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Abstract: In this study, we present a thorough comparison of the performance of four different
bootstrap methods for assessing the significance of causal analysis in time series data. For this
purpose, multivariate simulated data are generated by a linear feedback system. The methods
investigated are uncorrelated Phase Randomization Bootstrap (uPRB), which generates surrogate
data with no cross-correlation between variables by randomizing the phase in the frequency domain;
Time Shift Bootstrap (TSB), which generates surrogate data by randomizing the phase in the time
domain; Stationary Bootstrap (SB), which calculates standard errors and constructs confidence regions
for weakly dependent stationary observations; and AR-Sieve Bootstrap (ARSB), a resampling method
based on AutoRegressive (AR) models that approximates the underlying data-generating process.
The uPRB method accurately identifies variable interactions but fails to detect self-feedback in some
variables. The TSB method, despite performing worse than uPRB, is unable to detect feedback
between certain variables. The SB method gives consistent causality results, although its ability to
detect self-feedback decreases, as the mean block width increases. The ARSB method shows superior
performance, accurately detecting both self-feedback and causality across all variables. Regarding
the analysis of the Impulse Response Function (IRF), only the ARSB method succeeds in detecting
both self-feedback and causality in all variables, aligning well with the connectivity diagram. Other
methods, however, show considerable variations in detection performance, with some detecting false
positives and others only detecting self-feedback.

Keywords: causal analysis; Granger causality; bootstrap methods; multivariate time series; impulse
response function

1. Introduction

In many fields of scientific inquiry, the analysis of causal relationships in complex
systems represents an important task, which depends on the synergistic interplay between
theory and application. An important contribution in this area has been the proposal of
Granger Causality (GC) [1], which tests the significance of dynamic influence between pair-
wise time series. Building upon this foundation, Geweke [2] expanded GC to encompass
multivariate time series, introducing conditional Granger Causality (cGC). Bressler et al. [3]
and Schiatti et al. [4] further refined cGC, enabling the estimation of causality among
multivariate time series using Vector AutoRegressive (VAR) models.

Granger causality and its generalizations represent a statistical method that depends
on the comparison of the residual variances resulting from applying different models to the
same time series; a wide array of predictive models, including non-linear variants, may be
employed. As an alternative approach to quantifying causality from predictive modeling,
Impulse Response Function (IRF) analysis has been developed as a tool for examining
variable responses to shocks within an identified model.
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However, it is worth noting that Granger causality and IRF analysis always depend
on the particular chosen model classes; they are not suitable for model discovery since they
are lacking invariance theorems, as they exist for the more general concept of algorithmic
complexity [5].

Conceptually, the statistical significance of numerically calculated cGC and IRF should
be assessed using the asymptotic method. However, real-world data analysis may yield
incorrect results due to potential distribution discrepancies. In cases where the distribution
function is unknown, such as with partial Granger causality [6], the asymptotic method
is inapplicable. The bootstrap strategy serves as a widely used alternative for cGC and
IRF significance testing. However, with numerous bootstrap methods available, each with
varying sensitivity and specificity, selecting the appropriate method remains a critical
challenge when applying time series models to real data analysis.

In a causal analysis of time series data, failing to apply an appropriate bootstrap
method can lead to several important issues. First, as causal analysis is based on the
estimation of causal relationships, not using a suitable bootstrap method could potentially
result in inaccuracies in estimating these relationships, thereby undermining the reliability
of statistical inferences. Furthermore, bootstrap methods are often used for estimating
confidence intervals, and if an unsuitable method is chosen, the confidence intervals
could be under- or over-estimated, leading to inappropriate assessments of uncertainty.
Additionally, bootstrap methods are used to estimate the magnitude of causal effects, and
without a suitable method, the magnitude of these effects could be inaccurately estimated,
which could affect the appropriateness of subsequent actions. Therefore, to avoid these
problems, it is important to select and apply suitable bootstrap methods for causal analysis
and choose methods based on understanding the characteristics of the time series data and
the objectives of the causal analysis.

