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Abstract: Systematic codes are of important practical interest for communications. Network coding,
however, seems to conflict with systematic codes: although the source node can transmit message
packets, network coding at the intermediate network nodes may significantly reduce the number of
message packets received by the destination node. Is it possible to obtain the benefit of network coding
while preserving some properties of the systematic codes? In this paper, we study the systematic
design of batched network coding, which is a general network coding framework that includes
random linear network coding as a special case. A batched network code has an outer code and an
inner code, where the latter is formed by linear network coding. A systematic batched network code
must take both the outer code and the inner code into consideration. Based on the outer code of a
BATS code, which is a matrix-generalized fountain code, we propose a general systematic outer code
construction that achieves a low encoding/decoding computation cost. To further reduce the number
of random trials required to search a code with a close-to-optimal coding overhead, a triangular
embedding approach is proposed for the construction of the systematic batches. We introduce new
inner codes that provide protection for the systematic batches during transmission and show that it
is possible to significantly increase the expected number of message packets in a received batch at
the destination node, without harm to the expected rank of the batch transfer matrix generated by
network coding.

Keywords: network coding; systematic code; random linear network coding; batched network
coding; BATS code

1. Introduction

Network coding has great advantages compared with the traditional store-and-forward
in network communications [1–3]. Random linear network coding (RLNC) provides a
decentralized approach to network coding and achieves the multicast capacity of networks
with packet loss in a broad setting [4–10]. In the past twenty years, extensive studies
have been performed towards resolving the implementation issues of RLNC, such as the
computational complexity and the coefficient overhead [11–14]. Batched network coding
extends RLNC by introducing an inner code–outer code structure [15–21]. In particular,
the outer code of a batched network code encodes the message packets into a sequence
of batches, each of which is a number of coded packets, and the inner code is formed by
linear network coding applied on the coded packets belonging to the same batch. The
design of the outer code and the inner code can be separated, where the outer code achieves
end-to-end reliability and the inner code maximizes the network efficiency [22]. The num-
ber of packets in a batch (called the batch size) affects the coefficient overhead and the
computational complexity. To achieve the benefits of network coding and constrain the
overhead/complexity, the batch size is usually a small integer larger than 1, e.g., 8 or 16 [23].
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Batched network coding allows joint batch encoding/decoding, while the original RLNC
schemes can be regarded as special batched network codes where the outer code has a
single batch or multiple batches encoded/decoded separately.

In coding theory, a code is said to be systematic if all message symbols form a subset
of the coded symbols [24]. Many practical codes can be designed to be systematic—for
example, Reed–Solomon codes [25], fountain codes [26] and polar codes [27]. Standardized
LDPC codes in both 802.11 and 5 G NR are systematic. For network communications, the
retransmission-based end-to-end reliability scheme can be regarded as a systematic code.
The benefits of the systematic codes are also attractive for practical applications of batched
network codes, especially for latency-sensitive applications [28–30].

Different from systematic channel coding, systematic batched network coding needs
to take both the outer code and the inner code into consideration. Though not optimal
in general, an overlapping outer code with batches formed by subsets of the message
packets proposed in [15–17,20] is already systematic in the sense that the union of some
batches includes all the message packets. However, even with a systematic outer code,
the benefits of systematic codes cannot be obtained due to network coding: using random
linear coding at the intermediate nodes prevents the reception of the message packets at the
destination nodes. The problem cannot be solved by simply excluding the message packets
from network coding, which reduces the benefits of network coding. Most existing works
on systematic RLNC focus on encoding and decoding at the source node and destination
nodes, respectively, without considering network coding at the intermediate nodes [31–36].

In this paper, we study systematic batched network codes that have a systematic outer
code and an inner code that can preserve the benefits of the systematic outer code. Our
contributions are summarized as follows.

1.1. Contributions Regarding Systematic Outer Codes

The outer code of a batched network code can be designed by extending fountain
codes or LDPC codes [19,21], which achieve higher rates than the overlapping outer codes
for the same inner code. The existing outer codes obtained by coding are not designed to be
systematic. In principle, any linear code can be systematic by transforming the generator
matrix to the reduced echelon form. As the existing outer codes obtained by coding are
linear, they can also be systematic. The main issue, however, is how to preserve the low
encoding/decoding computation cost: a general transformation of the generator matrix
by Gaussian elimination affects the structure of the codes and hence may increase the
computation cost.

In this paper, we design a systematic outer code based on the BATched Sparse (BATS)
outer code, which is a matrix-generalized fountain code [19]. When the batch size is 1, the
BATS outer code becomes a fountain code. The BATS outer code preserves the rateless
feature of fountain codes, i.e., the number of batches that can be generated is unlimited
(i.e., the rateless property) and can achieve a nearly optimal outer code rate with low
encoding/decoding complexity. To preserve the salient features of the BATS outer code,
the systematic outer code is also expected to be rateless, where the first ns batches (called
systematic batches) consist of a partition of the message packets. In addition to the systematic
batches, the outer code can further generate more batches, called non-systematic batches.
The fountain code has a low-complexity systematic design that benefits from the universal
degree distribution [37]. When the batch size is larger than 1, the degree distribution of the
BATS outer code depends on the rank distribution of the batch transfer matrices and hence
is not universal. For this reason, the systematic design of BATS codes has to consider some
new issues that do not appear in the systematic fountain code design.

In this paper, we generalize the fountain code approach to design a systematic outer
code, which uses a (non-systematic) BATS outer code that satisfies the consistency require-
ment. In particular, a consistent outer code generates the first ns batches deterministically,
which can recover all the message packets. To ensure a small coding overhead, ns is ex-
pected to be as small as possible. For a fountain code, the minimum value of ns is the same
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as the number of message packets, and a consistent code with the minimum value of ns can
be found using a number of trials of the random encoding procedure of the fountain code.
As fountain codes are universal, for each number of message packets, a consistent code
can be designed once and used forever. However, BATS outer codes are not universal, and,
even for the same number of message packets, the consistent code is different for different
rank distributions. Our experiments show that when the number of message packets is
larger, many more random trials are required to find a consistent outer code with a small
coding overhead.

