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Abstract: Automatic modulation classification (AMC) of underwater acoustic communication signals
is of great significance in national defense and marine military. Accurate modulation classification
methods can make great contributions to accurately grasping the parameters and characteristics of
enemy communication systems. While a poor underwater acoustic channel makes it difficult to
classify the modulation types correctly. Feature extraction and deep learning methods have proven to
be effective methods for the modulation classification of underwater acoustic communication signals,
but their performance is still limited by the complex underwater communication environment. Graph
convolution networks (GCN) can learn the graph structured information of the data, making it an
effective method for processing structured data. To improve the stability and robustness of AMC in
underwater channels, we combined the feature extraction and deep learning methods by fusing the
multi-domain features and deep features using GCN. The proposed method takes the relationships
among the different multi-domain features and deep features into account. Firstly, a feature graph
was built using the properties of the features. Secondly, multi-domain features were extracted from
the received signals and deep features were extracted from the signals using a deep neural network.
Thirdly, we constructed the input of GCN using these features and the graph. Then, the multi-domain
features and deep features were fused by the GCN. Finally, we classified the modulation types using
the output of GCN by way of a softmax layer. We conducted the experiments on a simulated dataset
and a real-world dataset, respectively. The results show that the AMC based on GCN can achieve
a significant improvement in performance compared to the current state-of-the-art methods. Our
approach is robust in underwater acoustic channels.

Keywords: automatic modulation classification; underwater acoustic communication signals; graph
convolution network; feature fusion

1. Introduction

AMC has been an important method with which to identify the modulation types
of the received signals in underwater communication scenarios; this is useful for the
monitoring and identification of communication interference, which are core technologies
in spectrum surveillance and underwater acoustic countermeasures. The advanced AMC
technology has a broad application prospect in the underwater unmanned platform [1].
However, the complexity of underwater communication means the underwater acoustic
channel is full of multi-path fading and ocean ambient noise, which can decrease the AMC
performance of underwater acoustic communication signals significantly.

The AMC methods include two categories: the maximum likelihood ratio algorithm
and the feature extraction algorithm. Due to the high computational complexity of the
maximum likelihood ratio algorithm, most of the current studies on AMC focus on the fea-
ture extraction algorithm. The commonly used feature extraction methods in AMC include
instantaneous statistics features (envelop, frequency, phase, etc.) [2], high-order cumulant
features (HOC) [3,4], spectrum features [5–7], cyclostationary statistics features (CS) [8–10],
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and wavelet features [4,11], etc. In recent years, some new feature extraction methods
based on entropy have shown effectiveness in underwater signals processing [12,13]. These
feature extraction methods are always followed by a classifier; the common classifiers
include neural network classifiers [14], support vector machine (SVM) [15], decision tree
classifiers [16], and so on. Some applications of these feature extraction methods and
classifiers have been used in AMC approaches for underwater acoustic communication
signals. Zhao [17] introduced the Stockwell-transform and SVM into modulation classifica-
tion in underwater acoustic channels; Stockwell-transform is a kind of spectrum feature.
Sanderson [8] proposed hierarchical blind modulation classification for underwater acous-
tic communication signals; they used second order cyclostationary features to classify the
binary phase shift keying (BPSK) and non-BPSK signals. Wu [9] proposed a modulation
detection scheme for underwater acoustic communication signals through cyclostationary
analysis; they extracted cyclic frequency/frequency-peak ratio to identify the modulation
types. Ge [18] used HOC features and a spectrum correlation function for AMC of under-
water acoustic communication signals. The performance of the AMC based on the feature
extraction algorithm depends on the quality of the features.