In this study, we thoroughly evaluate the performance of four bootstrap methods
designed for time series analysis. The first method we present is an adaptation of the Phase
Randomize Bootstrap (FRB), which generates surrogate data for hypothesis testing through
phase randomization in the Fourier transform of original time series data. We propose a
modification, the uncorrelated Phase-Randomized Bootstrap (uPRB), which randomizes
phases for each variable in the spectral domain, for causality detection among variables.
As a counterpart, we consider a technique based on Circular Block Bootstrap (CBB), a
method for transfer randomization in the time domain [7]. This approach remedies the
under-representation of the beginning and the end of the time series in surrogate data by
creating a circular time series. Time-Shifted Surrogates (TSS) [8,9], another technique we
discuss, ensures the preservation of all characteristics of the initial signal by maintaining the
same stat–space trajectory. The Stationary Bootstrap (SB) [10] uses random block lengths
for standard error calculations and confidence region construction in weakly dependent
stationary observations. Last, we discuss the AR-Sieve Bootstrap (ARSB), a method that
approximates the underlying data-generating process by fitting an AR model, useful for
handling dependent data [11,12].

2. Causal Analysis
2.1. Conditional Granger Causality (cGC)

Let Yt = {y1
t , . . . , yM

t }T denote the vector variables at time t, 1 ≤ t ≤ N, where N
denotes the length of the time series. The feedback system among the variables Yt can be
represented by a basic Vector AutoRegressive (VAR) model of order p, defined as

Yt =
p

∑
k=1

AkYt−k + Et, (1)

where Ak denotes a set of M×M-dimensional coefficient matrices, and Et = {e1
t , . . . , eM

t }T

denotes a series of shocks (disturbances), given by white noise vectors with zero means.
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Extracting the lth variable of the VAR model gives

yl
t =

p

∑
k=1

Al
kYt−k + el

t, (2)

where Al
k = {a

l1
k , al2

k , . . . , alm
k , . . . , alM

k } denotes the lth row of Ak. Equation (2) represents an
autoregressive model with exogenous input (ARX model) that consists of an endogenous
part of the lth variable and an exogenous part of all other variables.

The ARX model, excluding the mth variable, is called the restricted ARX (rARX) model:

yl
t =

p

∑
k=1

Ãl
kY (m)

t−k + elm
t , (3)

where Y (m)
t denotes the vector Yt with the mth element excluded (e.g., Y (1)

t = {y2
t , . . . , yM

t }T ,

Y (2)
t = {y1

t , y3
t , . . . , yM

t }T and so on) and Ãl
k denotes a set of re-estimated (M− 1)-dimensional

coefficient vectors. Suppose that the past values of the mth variable {ym
t−1, ym

t−2, . . . , ym
t−p}

contribute to the prediction of the lth variable {yl
t}; then, the variances of the residuals

should satisfy var(el
t) < var(elm

t ). The significance of the difference in variances can be
evaluated by a likelihood ratio test:

Fm→l = log
var
(

elm
t

)
var
(
el

t
) . (4)

The null hypothesis of absence of conditional Granger causality from the mth to the lth
element given Ym

t = {ym
1 , ym

2 , . . . , ym
p } states that all alm

k were zero, i.e., H0 : alm
1 = alm

2 =

. . . = alm
p = 0. This implies that past values of Ym

t do not improve the prediction of yl
t. On

the contrary, the rejection of this null hypothesis suggests that Ym
t in Granger causes yl

t.

2.2. Impulse Response Function (IRF)

There is another representation of the VAR model of Equation (1) using a delay
operator L, such that LYt = Yt−1:

A(L)Yt = Et, (5)

A(L) = IM − A1L− A2L2 − . . .− ApLp. (6)

where IM denotes the M×M-dimensional unity matrix. The roots (eigenvalues) λj of the
polynomial A(L) need to fulfill

∣∣λj
∣∣ < 1 for all j.

Further transformation of Equation (5) yields

Yt = A(L)−1Et

= {IM + Ψ1L + Ψ2L2 + . . .}Et. (7)

which demonstrates that a VAR model can be rewritten as

Yt =
∞

∑
k=0

ΨkEt−k = Ψ(L)Et, (8)

where

Ψ(L) = A(L)−1

= {IM − A1L− A2L2 − . . .− ApLp}−1

= IM + Ψ1L + Ψ2L2 + . . .
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Equation (8) represents the Vector Moving Average (VMA) representation of the VAR
model and can be denoted as VMA(∞).