To design a systematic outer code with a small value of ns more efficiently, we propose
a structured encoding approach for the first ns batches, called triangular embedding. Using
triangular embedding, zero-coding-overhead outer codes can be designed with one or two
random trials for a large range of the number of message packets. Triangular embedding
does not increase the computation costs of both encoding and decoding. Moreover, we
also verify in experiments that the batches generated by triangular embedding can be used
with the batches generated by the BATS outer code and demonstrate superior decoding
performance compared to the BATS outer code.

We also analyze the encoding and decoding computation costs of the proposed system-
atic outer code. For encoding, the systematic outer code has a lower computation cost than
the corresponding BATS outer code. The decoding computation cost of the systematic outer
code depends on the number of message packets received at the destination node. When
all the message packets are received, no computation is required for decoding. When some
of the message packets are not received, the decoding computation cost of the systematic
outer code increases with the number of message packets that are not received and is at
most 2 times the computation cost of the BATS outer code decoding.

1.2. Contributions Regarding Inner Codes

We further study the inner code that can protect the message packets in the systematic
batches. For line networks, systematic inner coding has been discussed for batched network
coding [23], where an intermediate node transmits both the received packets and the
recoded packets generated by linear combinations of the received packets. For a line
network without packet loss, the destination node can receive all the message packets
generated by the systematic outer code when using systematic recoding. However, if the
packet loss rate for each communication link is bounded below by a positive number,
the number of message packets that can be received by the destination node decreases
exponentially rapidly as the network length increases. For systematic RLNC, a decode–
recode network coding approach has been proposed to protect the message packets [38],
where an intermediate node first tries to decode the message packets and then transmits
the decoded message packets together with some recoded packets. Systematic RLNC
is a special systematic batched network code with only the systematic batches, and the
decode–recode approach is mainly discussed for extended window recoding.

In this paper, we extend and refine the decode–recode approach for the inner code of
batched network coding. For a general batched network code, it is not necessary that the
received packets of a batch at an intermediate node can decode all the original packets. In
other words, the batch transfer matrix formed by the coefficient vectors of all the received
packets of a batch at an intermediate node may have a rank lower than the batch size. We
instead study how to decode some of the message packets uniquely at an intermediate
node. We say that a message packet in a systematic batch is recoverable at an intermediate
node if it can be uniquely solved by the received packets of the batch at the intermediate
node. We give a necessary and sufficient condition such that a message packet in a batch
is recoverable, and we show that using Gauss–Jordan elimination, we can find all the
recoverable message packets in a batch. We also analyze the recovery of the message
packets at the next hop subject to packet loss and side information. Our analysis shows that
generating all recoded packets using random linear coding is not preferable, and knowing
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more information about recoding than the coefficient vectors does not aid in the recovery
of message packets.

Based on our analysis, we improve systematic inner coding to protect the message
packets in a batch, where the level of protection can be tuned by a parameter. Our inner
codes can achieve the same network coding gain as the existing inner codes, while signifi-
cantly improving the number of received message packets. By tuning the parameter, the
number of received message packets can be further increased with the cost of lower coding
rates. Both the recovery of the message packets and the message protection recoding are
linear operations on a batch, and hence our inner code does not increase the coefficient
overhead for decoding at the destination node.

1.3. Paper Organization

The remainder of this paper is organized as follows. Section 2 is a self-contained
introduction of batched network coding with the BATS outer code. In Section 3, we propose
a general approach to systematic outer codes based on the BATS outer code. In Section 4,
we introduce the triangular embedding approach to improve the design efficiency of the
systematic outer code. In Section 5, we discuss the inner coding schemes that can protect
the message packets in systematic batches. Section 6 presents the concluding remarks.

2. Ordinary Batched Network Coding

We briefly introduce ordinary (non-systematic) batched coding to assist the further
discussion of the systematic design. A batched network code is formed by an outer code
and an inner code. Here, we focus on a specific outer code called the BATS outer code,
which was originally introduced by the BATS code. Readers are referred to [23] for more
information about the BATS code.

2.1. BATS Outer Code

The outer code introduced here is also called the ordinary outer code, in contrast to the
systematic outer code, to be discussed in the next section.

A finite field of size q, denoted as Fq, is called the base field. A packet of length T
is a column vector in FT

q , and a set of packets of the same length is equated to the matrix
formed by juxtaposing the packets in the set. We consider the transmission of K message
packets, which form the T × K matrix B from the source node to the destination node in
a network.

The (ordinary) outer code encodes the K message packets in two steps. The first step
uses a systematic precode to generate a number of redundant packets, which are also called
parity check packets. Let K′ ≥ K be the total number of packets containing the message
packets and the parity check packets. Denote by Bp the K′ − K parity check packets. Let P
the K′ × (K′ − K) parity check matrix of the precode, i.e.,

[B Bp]P = 0. (1)

The parity check packets can include both low-density parity check (LDPC) and high-
density parity check (HDPC) packets to balance the computation cost and the decoding
performance. Refer to [37] for such a design of P.

Let B′ = [B Bp], which are called the precoded packets. The second encoding step of
the outer code generates batches of coded packets. Let M be a positive integer called the
batch size, which is usually less than a hundred. For i = 1, 2, . . ., the ith batch Xi includes M
packets generated from a subset Bi ⊂ B′ as follows:

Xi = BiGi,

where Gi is a matrix of M columns called the batch generator matrix. The number of packets
in Bi, which is also the number of rows of Gi, will be specified later. When M = 1, the outer
code becomes a fountain code. The design of Bi is discussed as follows.
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Here, we discuss general batch encoding that can be used for various decoding
approaches, including inactivation decoding. The precoded packets are further separated
into two parts:

• active packets that include a subset of the message packets and all the LDPC packets,
and

• inactive packets that include all the other message packets and all the HDPC packets.

Denote by A the number of active packets. Then, the number of inactive packets is
K′ − A. We require A ≥ K. As a special case, when there are no HDPC packets or inactive
packets during encoding, we have A = K′. The encoding of a batch uses both active and
inactive packets.

The number of active packets used in a batch is determined using a degree distribution
Ψ = (Ψ1, . . . , ΨDmax), and it affects the decoding performance of both belief propagation
decoding and inactivation decoding. The degree distribution Ψ is designed based on the
batched transfer matrix rank distribution induced by the inner code. The maximum number
Dmax for the active packets is sufficient to be a couple of multiples of M, as proven in [19].
For the encoding of each batch Xi,

1. Independently sample Ψ and obtain an integer dA
i , which is called the active degree

of the batch;
2. Uniformly, at random, choose dA

i active packets to be included in Bi.