As deep learning has shown remarkable results in many fields, many deep learn-
ing neural networks (DNN) have been proposed for various tasks. Convolution neural
networks (CNN) [19] are used to process computer vision and natural language, and
to build some advanced deep learning models, such as ResNet [20], GoogleNet [21],
VGGNet [22], and generative adversarial networks (GAN) [23], etc. Recurrent neural
networks (RNN) [24] are always used to process time series data; widely used variants of
the RNN include long short-term memory (LSTM) [25] and gate recurrent unit (GRU) [26].
Some AMC methods based on deep learning theory have been proposed in recent years.
DNNs can learn high-level features from raw data automatically without much prior
knowledge, or can also accept the features from a feature extraction algorithm and work
as a classifier. Yao [1] proposed an AMC method based on deep complex networks. They
built two complex physical signal processing layers to improve the performance of AMC in
underwater acoustic communication. Zhang [27] proposed an AMC method based on a
multi-scale network to address the inter-class diversity problem. Zhou [28] proposed an
AMC relation network for AMC under few-shot conditions. Yao [29] used GAN to enhance
the signals and showed good robustness under different underwater acoustic channels.
O’Shea [30] carried out research on the performance of deep learning; the effects of car-
rier frequency offset, symbol rate, and multi-path fading were considered. F. Wang [31]
combined deep learning and a zero-center normalized instantaneous amplitude tight-
ness characteristic parameter to overcome the intra-class diversity problem; the proposed
method improved the classification performance of quadrature amplitude modulation sig-
nals. Yu [32] used LSTM for AMC of non-cooperative underwater acoustic communication
signals. Jiang [33] used a sparse autoencoder network to realize data transfer for the AMC
of underwater acoustic communication signals. Ding [34] proposed a deep neural network
for the AMC of underwater acoustic communication signals that combined the CNN with
LSTM; they used CNN to learn the time domain IQ data and LSTM to learn the amplitude
and phase data.

In recent years, the underlying relationships among data have attracted more and
more attention in several areas of machine learning. There have been studies that attempted
to exploit the graph structure information in data processing [35]. A graph convolution
network (GCN) builds a neural network based on the topology of the data graph. GCN
can be used to classify elements of the graph or the graph itself. There have been many
applications of GCN in the field of identification. Long [36] proposed a multi-modal
relational graph network to dynamically integrate visual and kinematics information
to boost gesture recognition accuracy in robotic surgery. Kipf [37] presented a graph
convolution network for the semi-supervised classification of graph-structured data; the
performance of the proposed model was validated on different datasets. In the field of
AMC, Xuan [38] proposed an adaptive visibility graph algorithm to map a time series
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into a graph adaptively; they used the proposed method and GCN to achieve modulation
classification of radio signals.

In this paper, we proposed a new method for AMC of underwater acoustic communi-
cation signals using GCN. In the past few years, traditional feature extraction methods have
been proven effective in some conditions. To improve the stability and robustness of AMC
in underwater scenarios, we used GCN to integrate the multi-domain features and deep
features of the received underwater acoustic communication signals. The multi-domain
features come from HOC, CS, and high order moment (HOM). We extracted multi-domain
features of the received signals and learned the deep features from the signals. A feature
graph was built using the properties of the features. Then, the multi-domain features and
deep features were fused by the GCN. Finally, we classified the modulation type using the
fused features. Our contributions are as follows:

1. We adopted GCN to AMC to improve the stability and robustness of AMC in under-
water communication scenarios. GCN was used to fuse the multi-domain features
and deep features of the received signals.

2. To take the relationships between multi-domain features and deep features into account,
we built a graph of the multi-domain features and deep features using their properties.

3. The performance of the proposed method was validated using the simulated dataset
in different underwater acoustic channels and a real-world dataset.

This paper is organized as follows. Section 2 introduces the proposed AMC method
of underwater acoustic communication signals based on GCN. In Section 3, we evaluated
the performance of the proposed method with a series of contrastive experiments using
simulation and real-world datasets. Finally, the conclusion of the paper is given in Section 4.

2. Materials and Methods
2.1. Multi-Domain Features

We chose three kinds of features extraction methods to extract the multi-domain
features from the received signals. These feature extraction methods included HOC, CS,
and HOM.

2.1.1. High-Order Cumulant

High-order cumulant (HOC) [3,4,39] is a common feature extraction method for AMC.
Since the cumulants of an order higher than 3 for a Gaussian distribution are zero, the HOC
of a signal with additive white Gaussian noise is ideally the HOC of the signal without
noise. Given a received signal x(t), the p-th order mixing moment can be expressed as :

Mpq = E[x(t)p−qx∗(x)q], (1)

where E[•] is the expected value operator, ∗ is the complex conjugate. The different order
HOC features used in our work can be expressed as:

C20 = M20 (2)

C21 = M21 (3)

C40 = M40 − 3M2
20 (4)

C41 = M41 − 3M21M20 (5)

C42 = M42 −M2
20 − 2M2

21 (6)

C60 = M60 − 15M20M40 + 30M2
20 (7)

C61 = M61 − 5M40M21 − 10M20M41 + 30M21M2
20 (8)

C63 = M63 − 9M42M21 − 9M2
20M21 + 12M3

21 (9)

C80 = M80 − 28M20M60 − 35M2
40 + 420M2

20M40 − 630M4
20. (10)
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The relationships among these HOC features were used to construct the graph of
the features. It is obvious that each feature has a relationship with x(t). The inter-
nal relationships can be obtained according to Equations (2)–(10) and can be expressed
in Table 1.