Partial differentiation of the VMA(∞) model with respect to one particular shock
(disturbance term) Et yields a set of derivatives

∂Yt

∂Et
= IM,

∂Yt+1

∂Et
= Ψ1, · · · ,

∂Yt+s

∂Et
= Ψs. (9)

The (l, m)th element of Ψs is given by ∂yl
t+s

∂em
t

, which represents the marginal effect (influence)

from the mth shock em
t to the lth variable yl

t+s. The function defining the time series of such
marginal effects is called the Impulse Response Function (IRF) and is denoted by IRFlm

s .
The null hypothesis for the IRF states that a one-time shock to the mth variable has no

impact on future values of the lth variable. This can be represented as: H0 : IRFlm
s = 0 for

all s > 0. The rejection of this null hypothesis suggests that a one-time shock to the mth
variable significantly affects the lth variable at some future point in time.

3. Bootstrap Methods
3.1. Uncorrelated Phase Randomization Bootstrap (uPRB)

The Phase Randomization Bootstrap method has been proposed as a technique to gen-
erate surrogate time series data for hypothesis testing [13,14]. Using the Fourier transform,
the method transforms the original time series data into the frequency domain. Then, the
phase of each frequency component is randomized while preserving the original ampli-
tude spectrum. Finally, the surrogate data are obtained by applying the inverse Fourier
transform to the randomized frequency components.

This process generates surrogate time series data with the same power spectrum as
the original data but with disrupted temporal correlations. By comparing the original
data’s non-linearity measures or other statistical properties to those of the surrogate data,
researchers can test hypotheses and detect the presence of non-linear dynamics in the
original time series data. This method has been applied in various fields, including the
study of physiological signals [15], economics and finance [16], climate data [9], and so on.

In order to preserve all linear auto-correlations and cross-correlations, the Phase
Randomization Bootstrap adds a common random sequence ϕ( f ) to the phases of all
variables. Thus, since this method cannot detect causality among variables, we prepare
random sequences independently for each variable. In this paper, we call this method
uncorrelated Phase Randomization Bootstrap (uPRB).

The procedure for generating surrogate datasets by uPRB is as follows.

Step 1 Transform the original time series by applying Fourier transform to each variable as

Y l( f ) = F{yl
t} = Al( f )eiφl( f ),

where l is the index of the variable, and Al( f ) and φl( f ) denote the amplitude and
the phase, respectively.

Step 2 For each frequency f , add an independent random value ϕl( f ) following a uniform
distribution throughout the interval [0, 2π) to φl( f ), while satisfying the symmetry
property ϕl( f ) = −ϕl(− f ). That is,

Ỹ l( f ) = Al( f )ei[φl( f )+ϕl( f )].

Step 3 Transform the spectral domain representation back to the time domain by applying
the inverse Fourier transform to each variable as

y∗lt = F−1{Ỹ l( f )} = F−1
{
Y l( f )eiϕl( f )

}
.

Step 4 Repeat Steps 2–3 for all variables.
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Step 5 Repeat Steps 2–4 a large number of times, thereby generating a set of surrogate
datasets.

3.2. Stationary Bootstrap (SB)

The conventional Non-overlapping Block Bootstrap (NBB) has been proposed by
Carlstein [17]. By improving this conventional method, Künsch [18] has proposed a
Moving-Blocks Bootstrap (MBB). This method is useful, especially for small sample data
having a wider range of blocks than the conventional method. However, in the process of
random sampling, there is an edge effect of the uneven weighting of the selection at the
beginning and end of the data. To compensate for this shortcoming, Politis and Romano [7]
proposed a Circular Block Bootstrap (CBB) that concatenates the start and end points of the
original data. In the block bootstrap method, the stationarity of the sample is an important
assumption. However, surrogate data obtained by resampling using the above-mentioned
method are not necessarily stationary. Therefore, the Stationary Bootstrap (SB) method
has been proposed, in which the surrogate data are also stationary. This method is similar
to the TSS method, except that the block width is not fixed but is resampled as a random
variable following a geometric distribution [10]. The procedure for generating surrogate
data by SB is as follows.