The inactive packets can help to further improve the inactivation decoding perfor-
mance. When M = 1, on average, each batch may involve 2 or 3 inactive packets [26].
When M > 1, the number of inactive packets in a batch can be 3(K′ − A)/n, where n is the
number of batches expected to be used for decoding. Denote by dB

i the number of inactive
packets used in the ith batch.

Considering both active and inactive packets, Bi has di = dA
i + dB

i packets, where di is
called the total degree of the batch. Gi is a di ×M uniformly random matrix with entries
from the base field. In practice, random encoding can be implemented by a pseudorandom
number generator. The random values in the encoding process can be used for decod-
ing if they share the same pseudorandom number generator at the source node and the
destination node.

Denote by ENC the encoder that implements the above encoding process of the BATS
outer code. The pseudocodes of ENC are given in Appendix C for reference.

2.2. General Inner Code Formulation

We use a line network as an example to introduce the inner code, and the inner code
can be extended to other network typologies as discussed in [23]. A line network of length
L is formed by a sequence of network nodes labeled by 0, 1, . . . , L, where the first node 0 is
the source node and the last node L is the destination node. All the other nodes are called
intermediate nodes. Network links exist only between two consecutive network nodes,
modeled by packet erasure channels, i.e., a packet transmitted on a network link is either
correctly received or erased. Figure 1 illustrates the line network.

node 0 node 1 node 2
· · ·

node L− 1 node L

Figure 1. A line network of length L. Node 0 is the source node, and node L is the destination node.
The direct edge from node i to node i + 1 (i = 0, 1, . . . , L− 1) illustrates the network link.

The inner code is the composition of the recoding operations performed on each batch
separately. The recoding at the source node takes the batches generated by the outer code
as the input, and the recoding at an intermediate node takes the received packets of a batch
as the input. For each batch, recoding generates a number of linear combinations of the
packets belonging to the batch, and the packets generated by recoding are supposed to
belong to the same batch. There are various approaches to the recoding operation, which
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is determined by the linear combination coefficients. The original RLNC schemes use
coefficients chosen uniformly at random from the base field [4,6,7], and extensive research
has been carried out towards recoding with lower complexity and latency [39–44]. In this
paper, we study the recoding schemes that can fulfil the systematic coding requirement.

Without specifying a recoding scheme, we give a general formulation of recoding.
Fix a certain network node u. Let Y(u)

i be the received packets of the ith batch at the node u.

At the source node, Y(0)
i = Xi. As recoding is linear, for v = 1, . . . , L,

Y(u)
i = XiH

(u)
i = BiGiH

(u)
i , (2)

where H(u)
i is called the (batch) transfer matrix of the ith batch at the node u. The number of

rows of H(u)
i is M. The number of columns of H(u)

i corresponds to the number of packets
received for the ith batch at the node u, which may vary for different batches and is finite.
If no packets are received for a batch, Y(u)

i (H(u)
i ) is the empty matrix of 0 columns.

Note that the transfer matrices are determined not only by the recoding scheme, but
also by the network packet loss pattern. Due to the randomness in both recoding and
packet loss, the transfer matrices cannot be derived from the recoding design. To obtain
the transfer matrices, RLNC introduces coefficient vectors embedded in the packet header
immediately after Xi is generated. The matrix formed by the coefficient vectors is the
identity matrix. The same linear operations performed on a batch are performed on the
coefficient vectors as well, so that H(u)

i can be known at each node u that receives batch i
from the header of the batch.

We say that a set of packets of a batch are linearly independent/dependent if their
corresponding coefficient vectors in the packet header are linearly independent/dependent.
We call rank(H(u)

i ) the rank of the ith batch at node u.

2.3. Decoding Algorithms

Suppose that n batches Y(L)
i , i = 1, . . . , n are received at the destination node L. A de-

coder is expected to recover B using Y(L)
i , i = 1, . . . , n, which are related by a linear system.

From this perspective, we obtain an upper bound on the decoding performance [23]:

K ≤
n

∑
i=1

rank(H(L)
i ).

When used as a block code with a fixed number n of batches, the (outer) coding rate
defined as K/n, together with the decoding success probability, is used to measure the
outer code performance. When used as a rateless code, decoding allows more batches to be
used until all the message packets are decoded, and the (outer) coding overhead defined as

∑n
i=1 rank(H(L)

i )− K is used to measure the decoding performance.

As B and Y(L)
i , i = 1, . . . , n are related by a linear system, Gaussian elimination is

the optimal algorithm to solve B. However, Gaussian elimination incurs a computational
complexity linear in K when decoding one message packet on average, which is not
tolerable when K is slightly large. In the remainder of this section, we introduce several
approaches that can achieve O(1) complexity in decoding one message packet. In the
following, we first discuss two decoding algorithms without inactive packets and then
discuss inactivation decoding.

2.3.1. Two-Step Decoding

Suppose that the number of inactive packets during encoding is 0, so that dB
i = 0

for all batches. We first discuss the two-step decoding approach. The first step recovers a
fraction η ≥ K/K′ of precoded packets using a belief propagation (BP) algorithm, which
repeats the following operations:
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1. A batch i is said to be decodable if dA
i = rank(GiH

(L)
i ); solve a decodable batch by

Gaussian elimination;
2. Substitute the decoded (precoded) packets into other undecoded batches and update

the corresponding batch degree and generator matrix.

The BP decoding algorithm has a low computation cost that does not depend on the
total number of message packets K. The second step decodes the precoded packets to
recover the message packets, which is expected to be successful if the first step recovers at
least η fractions of all the precoded packets.

Assume that the ranks of batch transfer matrices at the destination node rank(H(L)
i )

are i.i.d and follow the distribution h = (h0, h1, . . . , hM). We call E[h] = ∑M
i=1 ihi the

expected rank. According to the theory of BATS codes [23], it is possible to design a degree
distribution Ψ for a given rank distribution h such that when K is large, the BP decoding
can recover a given η fraction of the precoded packets with a high probability when the
coding rate K/n is larger, but very close to E[h]. In other words, we only need slightly more
than K/E[h] batches to recover the K message packets.