Table 1. Relationships among the HOC features.

C20 C21 C40 C41 C42 C60 C61 C63 C80

C20 -
C21 ◦ -
C40 • ◦ -
C41 • • ◦ -
C42 • • ◦ ◦ -
C60 • ◦ • ◦ ◦ -
C61 • • • • ◦ ◦ -
C63 • • ◦ ◦ • ◦ ◦ -
C80 • ◦ • ◦ ◦ • ◦ ◦ -

◦: has no relationship, •: has relationship, -: not available.

2.1.2. Cyclostationary Statistics

Cyclostationary statistics (CS) is an important tool for performing signal detection,
modulation classification, signal parameter estimation, etc. CS is based on the fact that
communications signals are not accurately described as stationary, but rather more ap-
propriately modeled as cyclostationary. We used second-order CS features in the pro-
posed framework, including spectral correlation density (SCD), which can be denoted as
Sα

X( f ) [10,40]. Sα
X( f ) of a signal x(t) is defined as :

Sα
X( f ) = lim

T→∞
lim

∆T→∞

1
∆T

∫ 1
∆T

− 1
∆T

1
T

XT(t, f +
α

2
)X∗T((t, f − α

2
) dt (11)

XT(t, f ) =
∫ t+ T

2

t− T
2

x(u)ej2π f u du, (12)

where α is the cyclic frequency. The normalized version of the SCD is spectral coherence
function (SCF), which can be calculated by:

Cα
X( f ) =

Sα
X( f )[

S0
X( f + α

2 ) ∗ S0
X( f − α

2 )
] 1

2
. (13)

It is obvious that Sα
X( f ) and Cα

X( f ) of a signal can be visualized as images. To simplify
the CS features, we used the frequency profile as well as the cycle frequency profile from
Cα

X( f ) [10]:

I(α) = max
f
|Cα

X( f )| (14)

I( f ) = max
α
|Cα

X( f )|. (15)

2.1.3. High Order Moment

High order moment (HOM) [41] is a kind of spectrum feature. HOM is associated with
the modulation order and it is often used for intra-class classification of phase shift keying
modulation signals. The K order HOM (UK( f )) of a signal x(t) can be represented as:

UK( f ) = F (xK(t)), (16)

where F (•) denotes the Fourier transform function and K is the order of HOM. When K is
an integral multiple of the modulation order, there will be distinct lines in UK( f ). U 2( f )
and U 4( f ) will be used in the following work.
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2.2. The Proposed AMC Method

The framework of the proposed method is illustrated in Figure 1. The graph was
built based on the properties of the multi-domain features and deep features. The multi-
domain features were extracted using different feature extraction methods. Different deep
features were learned from the time domain and short-time Fourier transform (STFT) of
the received signals, respectively. These features and the graph were used to construct the
input matrices of GCN. We used GCN to fuse these features and used a softmax layer to
classify the modulation types.