Step 1 Set the mean block width to w. Then, in the geometric distribution used in Step 3,
we have p = 1/w.

Step 2 Duplicate the original data and merge it to the end of the original data such that
YN+1 = Y1, YN+2 = Y2, . . . , Y2N = YN .

Step 3 Generate a sequence of natural random numbers L∗b1 , . . . , L∗bK corresponding to each
block width following a geometric distribution so that the probability of the event
L∗bl = r is (1− p)r−1 p for r = 1, 2, . . .. Here, the value of K is determined to satisfy
the condition K = min{k : ∑k

l=1 L∗bl ≥ N}.
Step 4 Generate a sequence of natural random numbers I∗b1 , . . . , I∗bK , corresponding to the

index of the starting point of the block, following a uniform distribution over the
interval [1, N].

Step 5 The blocks,
{

ξ∗b
(

I∗b1 , L∗b1

)
, . . . , ξ∗b

(
I∗bK , L∗bK

)}
, constructed according to Steps 1 and

2, are arranged in the order in which they were extracted, and a pair of resamples is
obtained with the first N elements as Y∗b1 , . . . , Y∗bN .

Step 6 Repeat Steps 3–5 a large number of times, thereby generating a set of surrogate
datasets.

In the case of multivariate time series, there are two ways to perform Steps 3–5. One
way is to use the same blocks

{
ξ∗b
(

I∗b1 , L∗b1

)
, . . . , ξ∗b

(
I∗bK , L∗bK

)}
for all variables for data

shuffling, as described above, and the other is to perform Steps 3–5 for each variable
independently. In this paper, we refer to the former as correlated SB (cSB) and to the latter
as uncorrelated SB (ucSB).

3.3. Time Shift Surrogates (TSS)

While PRB is a method for generating surrogate datasets by randomizing the phases
in the frequency domain, we evaluated the performance of TSS as a method of randomizing
the phase in the time domain. This method corresponds to the special case of the CBB,
where the number of blocks is limited to 1. The procedure for generating surrogate datasets
by TSS is as follows.

Step 1 Duplicate the original data and merge it to the end of the original data such that
YN+1 = Y1, YN+2 = Y2, . . . , Y2N = YN .

Step 2 Generate a natural random number s following a uniform distribution over the
interval [Ia, Ib], extract a sequence of the data
{yl

s, . . . , yl
N+s}, and use it as surrogate dataset for the lth variable.

Step 3 Repeat Step 2 for all variables.
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Step 4 Repeat Steps 2–3 a large number of times, thereby generating a set of surrogate
datasets.

3.4. AR-Sieve Bootstrap (ARSB)

The AR-Sieve Bootstrap (ARSB) method generates surrogate datasets by feeding a
VAR model, which employs re-estimated parameters, with residuals from modeling [11,12].

The procedure for generating surrogate datasets using ARSB is as follows.

Step 1 Fit the VAR model of Equation (1) to the original time series, obtaining estimates for
the parameters and the residuals Êt.

Step 2 Compute centered residuals Ê1 − Ē, . . . , ÊN − Ē, where
Ē = N−1 ∑N

t=1 Êt, and generate bootstrap residuals E∗1 , . . . , E∗N by shuffling the
indices according to a sequence of natural random numbers {J∗b1 , . . . , J∗bN }, which
was drawn randomly with replacement from a uniform distribution over the interval
[1, N].

Step 3 Compute the surrogate time series recursively by

Y∗t =
p

∑
k=1

ÂkY∗t−k + E∗t

where
(

Y∗1 , . . . , Y∗p
)
=
(
Y1, . . . , Yp

)
.

Step 4 Re-estimate the VAR parameter matrices A1, . . . , Ap based on the bootstrap time series.
Step 5 Repeat Steps 2–4 a large number of times, thereby generating a set of surrogate

datasets.