2.3.2. Joint Decoding

The above two-step decoding algorithm can be improved by combining the two steps
when the precoding includes LDPC. For LDPC precoding, each parity check constraint can
be regarded as a batch with batch size 1 and only one all-zero received packet. Then, the
BP decoding of the batches in the first step of the two-step approach can also include the
parity checks.

In practice, the decoding of the LDPC precode and the decoding of the batches in
the two-step decoding algorithm can be combined together to improve the performance.
The joint decoding algorithm can improve the decoding success rate and reduce the coding
overhead of the two-step decoding algorithm, but does not increase the computation cost
of the two-step decoding.

2.3.3. Inactivation Decoding

When K is relatively small or the coding overhead is small, BP decoding tends to stop
before decoding all the message packets. Although we can continue decoding by Gaussian
elimination, the computational complexity is high.

A better approach is to use inactivation decoding: when BP decoding stops, an unde-
coded message packet is marked as inactive and substituted into the batches as a decoded
packet to resume the BP decoding procedure. The decoding of batches with inactive packets
also induces linear constraints on the inactive packets. Eventually, all the message packets
are either decoded or inactive. The inactive packets are then solved by the linear constraints
induced by decoding batches and the precodes. Inactivation decoding has the same decod-
ing performance as Gaussian elimination, but can have a much lower computation cost if
the number of inactive packets is small.

Moreover, when using inactivation decoding, we can use the inactive packets during
encoding. Inactive packets during encoding are treated as inactive from the beginning
of inactivation decoding and hence are also called pre-inactive packets. The extra inactive
packets added during decoding are called the dynamic inactive packets. See [23] for a detailed
discussion of inactivation decoding for BATS codes.

Denote by DEC the decoder that implements one of the above decoding processes
of the BATS outer code. The pseudocodes of DEC for two-step decoding are given in
Appendix C for reference.

3. Systematic Outer Codes

In this section, we design a systematic outer code that can preserve the silent features
of the ordinary BATS outer code. We call those batches that are designed to include all the
message packets the systematic batches.
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3.1. Naive Approaches

Before introducing our approach, we first discuss some naive approaches and their
limitations. For a fixed number n of batches, the outer code is a linear block code and hence
the encoding process can be described as

[
X1 · · · Xn

]
= BG̃

where G̃ is the K × nM generator matrix of the first n batches. Suppose that nM ≥ K.
If G̃ has K columns forming the identity matrix, the outer code is systematic.

First, we show that the random encoding of the ordinary BATS outer code is not a
systematic code with high probability. For a batch of total degree d, the probability that a
coded packet is equal to a precoded packet is dq−d. As not all precoded packets are message
packets, the probability that a coded packet is equal to a message packet is no greater than
dq−d. Typically, d ≥ M ≥ 2 and q = 256. Thus, it is unlikely that a message packet appears
in a batch using the ordinary outer code.

When n is slightly larger than K/M, the matrix G̃ obtained from the ordinary BATS
outer code has rank K with a high probability. The general procedure to make a linear code
systematic is to transform G̃ by elementary row operations into the reduced row echelon
form. Although a systematic code can be obtained, the drawback of this approach is that
the low encoding/decoding computation cost of the BATS outer code cannot be preserved.

Now, we discuss another naive approach that seems solve the computation cost issue.
To simplify the discussion, suppose that the number of message packets K is a multiple
of the batch size M. In this naive approach, the first K/M batches form a partition of
all the message packets, and more (non-systematic) batches are generated according to
the encoding of batches as an ordinary outer code discussed in Section 2.1. However, to
guarantee good decoding performance using the naive approach, a high degree must be
applied to all the non-systematic batches.

We show two cases wherein a high degree of the non-systematic batches is necessary.
In the first case, one systematic batch is completely erased during the communication
and all the other systematic batches are received by the destination nodes, together with
a non-systematic batch. Suppose that the erased batch is randomly chosen. For all the
received batches, the batch transfer matrix is the M×M identity matrix so that the decoding
problem becomes one of traditional erasure coding. The total number of received packets
is K. To guarantee the decoding of all the message packets, it is necessary that the degree of
the received non-systematic batch is K.

In the second case, we consider that for M systematic batches, only one packet is
erased during communication and all the other packets are received correctly. In other
words, the batch transfer matrix of these M systematic batches is the M×M identity matrix
with one column removed, chosen uniformly at random. The destination node also receives
all the other systematic batches, together with a non-systematic batch, all with the identity
batch transfer matrix. The total number of received packets is K. To guarantee the decoding
of all the message packets, it is necessary that the degree of the received non-systematic
batch is K.

From these cases, we see that to achieve a high coding rate using the naive approach,
the degree of the non-systematic code must be high and hence the encoding/decoding
complexity is high. In the remainder of this section, we derive an approach to obtain a
systematic outer code that has similar encoding/decoding complexity to the ordinary BATS
outer code.

3.2. General Approach to Systematic Outer Codes

We give a general approach tp systematic outer codes, which extends the idea of
systematic fountain codes [37]. Suppose that we have K message packets B for encoding
using a systematic outer code with batch size M, where K is not necessarily a multiple
of M. Let ns be an integer larger than or equal to K/M, to be decided later. We wish to
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design an outer code such that the first ns batches are systematic batches that include all
the message packets.

Our approach to a systematic outer code uses an ordinary outer code (ENC, DEC),
where ENC is the encoder and DEC is the decoder, as described in Sections 2.1 and 2.3,
respectively. The encoder ENC has two parts ENCns and ENCn+

s
, where ENCns generates

the first ns batches and ENCn+
s

generates all the further batches. The decoder DEC in
general applies to all the batches subject to any batch transfer matrices. We denote by
DECns the case of DEC when applying to the first ns batches with the rank-M batch
transfer matrices.

To construct the systematic outer code, we require (ENC, DEC) satisfying some addi-
tional requirements. The pair (ENC, DEC) is said to be consistent if the following conditions
are satisfied:

1. ENCns and DECns are deterministic; and
2. for any K packets B,

B = DECns

(
ENCns(B)

)
. (3)

For the consistency requirement 2, it is possible to verify (3) without any specific value
B of K packets, i.e., it is not necessary to check all choices of K packets. The reason is that
both ENCns and DECns are linear operations and, if the decoding is successful, their joint
effect is to multiply the K× K identity matrix. We discuss how to design a consistent outer
code later. Here, we focus on how to use it to construct a systematic outer code.