CNN

水声通信信号

调制方式类别图谱

特征图谱

样本

映射

瞬时特征

谱特征

高阶累积量

循环平稳特征

小波特征

水声通信信号

深度特征

多特征提取

FSK

2FSK

4FSK

8FSKPSK

2PSK

4PSK

8PSK

相位

QAM

16QAM
32QAM

64QAM

幅
度
、
相

位

OFDM

特征图谱

样本

映射

水声通信信号

多特征提取

ASK

2ASK

4ASK

8ASK

Received signals

Features 
extraction

Multi-domain features

Deep learning features

Instantaneous statistics

Constellation

High-order cumulant

Cyclostationary

Wavelet

Knowledge graph

S
o
ft

m
ax

M
o
d

u
la

ti
o
n

 
ty

p
e

G
C

N

Conv

Pooling

Conv

Pooling

Received signals

Feature extraction

High-order cumulant Cyclostationary High power spectrum

S
T

F
T

Adjacency matrix Degree matrixFeature matrix

GCN Layer

深度特征与传统
特征的联系？

Agent环境

状态St

奖励Rt

动作at

动作空间At

状态

奖励

动作

知识图谱

强化学习

GCN Layer

Fully Connect Layer

Softmax

Modulation Type

1D-Conv

1D-DeConv

Conv DeConv

F
la

tt
en

R
es

h
ap

e

20C21C

40C

41C

42C

60C
61C 63C

80C

( )I 
( )I f

( )2 f

( )4 f

( )x t

( )x

Received 

signals

High order moment

Cyclostationary

High-order cumulant

STFT

Adjacency matrix

Degree matrix

Feature matrix

GCN Layer

GCN Layer

Fully Connect Layer

Softmax

Modulation Type

Spectrogram

Preprocessing

Graph

Time domain signals 1D-DAE

2D-DAE

1D-DAE

1D-DAE

20C20C21C21C

40C40C

41C41C

42C42C

60C60C
61C61C 63C63C

80C80C

( )I ( )I 
( )I f( )I f

( )4 f( )4 f

( )2 f( )2 f

( )x( )x

( )x t( )x t

20C20C21C21C

40C40C

41C41C

42C42C

60C60C

61C61C
63C63C 80C80C

( )I ( )I  ( )I f( )I f

( )4 f( )4 f

( )2 f( )2 f

( )x( )x

( )x t

1D-Conv

1D-DeConv

Flatten

Reshape

Deep features

Input

Output

Deep 

feature

Conv DeConvF
la

tt
en

R
es

h
ap

e

Input Output

Deep feature

Multi-domain 

features

Figure 1. Framework of the proposed AMC method based on GCN.

2.2.1. Graph Convolution Network

A graph convolution network (GCN) was used to learn features from a graph. Unlike
CNNs, which operate on a local region in an image, in GCN, the convolutional operations
compute the response at a node based on the neighboring nodes defined by the adjacency
graph. A graph can be denoted as G = (V , E), where V is the set of nodes and E is the
set of edges. Nodes in a graph represent objects or concepts, and edges represent their
relationships. The adjacency matrix is denoted as A, the node feature matrix is F ∈ Rn×d, n
is the number of the nodes, and d is the length of the node feature. The propagation rule in
GCN can be expressed as:

F(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 F(l)W(l)

)
, (17)

where Ã = A + IN is the adjacency matrix of the graph G with added self-connections.
IN is the identity matrix, D̃ is the degree matrix, W(l) is a layer-specific trainable weight
matrix, F(l) is the matrix of activations in the l-th layer, and σ(•) denotes an activation
function; we used a linear rectification unit (ReLU) as the activation function.

2.2.2. Features Fusion Based on GCN

(a) Build graph for the features.

We built an undirected graph of the features. There are 15 nodes in the graph (N = 15),
which include time domain signal x(t), STFT F (x), nine HOC features, two CS features
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and two HOM features. We denote each node as vi and the node-feature pairs are shown
in Table 2. The graph was built using the properties of the features. The nodes were
connected based on the mathematics of the feature extraction algorithms, for example, C80
was calculated using x(t), C20, C40 and C60, and there were four edges between C80 and the
other four nodes. The graph of the these features is shown in Figure 2.

Table 2. The node–feature pairs.

Node Feature Node Feature Node Feature

v1 x(t) v6 C41 v11 C80
v2 F (x) v7 C42 v12 I(α)
v3 C20 v8 C60 v13 I( f )
v4 C21 v9 C61 v14 U2( f )
v5 C40 v10 C63 v15 U4( f )
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Figure 2. The graph of the multi-domain features and deep features. The graph is undirected,
the black edges denote the relationships between different domain, the blue edges denote the
relationships between the nodes belonging to the same domain.

(b) Extract features for each node.

Deep features include features from the time domain and STFT of the received signals.
We used deep autoencoder networks (DAE) [42] to extract the deep features from the time
domain signals and their STFT. The architecture of DAE is shown in Figure 3. Since the
time domain signal is a 1D complex vector and the STFT is a 2D matrix, we used 1D-DAE
and 2D-DAE to extract deep features from the time domain and STFT, respectively. The
real part and the imaginary part of the time domain signal were treated as two channels.
The deep features of these two DAE are 1D vectors and the length is 128.

The multi-domain features were extracted using the corresponding feature extraction
methods. Each HOC feature has only one value. The CS features and HOM features are
all 1D vectors. We used 1D-DAE to compress these features to have same length as the
deep features.
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Figure 3. The architecture of the DAE.