Similar to the SB method, there are two ways to process Step 2 in the ARSB method.
One is to use the same sequence of random values {J∗b1 , . . . , J∗bN } for all variables for data
shuffling, as mentioned above, and the other is to perform Step 2 independently for each
variable. In this paper, we refer to the former as correlated ARSB (cARSB) and to the latter
as uncorrelated ARSB (ucARSB).

4. Simulation

In order to verify the performance of the methods for causal analysis and of the
bootstrap methods, as discussed above, we prepared a simulation model by modifying
a model proposed by [19]. We set up seven oscillatory variables as depicted in Figure 1,
five of which generated their stochastic oscillations locally from driving white noise via
self-feedback; furthermore, the seven variables were coupled directly or indirectly within
a global Vector AutoRegressive (VAR) process, such that a dynamic feedback system
results. We fixed the frequency of each variable to 0.1 Hz and randomly selected a damping
coefficient for each variable from a normal distribution. The sixth and seventh variables
were isolated from the other five. For instance, the first and third variables were directly
connected, while the first and fourth variables were indirectly connected through the third
variable. The fourth and fifth variables were directly and bidirectionally connected.

The sixth variable generated a local oscillation at 0.1 Hz via self-feedback, like the
other five, while the seventh variable did not have any self-feedback, but was driven only
by the sixth variable. If causality would be detected between either the sixth or seventh
variables and any of the first to fifth variables, this would represent a false positive.

We set the connectivity among variables as shown in Figure 1 and generate a simulated
time series of length N = 2000 through the VAR process of Equation (1), with p = 2. The
nominal sampling frequency was 10 Hz, and the series of shocks (disturbances) Et was
sampled from a 7-dimensional multivariate Gaussian noise distribution with zero mean
and diagonal covariance matrix given by ΣE = 0.1I7.

Table 1 displays the parameters of the VAR model for the simulations. Figure 2
displays the simulated time series.
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Figure 1. Connectivity diagram of the simulation model.
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Figure 2. Simulated time series.

Table 1. VAR parameters for the simulation.

A1 =



0.828 0 0 0 0 0 0
0.541 0.651 0 0 0 0 0
0.74 0 0.744 0 0 0 0

0 0 0.456 0.73 0.3 0 0
0 0 0 −0.4 0.859 0 0
0 0 0 0 0 1.752 0
0 0 0 0 0 −0.120 0



A2 =



−0.172 0 0 0 0.17 0 0
0 −0.107 0 0 0 0 0
0 0.238 −0.139 0 0 0 0
0 0 0 −0.134 0 0 0
0 0 0 0 −0.185 0 0
0 0 0 0 0 −0.810 0
0 0 0 0 0 0.430 0


5. Results

In our pursuit of accurately estimating the 99% confidence intervals (CI) for both
conditional Granger Causality (cGC) and Impulse Response Function (IRF) analyses, we
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generated 2000 surrogate datasets using each of the previously discussed bootstrap meth-
ods. For the SB method, we determined the optimal mean block width w, selecting values
of 5, 10, 20, and 40. As illustrated in Figure 3a, the cSB method consistently yielded cor-
rect causality results, irrespective of the chosen mean block width. In contrast, the ucSB
method produced correct causality results for w = 5, but the detection rate of self-feedback
diminished as w increased (see Figure 3b,c).

While the uPRB method provided accurate causality results concerning variable
interactions, it failed to detect the self-feedbacks of the first through fifth variables, yielding
results akin to ucSB(20) and ucSB(40) (see Figure 3c). If the time shift s in the TSS method
was excessively small or large, the data closely resembled the original data, consequently
minimizing the phase randomization effect. The selection of interval [Ia, Ib] in the Time
Shift Surrogates (TSS) method has potential implications on the statistical characteristics of
the generated surrogate data, particularly its correlation structure. For causality detection
between variables, it is necessary to set the interval large enough beyond the lag where
cross-correlation occurs. In this simulation, we set [Ia, Ib] = [3/N, 0.9N].

Notably, the TSS method’s detection performance is inferior to that of the ucSB(20) and
ucSB(40) methods, failing to detect causality from the fifth to the first variable. Importantly,
our study identified no false positives within any bootstrap method. Table 2 concisely
summarizes the sensitivity and specificity for each combination of causal analysis and
bootstrap methods.