For a consistent (ENC, DEC), the decoder DECns solves K message packets from the
ns M coded packets generated by ENCns . Among the ns M coded packets, ns M− K coded
packets are redundant and can be removed without affecting the decoding performance
(The decoding of a BATS code requires us to solve a system of linear equations by elemen-
tary equation operations. Each coded packet corresponds to an equation of the system.
Each equation can solve at most one message packet. Therefore, exactly K equations are
eventually transformed into the solutions of the message packets. The other equations
are redundant). All the redundant packets can be identified by a trial of DECns . For
i = 1, . . . , ns, let Mi be the number of non-redundant coded packets in the ith batch. We
know that ∑ns

i=1 Mi = K. Denote by DEC∗ns the same decoder as DECns except that the
redundant coded packets are removed from the decoder input.

Now, we can construct the systematic outer code. For the systematic outer code, the
encoding at the source node works as follows:

1. Partition the message packets B into ns subsets X̃i, i = 1, . . . , ns, where the number of
packets in the ith subset X̃i is Mi;

2. Calculate B̃ = DEC∗ns(X̃1, . . . , X̃ns) = DEC∗ns(B);
3. Generate the first ns batches ENCns(B̃);
4. Generate more batches by performing ENCn+

s
on B̃.

See Figure 2b for an illustration of the above encoding process.
We justify that the above encoding process is systematic by showing that the first

ns batches include all the message packets. Denote by ENC∗ns the encoder that generates
only the Mi non-redundant coded packets in the ith batch, where i = 1, . . . , ns. For any K
packets B, DEC∗ns

(
ENC∗ns(B)

)
= DECns

(
ENCns(B)

)
= B. Note that ENCK and DECK can

be expressed as square matrices that are inverse to each other, and hence their order can be
interchanged without changing the output, i.e., ENC∗ns

(
DEC∗ns(B)

)
= ENC∗ns

(
B̃
)
= B.

The computation cost of the third step of encoding can be simplified as not all the
packets in the systematic batches need to be regenerated. Let (X1, . . . , Xns) = ENCns(B̃).
We have X̃i ⊂ Xi and Xi \ X̃i includes only the redundant packets for DECns in the ith batch.
As X̃i is a subset of the message packets, it is not necessary to generate it again. Denote
by ENC−n the encoder of B̃ that generates only Xi \ X̃i for i = 1, . . . , n. Let (X̄1, . . . , X̄n) =
ENC−n (B̃). Then, the n systematic batches are Xi = X̃i ∪ X̄i.

The batches generated by the above systematic encoding process will be further
transmitted through a network and processed by the inner code. Let Y′ be the coded
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packets received by the destination node. To decode, first, DEC is applied on Y′ to output
B̃. Then, we apply ENCns on B̃ to recover B. See Figure 2c for an illustration of the
decoding process.

B ENCns DECns B

(a) normal encoding and decoding

B DEC∗ns B̃ ENCns X1, . . . , Xns

ENCn+
s

Xns+1, . . .

(b) encoding of the systematic code

Y′ DEC B̃ ENC∗ns B

(c) decoding of the systematic code

Figure 2. Illustration of the approach to systematic outer codes. (a) shows the normal use of a
consistent pair of the outer code encoder ENCns and decoder DECns . (b) shows the encoding of the
systematic code, where ENCn+

s
is the outer code encoder that generates the coded packets beyond

the first ns batches. (c) shows the decoding of the systematic code, where Y′ is the received coded
packets generated by inner coding.

3.3. Computation Cost

At first, it seems that the systematic outer code increases the encoding and decoding
computation cost because an additional decoding step is employed in the systematic en-
coding, and an additional ordinary encoding step is employed in the systematic decoding.
However, after careful evaluation, we see that the encoding computation cost of the system-
atic outer code is lower than that of the ordinary outer code. The decoding computation
cost of the systematic outer code depends on the number of message packets received at the
destination node. In the worst case, where no message packets are received, the decoding
computation cost is doubled.

To assist our discussion, we denote by b the average computation cost of encoding a
packet using the ordinary outer code, and we denote by c the computation cost of decoding
the ordinary outer code using K coded packets. Here, we assume that the decoding is
successful with zero coding overhead. Suppose that the packet length T is much larger
than M, which means that the coefficient vector length is much less than T. According
to the analysis in [23], b = O(M) and c = O(KM) linear combination operations (LCOs).
(A linear combination operation (LCO) refers to the computation of a linear combination
x + αy, where x and y are two packets of T field elements and α is an element from the
base field.) Moreover, for the two-step decoding and the joint decoding, Kb ≈ c. For the
inactivation decoding, if the number of inactive packets is bounded by a constant, Kb ≈ c.

3.3.1. Encoding Computation Cost

The encoding computation cost depends on the number of coded packets generated.
For the ordinary outer encoding, the computation cost of encoding k packets is kb, where
k = 1, 2, . . .. For the systematic outer code, we assume ns M = K (we will discuss how
to design such a code). As the first K packets are the message packets, the encoding
of the first K packets requires no computation. To encode more packets, the systematic
outer code needs to execute DEC∗ns , which has a computation cost c, and ENCn+

s
, which

takes computation cost b on average to generate a packet. Therefore, when k > K, the
computation cost of generating the first k coded packets using the systematic outer code
is (k− K)b + c ≈ kb. See the illustration in Figure 3a regarding the computation cost of
generating the first k packets.
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To further understand how the encoding computation cost affects the operation at
the source node, we consider two models of message packet arrival at the source node. In
the first model, the message packets arrive one-by-one with a unit time interval between
two consecutive packets. The ordinary outer code encoding can only start to generate the
first coded packets from the time K when a precode with HDPC is employed. Let ∆ be the
time taken by the ordinary encoder to generate K coded packets, where ∆ ∝ Kb ≈ c. The
systematic outer code can generate a coded packet upon the arrival of each message packet.
At the time K, the systematic outer code executes DEC∗ns , which also takes ∆ time. In the
second model, all the K message packets arrive together at the same time, e.g., time K. For
this model, the ordinary outer code behaves in the same way as for the previous model,
and the systematic outer code can generate the first K coded packets at time K.

We see that for both message packet arrival models, the systematic outer code gener-
ates the first K packets earlier than the ordinary outer code. When k > K, both encoders
generate the kth packet at the same time. See an illustration of this in Figure 3b.