(c) Construct the input of GCN.

The input of GCN includes three matrices: adjacency matrix Ã, degree matrix D̃, and
feature matrix degree matrix F. Ã and D̃ can be extracted from the feature graph. The
number of the nodes is 15 and they were sorted in the order shown in Table 2. Ã is used to
express the relationships between the nodes; element (vi, vj) represents the relationship
between node i and node j; (vi, vj) = 1 indicates that the two nodes are related; (vi, vj) = 0
indicates that the two nodes are not related when i = j, (vi, vj) = 1. Then, Ã can be
repressed as Equation (18). The rows and columns correspond to the nodes in Table 2; they
are separated by dotted lines according to the corresponding feature domains.

Ã =



v1
↓

v2
↓

v3
↓

v4
↓

v5
↓

v6
↓

v7
↓

v8
↓

v9
↓

v10
↓

v11
↓

v12
↓

v13
↓

v14
↓

v15
↓

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ← v1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ← v2

1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 ← v3
1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 ← v4
1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 ← v5
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 ← v6
1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 ← v7
1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 ← v8
1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 ← v9
1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 ← v10
1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 ← v11

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ← v12
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ← v13

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ← v14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ← v15



(18)

D̃ is a diagonal matrix, which can be expressed as:

D̃ = diag(15, 2, 9, 6, 6, 5, 5, 5, 6, 5, 5, 2, 2, 2, 2). (19)

The size of F was set to 15×128. To build the feature matrix, the length of each feature
should be 128. For the HOC features, we used the zero-padding to supplement their length
to 128.

(d) Feature fusion and modulation classification.

We used two GCN layers to learn features from the input graph and features. The
D̃−

1
2 ÃD̃−

1
2 in Equation (17) can be calculated in a pre-processing step. The output of the

last GCN layer was flatted to a 1D vector. Then, we used a softmax layer to classify the
modulation types. A fully connection layer was used to connect the GCN layer and the
softmax layer. The weights of these layers were trained using gradient descent.
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3. Experiments and Discussion

We conducted a series of contrastive experiments in this section to verify the perfor-
mance of the proposed AMC method:

(1) We analyzed the influence of the different features.
(2) We analyzed the influence of the edges inside HOC.
(3) We compared the performance of the proposed method with other AMC methods.
(4) The performance of the proposed method was verified using real-world underwater

acoustic communication signals.

The results in this section were the average values over multiple runs.

3.1. Dataset and Parameters
Signals Generation

We considered several commonly used modulation types in underwater acoustic
communication scenarios, including frequency shift keying (FSK) (2FSK, 4FSK, 8FSK),
phase shift keying (PSK) (BPSK, QPSK, 8PSK), and quadrature amplitude modulation
(QAM) (16QAM, 32QAM, 64QAM). In the simulation condition, the SNR ranges from
−9 dB to 21 dB with an interval of 3 dB. The received signals were expressed as the
sampled complex baseband, the dimension of each sample was 3000 × 2, and the duration
was 0.25 s. The number of each modulation type at each SNR was 10,000, then the total
number of samples was 990,000. Of the samples, 75% were used as training signals and
25% were used as testing samples. The parameters of each modulation type are shown in
Table 3, the frequency separation of FSK modulation was 200 Hz.

Table 3. Parameters of each modulation type.

Modulation
Type

Sampling
Rate (kHz)

Carrier
Frequency
Offset (Hz)

Symbol Rate
(Baud)

Roll off
Value SNR (dB)

FSK 12k 300 100∼200 - −9∼21
PSK 12k 300 800∼1200 0.1∼0.4 −9∼21

QAM 12k 300 800∼1200 0.1∼0.4 −9∼21

We used the simulated underwater acoustic channels with multi-path fading. The
sound velocity profile is shown in Figure 4. The depth of the sea is 460 m.
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Sound speed(m/s)
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100
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D
ep
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Figure 4. Sound velocity profile.
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There was one transmitter (Tx) and two receivers (Rx1 and Rx2) in the simulated un-
derwater acoustic communication channel, as shown in Figure 5. The horizontal distances
between the transmitter and the two receivers were 3 km and 5 km, respectively. The
depths of the transmitter and receivers were 30 m and 80 m, respectively.
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Figure 5. Diagram of underwater acoustic channel.

The time delays and amplitudes of the two multi-path fading channels are shown in
Figure 6, in which the modules of the amplitudes are normalized to [0,1].
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Figure 6. Time delays and amplitudes of the two multi-path fading channels.