(a) (b)

(c) (d)

Figure 3. Results of evaluation of Granger Causality by correlated Stationary Bootstrap (cSB) with
mean block width w = 5 (a), and uncorrelated Stationary Bootstrap (ucSB) with mean block width
w = 10 (b) and w = 40 (c), and by Time Shift Surrogates (TSS) (d); variables in columns represent
sources, variables in rows represent targets (p < 0.01); green: true positives, blue: false negatives.
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Table 2. Sensitivity and specificity of detected causality by Granger Causality and Impulse response
function, according to different bootstrap methods. Numbers in parentheses indicate mean block
width w for correlated and uncorrelated Stationary Bootstrap (cSB and ucSB, respectively).

Granger Causality Impulse Response

Bootstrap Method Sensitivity Specificity Sensitivity Specificity

cSB(5) 1.0 1.0 0.94 0.93
cSB(10) 1.0 1.0 1.0 0.89
cSB(20) 1.0 1.0 1.0 0.89
cSB(40) 1.0 1.0 1.0 0.93
ucSB(5) 1.0 1.0 0.41 1.0

ucSB(10) 0.86 1.0 0.41 1.0
ucSB(20) 0.64 1.0 0.41 1.0
ucSB(40) 0.64 1.0 0.41 1.0

uPRB 0.64 1.0 0.76 0.78
TSS 0.57 1.0 0.41 1.0

cARSB 1.0 1.0 1.0 1.0
cuARSB 1.0 1.0 1.0 1.0

As shown in Equation (9), the IRF is denoted as IRFlm
s , which represents the impact

of the mth shock em
t on the lth variable yl

t+s at time s. We evaluated the significance of
IRFlm

s using each bootstrap method. Figure 4 provides a two-dimensional representation of
significant IRFlm

s .
In the IRF analysis, only the ARSB method, whether correlated or uncorrelated, success-

fully detects both self-feedback and causality among variables in their entirety. Figure 4a
displays the IRFs for the impact assigned to each variable (m = 1, . . . , 7), with ucARSB
evaluating the significance. This outcome aligns with the connectivity diagram depicted
in Figure 1. The cSB method demonstrates results were almost identical to the ARSB
method for the first through fifth variables. However, it detects a response from the sixth
to seventh variable, constituting a false positive, which was observed for all tested values
of the mean block width. The uPRB method primarily detects causality between directly
coupled variables (see Figure 4c). Additionally, false positives emerge where responses
occur between uncoupled variables, such as the reciprocal response between the first and
seventh variables and between the fifth and sixth variables. For all tested values of the
mean block width, the ucSB method exhibits the weakest detection performance among
the evaluated bootstrap methods, detecting only self-feedback (see Figure 4d).

To summarize the results of these IRFs, such as GC, we compared the true IRFs
generated through the VAR parameters in Table 1 with the IRFs detected by the respective
bootstrap methods and summarized the sensitivity and specificity in Table 2. The time
interval of the IRFs used for comparison was the maximum time step before feedback occurs,
i.e., the IRFs up to three time steps before the impact on the third variable propagates to
the first variable to the fourth and fifth variables (see Figure 1).
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(a) (b) (c) (d)

Figure 4. Significant impulse response function (IRFlm
s ) evaluated by uncorrelated AR-Sieve Bootstrap (ucARSB) (a), correlated Stationary Bootstrap (cSB) with

mean block width w = 40 (b), uncorrelated Phase Randomization Bootstrap (uPRB) (c), and uncorrelated Stationary Bootstrap (ucSB) with mean block width
w = 40 (d). Responses exceeding the significance level (p < 0.01) are displayed using color coding (see colorbars). Non-significant parts of impulse response
functions remain black. Each column of subfigures displays IRFlm

s for m = 1, . . . , 7 (subfigures from top to bottom) and for each value of m for l = 1, . . . , 7 (rows
within each subfigure).



Entropy 2023, 25, 1070 11 of 13

6. Discussion

In this study, we present a thorough comparison of the performance of four different
bootstrap methods (encompassing twelve variations, including different values of mean
block width, as well as correlated and uncorrelated derivations) to evaluate the results from
causal analyses.