K
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time
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ordinary
systematic-1
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(b)
Figure 3. Illustration of the encoding computation cost for the ordinary outer code and the systematic
outer code. (a) shows the encoding computation cost of generating the first k coded packets. For the
ordinary outer code, the computation cost increases linearly with k. For the systematic outer code, the
computation cost is 0 when k ≤ K. The jump in the computation cost after time K is used to execute
DEC∗ns

. (b) illustrates the number of encoded packets generated over time. The curve “systematic-1”
is for the systematic outer code encoder when the message packets arrive one-by-one in each unit
time. The curve “systematic-2” is for the systematic outer code encoder when the message packets
arrive all at time K. From time K, these two curves overlap. The ordinary outer code behaves in the
same way for both message packet arrival models.

3.3.2. Decoding Computation Cost

For the systematic outer code, the decoding computation cost depends on the number
Km of message packets received by the destination node. When Km = K, i.e., all the
message packets are received, no computation is required for decoding. When Km < K, the
systematic code decoder needs to execute DEC, which has a computation cost c, and ENC∗ns ,
which takes computation cost b on average to generate a packet. As Km message packets
have been received, we only need to use ENC∗ns to generate the remaining K− Km message
packets. Therefore, the overall decoding computation cost is (K − Km)b + c ≈ 2c− Kmb.
When Km is close to K, the systematic outer code decoding computation cost is close to the
ordinary outer code decoding. In the worst case, i.e., Km = 0, the systematic outer code
decoding computation cost is doubled compared with the ordinary outer code decoding.
See an illustration in Figure 4a.

To illustrate how the decoding computation cost affects the operation at the destination
node, we consider that coded packets are received one-by-one with a unit time interval
between two consecutive packets. We assume that the ordinary outer code decoder starts
decoding at time K and takes additional ∆ time to decode all the message packets. When
Km = K, all the message packets are decoded at time K. When Km < K, the systematic
outer code decoder executes DEC at time K and starts to use ENC∗ns from time K + ∆ to
generate the K− Km message packets that have not been received. In the worst case, where
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Km = 0, the systematic outer code decodes all the message packets at time K + 2∆. See an
illustration in Figure 4b.
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Figure 4. Illustration of the decoding computation costs of the ordinary outer code and the systematic
outer code. (a) illustrates the decoding computation cost for different numbers Km of message packets
received. For the ordinary outer code, the decoding computation cost is c. For the systematic outer
code, the decoding computation cost is approximately 2c− Kmb when Km < K and 0 when Km = K.
(b) shows the number of decoded packets over time. The three curves labeled Km = K, K/2, 0 are for
the systematic outer code decoder with Km message packets received.

3.4. Random Design

To implement the general approach to the systematic outer code, we only need to
design a consistent pair (ENC, DEC). In the following part of this section, we discuss the
traditional random approach to designing a consistent (ENC, DEC). In the next section,
we discuss a new approach that can design a consistent (ENC, DEC) more effectively.

Denote by h the rank distribution of the batches and let ΨA be the degree distribution
optimized for h as in ([23], Chapter 6), which achieves the near-to-optimal rate of the
ordinary outer code as in Section 2.1 asymptotically. We can use the ordinary encoder and
decoder as introduced in Section 2.1 with the degree distribution ΨA to design ENCn+

s
and

DEC for a consistent outer code (ENC, DEC).
The ordinary outer code is random, but we need a deterministic encoder–decoder

pair (ENCns , DECns) to satisfy the consistent properties. For a given ns ≥ K/E[h], we can
perform random trials of the ordinary outer code using the degree distribution ΨA until an
instance (ENCns , DECns) is found such that (3) is satisfied. Note that it is sufficient for us to
find only one such instance. As both ENCns and ENCn+

s
generate batch instances following

the random outer code encoder with the degree distribution ΨA, which is optimized for h,
DEC can guarantee a high decoding success probability for a sufficiently large number of
received batches [23].

If such an instance cannot be found for a certain value ns, we can increase the value
of ns by 1 and try again. The ordinary outer code is expected to decode correctly with a
high probability when the number of batches is sufficiently large, and we expect to design
a systematic code with the expected coding overhead ns E[h]− K as small as possible.

When M = 1 and E[h] = 1, i.e., the case of fountain codes, a consistent outer code
exists for a range of the values of K when ns = K using this approach [26]. For fountain
codes, the random design works well as fountain codes have a universal design that can
handle all packet loss patterns. The random design is only performed once for each value
of the number of message packets K. Therefore, the efficiency of the random design is
not an issue. In other words, a large number of random trials can be performed to find a
consistent outer code with a small or zero coding overhead.

Although the random design is suitable for fountain codes, it can be less efficient when
M > 1. BATS codes are not universal in the sense that the optimal degree distribution
depends on the rank distribution h. Therefore, even for the same value of K, the random
design needs to be repeated for each h, and this may need to be carried out for h obtained
online. Hence, the efficiency of the random design becomes an issue for BATS codes
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with batch size M ≥ 2. For M = 16, we perform some experiments using the BATS
code implementation in [45] with the parameters in Appendix B. Inactivation decoding is
applied to achieve a lower coding overhead. To limit the computation cost of inactivation
decoding, the number of inactive packets is limited to 150. In the experiments, we use
the rank distribution h with E[h] = M, which is also called the rank-M distribution.
The experimental results are summarized in Table 1. We observe that when K is up to
400M, a consistent instance with ns = K/M can be found. However, the larger the value
of K, the lower the probability of a code with zero coding overhead. For example, when
K = 10M, most instances have zero overhead. Meanwhile, when K = 400M, only four
instances have zero coding overhead. However, when K is 600M, no instance is found with
zero coding overhead.

Table 1. Experiments of random design. Here, M = 16 and h has rank M. For each value of
K = 10M, 100M, 1000M, 5000 instances of the ordinary outer code are sampled. As a BATS code is
rateless, for each instance, we can try a range of values of ns. The table gives the number of consistent
instances when ns = K/M, K/M + 1, K/M + 2, and ns ≥ K/M + 3.

ns − K/M K = 10M K = 100M K = 200M K = 400M K = 600M

0 4784 3552 836 4 0
1 173 175 50 0 0
2 34 113 53 0 0
≥3 9 1160 4061 4996 5000

4. Triangular Embedding: A Structured Systematic Outer Code Design

We propose a structured design of consistent outer codes with a general batch size
M ≥ 1. Our approach is based on the following observation. For a consistent instance
found by the random design, DECns gives an order of the batches such that the ith batch is
solvable if all the previous batches are solved. Our approach, called triangular embedding,
tries to design ENCns so that the order of the batches for solving is predefined. When
M = 1, our approach also gives a new design of systematic fountain codes.