3.2. Experiment Results Analysis

A series of contrastive experiments was carried out in the following work. In each
simulation experiment, we calculated the classification accuracy at each SNR point and the
average accuracy at all SNR, which can be expressed as:

Acc =
1

Nsnr

Nsnr

∑
i=1

Acci. (20)

Acci is the classification accuracy at the i-th SNR point from −9 dB to 21 dB, Acc is
the average accuracy at all SNR, and Nsnr is the number of SNR points. We analyzed the
performance in the contrastive experiments mainly using the average accuracy.

3.2.1. The Analysis of the Influence of the Different Features

We used an ablation experiment to analyze the influence of the different features and
verify the effectiveness of the proposed method. The features were extracted individually
from the signals. In the following contrastive experiments, the features coming from
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different domains were replaced by white Gaussian noise (WGN) in turn. Each experiment
was carried out in the two multi-path channels, respectively.

(a) Baseline performance.

The performance of the proposed method with all features was used as a baseline and
the classification is shown in Figure 7.
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SNR(dB)
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1
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cc
ur

ac
y

Ch1
Ch2

Figure 7. Performance of proposed method in the two underwater multi-path channels.

The mean accuracies in Ch1 and Ch2 are 82.9% and 81.4%, respectively. To analyze the
classification of each modulation type, we visualized the features from the fully connected
layer using t-SNE [43], as shown in Figure 8. We can see from Figure 8 that, in the multi-
path fading channels, the classification errors mainly occur among different modulation
orders of the same modulation mode.

0 0.2 0.4 0.6 0.8 1
(a)

0

0.2
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0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
(b)
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4FSK
8FSK
BPSK
QPSK
8PSK
16QAM
32QAM
64QAM

Figure 8. Visualization of the features of the fully connected layer: (a) features are learned from the
signals in Ch1 (SNR = 6 dB); (b) features are learned from the signals in Ch2 (SNR = 6 dB).

(b) Deep feature of time domain.

To analyze the contribution of deep feature from time domain, we first replaced the
deep features from the time domain with WGN and other conditions were kept the same.
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The performance comparison is shown in Figure 9. The average accuracies using deep
features from the time domain in Ch1 and Ch2 are 82.9% and 81.4%. The average accuracies
without using deep features from the time domain in Ch1 and Ch2 are 59.3% and 50.8%.
The accuracies without using deep features from the time domain decrease to 23.6% and
30.6% in the two channels, respectively. It is obvious that the deep features from the time
domain make great contributions to the AMC performance.
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SNR(dB)

0

0.2

0.4

0.6

0.8

1

A
cc
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ac
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Ch1,F-Y
Ch2,F-Y
Ch1,F-N
Ch2,F-N

Figure 9. Performance comparison with and without deep features from the time domain; F-Y and
F-N mean with and without such deep features, respectively.

(c) Deep features of STFT.

Secondly, the deep features from STFT were replaced by WGN and other conditions
were kept the same. Figure 10 has shown the performance comparison. The average
accuracies without using deep features from STFT in Ch1 and Ch2 are 79.7% and 71.6%.
The accuracies without using deep features from STFT decrease to 3.2% and 9.8% in the
two channels, respectively. The influence of the deep features from STFT was smaller than
that of the time domain.
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Figure 10. Performance comparison with and without deep features from STFT; F-Y and F-N mean
with and without such deep features, respectively.
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(d) HOC features.

Thirdly, the nine HOC features were replaced by WGN and other conditions were kept
the same. The performance comparison is illustrated in Figure 11. The average accuracies
without using HOC features in Ch1 and Ch2 are 74.3% and 73.5%. The accuracies without
using HOC features decrease to 8.6% and 7.9% in the two channels, respectively. Figure 11
shows that the HOC features mainly influence the AMC performance at a higher SNR.
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Figure 11. Performance comparison with and without HOC features; F-Y and F-N mean with and
without HOC features, respectively.

(e) CS features.

Fourthly, the two CS features were replaced by WGN and other conditions were kept
the same. The performance comparison is illustrated in Figure 12. The average accuracies
without using HOC features in Ch1 and Ch2 are 78.7% and 78.9%. The accuracies without
using CS features decrease to 4.2% and 2.5% in the two channels, respectively.
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Figure 12. Performance comparison with and without CS features; F-Y and F-N mean with and
without CS features, respectively.
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(f) HOM features.