Our findings reveal that, for the cSB method, the Confidence Interval (CI) width
decreases as the mean block width increases, which is particularly evident in Figure 5a,b.
A possible explanation is that a shorter block width introduces more discontinuities in
the surrogate time series, causing the dynamic properties to deviate further from those
of the original time series due to the random shuffling of blocks disrupting temporal
forward/backward relationships. This disruption may lead to falsely detecting causality
from the seventh to sixth variables in the IRF analysis, as seen in Figure 4b. In contrast,
the CI width for the ucSB method remains wider than that of the cSB method, irrespective
of the mean block width (see Figure 5a,c), or even increases with the mean block width
(Figure 5b). This stems from each block’s starting point being determined independently
for each variable, causing unnecessary destruction of causality among variables in the
surrogate time series. Consequently, no causality among variables is detected in the
corresponding IRF analysis (see Figure 4d).

The TSS method accurately detects significance for the Granger causality F1→3, but the
CI widths for F5→1 and F2→2 are so large that they include zero, resulting in false negatives.
This could be attributed to the (1, 5)th element of A2 having the smallest value among the
VAR parameters corresponding to causality among variables, and the (2, 2)th element of A2
having the smallest value among the VAR parameters corresponding to the attenuation rate
of self-feedback. A prime example is F2→5, which should be numerically ignorable since our
simulation model does not contain causality from the second to fifth variable (see Table 1).
Although the TSS method correctly assesses non-significance, the CI width is substantially
larger than that estimated by the other bootstrap methods. These results suggest that the
TSS method may not provide stable estimates of bootstrap statistics, compared to other
methods, when the statistic value of the original time series is small.

In contrast to other methods, the uPRB method’s algorithm does not require a priori
tuning of parameters, such as a mean block width for the SB method. Upon providing
the original time series, surrogate time series can be generated almost instantaneously.
The uPRB method is characterized by its simplicity and the ability to generate surrogate
time series devoid of discontinuous time points, while preserving stationarity. However, a
limitation of this method is its inability to detect self-feedback (see Figure 5b). Although
it accurately identifies causality among variables, some of the Confidence Intervals (CIs)
have considerable width, which questions its reliability (see Figure 5a). By constraining
the interval of phase randomization in Step 2, the CI width may be reduced, thereby
enhancing performance; however, adjusting the degree of restriction remains arbitrary. A
key distinction between the TSS and uPRB methods is that the former shifts the phases in
all frequency bands simultaneously, while the latter does so for each frequency band. As
the uPRB method can selectively disturb the phases corresponding to a specific frequency
band, it may prove valuable for evaluating causality in the spectral domain.

For both cGC and IRF analyses, the ARSB method outperforms the other bootstrap
methods, regarding detection performance. For this method, determining the VAR model
order p is essential, which can be accomplished using the Akaike Information Criterion
(AIC). As outlined in Section 3.4, there are two derivations: correlated ARSB (cARSB),
which randomly shuffles the residuals across all variables synchronously, and uncorrelated
ARSB (ucARSB), which shuffles the residuals independently for each variable. Our simu-
lation study demonstrates that both derivatives yield nearly identical results. However,
observational errors (artifacts) may be concurrently superimposed onto the data when
analyzing actual time series, rendering ucARSB potentially more effective for canceling
noise correlation among variables.
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Finally, we emphasize that beyond Granger causality, as discussed in this paper,
other approaches to causality estimation have been proposed; as an example, we mention
Convergent Cross Mapping, which has been shown to be effective in deterministic non-
linear dynamical systems [20]. Furthermore, Transfer Entropy has been defined as an
extension of mutual information, representing the causality from one random variable to
another [21]. Moreover, Zenil et al. [22] have developed a very general framework for
model discovery, which may overcome the inherent limitations of statistical methods based
on predictive models and entropy-like measures; their method is based on algorithmic
probability, i.e., on decomposing observations into the most likely algorithmic generative
models. Future research should investigate whether this framework can compensate for or
replace the incompleteness of Granger causality.
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Figure 5. Representative examples of 99% confidence intervals of Granger Causality Fl→m, estimated
for each bootstrap method.
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