4.1. Triangular Embedding Design

Consider the encoding of K message packets with respect to a general rank distribution
h. We discuss how to generate the first ns batches, where ns ≥ K/E[h]. The precode is the
same as the ordinary outer code. Let K and K′ be the number of message packets and the
number of precoded packets, respectively. The precoded packets are also separated into
active and inactive packets. Let A be the number of active packets, where A ≥ K.

For the degree distribution Ψ optimized for h, we assume that the degree probability
is zero for degrees from 1 to M− 1 (This assumption does not affect the generality of our
design as it is asymptotically optimal to use such a degree distribution when the rank M
probability of the batch transfer matrix is positive. When the probability of transfer matrix
rank M is zero, we should reduce the batch size to improve the network’s communication
efficiency). Generate the active degree values dA

1 , . . . , dA
ns for the first ns batches by sampling

Ψ. To simplify the discussion, we assume that the degree values are ordered so that
M ≤ dA

1 ≤ dA
2 ≤ · · · ≤ dA

ns . The inactive degree dB
i of the ith batch is obtained in the same

way as the ordinary outer code.
Fix positive integers M1, M2, . . . , Mns such that ∑ns

i=1 Mi = K and Mi ≤ M ≤ dA
i . For

example, when ns divides K, we may choose Mi = K/ns. When ns does not divide K,
there exist unique non-negative integers a and b < ns such that K = ans + b. We may let
Mi = a + 1 for i = 1, . . . , b and let Mi = a for i = b + 1, . . . , ns.
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Let Ninac be the maximum number of dynamic inactive packets allowed during inacti-
vation decoding. We should determine the total number of inactive packets Ninac + K′ − A
according to the decoding computation cost constraint. For example, Ninac + K′ − A =
2d
√

Ke. We further assume that for i = 1, . . . , ns,

dA
i ≤ min{A− K, Ninac}+

i

∑
j=1

Mj. (4)

This assumption is usually satisfied by the degrees sampled as 1) A− K is linear in
K and 2) the average degree of a BATS code degree distribution is only around two times
the batch size M and even the maximum degree is O(M). If dA

i does not satisfy (4), which
should occur rarely, we can modify dA

i to this upper bound or re-sample the active degrees.
Let m1 = 0, and, for i ≥ 2, let mi = mi−1 + Mi−1. For i ≥ 1, the dA

i active packets in Bi
include

• the (mi + 1)th to the (mi + Mi)th active packets, and
• a set of dA

i − Mi packets chosen from the first mi active packets and the last
min{A− K, Ninac} active packets.

The inactive packets in Bi are obtained in the same way as the ordinary outer code.
The ith batch is generated as BiGi, where Gi is a di ×M matrix different from the ordinary
outer code. The rows of Gi corresponding to the (mi + 1)th to the (mi + Mi)th active
packets have the form

[
IMi U

]
, where IMi is the Mi × Mi identity matrix and U is the

Mi × (M−Mi) uniformly random matrix. The other rows of Gi are uniformly random.
The batches generated can be transmitted following an arbitrary order.

Define G̃i as the K′ ×M matrix by inserting zero rows into Gi so that [B Bp]G̃i = BiGi.
The overall generator matrix of ENCns can be written as G̃ =

[
G̃1 · · · G̃ns

]
. According to

the design of ENCns , G̃ is of the form in Figure 5.
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Figure 5. Illustration of encoding using triangular embedding. The gray part contains non-zero
entries and the white part contains only zero.

4.2. Decoder Design

It is possible to use the decoders discussed in Section 2.3 to decode the batches
generated by triangular embedding. However, due to the structure of the triangular
embedding encoding, the decoder can be simplified.

We design a decoder DECns using only the first Mi packets of the ith batch, i = 1, . . . , ns.
The overall generator matrix G̃∗ of ENC∗ns is of the form in Figure 6.
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An inactivation decoder can be applied to decode the message packets:

• First, inactivate all the packets used by the first ns batches among the last A− K active
packets;

• Second, apply belief propagation decoding to solve all the batches;
• Last, solve the inactive packets.

Note that as, at most, min{A − K, Ninac} packets are used among the last A − K
active packets during encoding, the total number of inactive packets is no more than
Ninac + K′ − A.

4.3. Design Verification

We verify the triangular embedding design from two aspects. First, it can help to
generate zero-coding-overhead consistent outer codes using a small number of random
trials. Second, when jointly decoded with batches generated by the ordinary outer code,
the decoding performance is similar to the case of decoding only the batches generated by
the ordinary outer code.

We perform the experiments using the batch size M = 16 and the rank-M rank distri-
bution h. As with the experiments in Section 3.4, we use the BATS code implementation
in [45] with the parameters in Appendix B. The experimental results of the triangular
embedding outer code are shown in Table 2. We see that, using triangular embedding,
for K up to 1000M, more than 99.5% instances are of zero coding overhead. In fact, for
the remaining instances that are not of zero coding overhead, the coding overhead is only
1 packet (generated using the ordinary outer code). The last row in Table 2 gives the
maximum number of inactive packets for all the instances tested for each value of K. We
see that the number of inactivations is lower than 150, the number of inactivations in the
random design. Therefore, diagonal embedding also reduces the decoding computation
cost.

Table 2. Experiments using triangular embedding for consistent outer codes. Here, M = 16 and h
has rank M with probability 1. For each value of K = 10M, 100M, 1000M, in total, 5000 instances of
the triangular embedded outer code are tested. The table gives the number of consistent instances.