Finally, the two HOM features were replaced by WGN and other conditions were kept
the same. The performance comparison is shown in Figure 13. The average accuracies
without using CS features in Ch1 and Ch2 are 79.2% and 78.1%. The accuracies without
using CS features decrease to 3.7% and 3.3% in the two channels, respectively.
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Figure 13. Performance comparison with and without HOM features; F-Y and F-N mean with and
without HOM features, respectively.

The summary of this ablation experiment is shown in Table 4. Table 4 shows that the
multi-domain feature fusion based on GCN is quite effective for the AMC of underwater
acoustic communication signals. All the features make contributions to the AMC perfor-
mance. The deep features from the time domain are the most indispensable for an exact
classification.

Table 4. Summary of the comparison of different feature sets.

AMC Accuracy

Feature Sets Ch1 Ch2 Average

All features 82.9% 81.4% 82.2%
Without time domain 59.3% 50.8% 55.1%

Without STFT 79.7% 71.6% 75.7%
Without HOC 74.3% 73.5% 73.9%

Without CS 78.7% 78.9% 78.8%
Without HOM 79.2% 78.1% 78.7%

3.2.2. The Analysis of the Influence of the Edges Inside HOC

Nine features were extracted using the HOC algorithm. The relationships among these
features are complex; we constructed these edges based on the calculation relationships of
such features. To analyze the influence of these edges, a contrastive experiment was carried
out. In this experiment, a new adjacency matrix Ã1 and degree matrix D̃1 were used as
the input of GCN. Since we would not consider the edges inside HOC, Ã1 and D̃1 can be
expressed as:
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Ã =



v1
↓

v2
↓

v3
↓

v4
↓

v5
↓

v6
↓

v7
↓

v8
↓

v9
↓

v10
↓

v11
↓

v12
↓

v13
↓

v14
↓

v15
↓

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ← v1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ← v2

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ← v3
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ← v4
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ← v5
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ← v6
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ← v7
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ← v8
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ← v9
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ← v10
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ← v11

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ← v12
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ← v13

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ← v14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ← v15



(21)

D̃ = diag(15, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). (22)

The network was trained in the same way as the baseline. The classification results are
shown in Figure 14, in which the baseline performance was used for comparison.
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Figure 14. Performance comparison with and without edges inside HOM features; E-Y and E-N
mean with and without such edges respectively.

The average accuracies without using the edge inside HOC are 79.5% and 78.4%. The
comparison of the accuracies is shown in Table 5. The accuracies without using edges
inside HOC decrease to 3.4% and 3.0% in the two channels, respectively. The comparison
result shows that making use of the relationships between HOC features can improve the
classification performance.
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Table 5. Comparison of the influence of the edges inside HOC.

AMC Accuracy

Features Set Ch1 Ch2 Average

With HOC edges 82.9% 81.4% 82.3%
Without HOC edges 79.5% 78.4% 79.0%

3.2.3. Comparison with Other State-of-the-Art AMC Methods

To demonstrate the effectiveness of the proposed AMC method based on GCN, we com-
pared the performance of the proposed method with those state-of-the-art AMC methods.
The achieved methods include deep learning methods (basic CNN [44], InceptionV3 [45],
GAN [29], VGGnet [30], ResNet [46,47], LSTM [48,49], deep complex network (DCN) [1]),
and feature extraction methods (HOC [3,4] using an SVM classifier, CS [50] with a neural
network classifier, and continuous wavelet transform (CWT) [11,51] with an SVM classifier).
We carried out the comparison experiments in Ch1 and Ch2, respectively. The performance
comparison is shown in Figure 15 and the average accuracy comparison is shown in Table 6.
The proposed method has obvious advantages in both underwater acoustic channels.

Table 6. Average accuracy of different methods in two channels.

Channel Ch1 Ch2 Average Channel Ch1 Ch2 Average

GCN 82.9% 81.4% 82.2% InceptionV3 74.5% 73.4% 74.0%
VGGnet 69.3% 76.0% 72.7% GAN 78.8% 77.5% 78.2%
ResNet 68.5% 70.4% 69.5% HOC 59.7% 69.6% 64.7%
LSTM 73.2% 69.2% 71.2% CS 60.6% 63.6% 62.1%
DCN 74.9% 78.1% 76.5% CWT 61.7% 65.3% 63.5%
CNN 68.4% 69.0% 69.7%
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Figure 15. Cont.
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Figure 15. Performance comparison with state-of-the-art AMC methods: (a) comparison result in
Ch1, (b) comparison result in Ch2.

