is, fixing one of the extensive param-
eters or their complex (as a rule, the sum of the masses of the components). In addition, it
has been shown that it is wrong to involve the relations, such as the Gibbs–Duhem equation,
established for the equilibrium displacement in the analysis of a non-equilibrium virtual
perturbation. This leads to factual and methodological errors, including those related to the
general conditions of the stability boundary. A new version of the derivation of the stability
boundary conditions is presented, which assumes a departure from equilibrium during a
virtual perturbation of the state of the system. The final conclusions, in general, coincide
with the classical results, according to which a neutral (indifferent) equilibrium is realized
at the stability boundary by neglecting higher-order internal energy variations (the critical
states are thereby excluded). From our point of view, the described approach provides a
clearer and more accurate idea of the actual conditions of stability and its boundaries.
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