3.2.4. Performance Analysis Using Real-World Dataset

To verify the performance of the proposed AMC method in a real-world underwater
scenario, we carried out an experiment using the real-world underwater acoustic com-
munication dataset. This dataset was recorded in the South China Sea. The data were
recorded using an omnidirectional hydrophone placed about 10 m under the surface, the
transmitter was about 3 km away from the receiver, and the relative speed of the transmitter
and receiver was less than 5 m/s. The modulation types of this dataset were 2FSK, 4FSK,
BPSK, QPSK, 16QAM, and 32QAM. The SNR of the received signals was about 3–5 dB. The
number of each modulation type was 100. The classification results are shown in Table 7.
The proposed method can classify the real-world dataset well; the average accuracy of this
dataset is 75.3%.

Table 7. Classification results of the real-world underwater acoustic communication signals.

2FSK 4FSK BPSK QPSK 16QAM 32QAM

Accuracy 84% 80% 77% 71% 67% 73%

3.2.5. Computational Cost Analysis

Computational cost is an important performance metric for AMC. To analyze the
computational cost of our proposed AMC method, we calculated the time consumed by
the modulation types prediction process. The prediction process of the proposed method
includes two steps. The first step is to extract the multi-domain features and the deep
features and the second step is the forward propagation of the GCN and its subsequent
network layers. The first step typically involves complex calculations and requires a
significant amount of computation. The second step was implemented in the CUDA
environment, which consumed fewer computing resources with GPU acceleration. In
order to accelerate the computational speed, we redesigned the calculation operation
of feature extraction using TensorFlow in the CUDA environment. Thus, we could not
only accelerate computational speed but also integrate the feature extraction process and
forward propagation of the GCN into one computational framework. We compared our
proposed method with DCN in our previous work [1]. Figure 16 shows the computational
cost comparison of different methods—GCN1 denotes the process of the first step without
GPU acceleration and GCN2 denotes the process of the first step with GPU acceleration.
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Step 1 Step 2 Total
GCN1 5.83 0.6
GCN2 1.5 0.6
DCN 1.7

1.7

5.83

1.5

0.6

0.6

0 2 4 6 8

GCN1

GCN2

DCN

Time (s)

Step 1

Step 2

Total

Figure 16. Computational cost comparison of different methods. GCN1 denotes the process of the
first step without GPU acceleration, GCN2 denotes the process of the first step with GPU acceleration.

As we can see, the duration of the feature extraction process was greatly reduced
by using the redesigned calculation operation. Though the proposed method involves
much more complex calculation, it can achieve a better performance while maintaining a
computation cost close to that of the DCN.

4. Conclusions

In this paper, we presented a novel feature fusion method based on GCN for the AMC
of underwater acoustic communication signals. The experimental results indicate that
the proposed method can integrate multi-domain features and deep features to achieve a
state-of-the-art AMC performance. The conclusions are highlighted as follows:

(1) To improve the stability and robustness of AMC in underwater scenarios, a new
feature fusion method based on a graph convolution network was proposed to fuse
the multi-domain features and deep features of underwater acoustic communication
signals. The feature extraction methods and deep learning methods were effectively
integrated into the constructed feature fusion framework.

(2) A graph was built for the multi-domain features and deep features based on their
properties. The proposed feature fusion method can make full use of the relation-
ships among these features. The experiments have shown that making use of the
relationships can improve the AMC performance.

(3) The comparative experiments indicate that the feature fusion method based on GCN
can significantly improve the AMC performance in underwater scenarios and achieve
excellent classification performance in different simulated and real-world underwater
acoustic channels.
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Abbreviations
The following abbreviations are used in this manuscript:

AMC Automatic modulation classification
GCN Graph convolution network
HOC High-order cumulant
CS Cyclostationary statistics
DNN Deep neural networks
CNN Convolution neural network
GAN Generative adversarial networks
RNN Recurrent neural network
LSTM Long short term memory
GRU Gate recurrent unit
HOM high order moment
SCD Spectral correlation density
SCF Spectral coherence function
STFT Short-time Fourier transform
WGN white Gaussian noise
FSK Frequency shift keying
PSK Phase shift keying
QAM Quadrature amplitude modulation
DCN Deep complex networks
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