K = 10M K = 100M K = 1000M

zero overhead 4978 4983 4977
max total inact. 27 91 149

As ENCns uses a different encoding approach to the ordinary outer code ENCns+, we
consider whether the batches generated by diagonal embedding and the batches generated
by the ordinary outer code together form a good outer code. We perform some numerical
experiments to verify the joint decoding performance of these two types of batches. For
each batch generated by triangular embedding, we discard the batch with probability
ε = 0.1, 0.3, 0.5 and send the remaining batches to the decoder. After the first ns batches,
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the ordinary outer code is applied to generate more batches for the decoder. We adopt the
same degree distribution Ψ optimized for the rank-M distribution. The results are shown
in Table 3. We see that for all the cases of ε and for K = 10M, 100M, 200M, the number of
zero-coding-overhead instances is higher than that in Table 1 and the number of instances
with a coding overhead larger than 2M is lower than that in Table 1. For K = 400M, 600M,
the decoding performance is similar to that in Table 1 in terms of both the ratio of zero
coding overhead and the ratio of coding overhead larger than 2M.

Table 3. Joint decoding of batches generated by triangular embedding and the ordinary outer code.
Here, M = 16 and h has rank M with probability 1. In our experiments, each batch generated by
triangular embedding has a probability ε of being discarded, and the remaining batches are sent to the
decoder. Following the batches generated by triangular embedding, batches generated by the ordinary
outer code are also sent to the decoder. For each value of K = 10M, 100M, 200M, 400M, 600M and
ε = 0.1, 0.3, 0.5, in total, 5000 instances are tested.

Coding
Overhead K = 10M K = 100M K = 200M K = 400M K = 600M

(a) ε = 0.1

0 4982 4955 3446 3 0
1 ∼ M 18 26 69 0 0

M + 1 ∼ 2M 0 3 51 0 0
> 2M 0 16 1434 4997 5000

(b) ε = 0.3

0 4983 4511 1037 17 0
1 ∼ M 17 73 31 0 0

M + 1 ∼ 2M 0 39 25 1 0
> 2M 0 377 3907 4982 5000

(c) ε = 0.5

0 4987 4155 1823 5 0
1 ∼ M 13 107 101 1 0

M + 1 ∼ 2M 0 61 72 1 0
> 2M 0 677 3004 4993 5000

5. Inner Code for Systematic Batches

In this section, we study the design of the inner code for systematic batches. Based
on the discussion in Section 3.3, the decoding complexity at the destination node depends
on the number of message packets received. However, using the existing inner coding
schemes, the number of message packets in a systematic batch reduces significantly during
communication. In the worst case, when no message packets are received at the destination
node, the decoding computation cost at the destination node is doubled when compared
with the ordinary BATS outer code. To resolve this issue, we discuss how to design the
inner code to preserve the message packets in systematic batches.

5.1. Detailed Inner Code Formulation

We first formulate in detail how each network node performs the inner code. We also
discuss the existing inner coding schemes for systematic batches.

We consider the inner code on a line network as described in Section 2. As the inner
code is performed on each batch individually, we consider a generic systematic batch X
without the subscripts. We assume that the packets in X are all message packets. By (2), the
received packets Y(u) of the batch X at node u satisfy

Y(u) = XH(u), (5)

where H(u) is the transfer matrix of the batch at the node u.
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Let Nu be the number of columns of Y(u) (or H(u)), i.e., the number of received packets
of the batch at node u. For a non-destination node u, we use u+ to denote the receiver
of the outgoing link of u in the line network. Suppose that the node u needs to transmit
N′u packets of the batch X to the node u+. The transmitted packets, called recoded packets,
are generated by linear combinations as Y(u)Φ(u) = XH(u)Φ(u), where Φ(u) is an Nu × N′u
matrix over the base field Fq. Due to packet loss, the set of received packets at u+ is a
subset of Y(u)Φ(u). Let E(u) be an N′u × Nu+ matrix obtained by removing the columns of
an identity matrix specifying the packet erasures. We can write

Y(u+) = XH(u)Φ(u)E(u) = XH(u+), (6)

where H(u+) = H(u)Φ(u)E(u).
There are many solutions to design the recoding matrix Φ(u) in the literature. One

common method for RLNC is a uniformly random matrix over the base field, which is also
called the random linear inner code (RLIC). For multicast communications, it has been shown
that RLIC achieves the multicast capacity for networks with packet loss [5,8–10]. For the
line network discussed here, the systematic inner code (SIC) has been proposed [23], where
all the linearly independent received packets are directly used as recoded packets. We first
discuss the performance of these two existing inner code schemes for systematic batches.

• When using RLIC for systematic batches, the probability that a recoded packet (a col-
umn of XΦ(u)) is a message packet is q−M.

• When using SIC for systematic batches, if the network links have no packet loss, the
destination node receives all the message packets without decoding. If each link has
an erasure probability ε > 0 independently, the number of received message packets
at the destination node drops exponentially rapidly with L increasing.

In other words, for both RLIC and SIC, the destination node cannot benefit from the
systematic outer code.

We are motivated to study the recoding Φ(u) such that a non-source node u can receive
more message packets from a systematic batch even when there are packet losses.

5.2. Recovery of Individual Message Packets

Although Y(u) does not include any message packets, it may be possible to decode
some message packets from (5). When rank(H(u)) = M, all the message packets of a batch
can be decoded at node u. Note that for batched network coding, H(u) does not necessarily
need to be of rank M. We say that a message packet, i.e., a column of X, can be recovered at
node u if it can be uniquely solved from the system (5). When rank(H(u)) < M, some of
the message packets can be recovered by operations within a systematic batch.

Denote by Col(H(u)) the column space of the matrix H(u). Let ei be the length-M
column vector with its ith entry 1 and all the other entries 0. A necessary and sufficient
condition such that a message packet can be recovered from Y(u) is as follows.

Lemma 1. Under the condition that Y(u) = XH(u) is consistent, the ith packet in X has a unique
solution if and only if ei ∈ Col(H(u)).

Proof. The lemma can be proven by the equivalence of the following statements:

1. The ith packet in X has a unique solution;
2. All the vectors x ∈ FNu

q such that xH(u) = 0 (called the left nullspace collectively)
have the ith entry 0;

3. ei is orthogonal to the left nullspace of H(u);
4. ei is in the column space of H(u).

The following proposition shows that we can test the recoverability of all the message
packets in a systematic batch from the reduced column echelon form of H(u), which can be
obtained by (column-wise) Gauss–Jordan elimination.
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Proposition 1. Let L be the reduced column echelon form for a matrix H(u). Then, ei ∈ Col(H(u))
if and only if ei is a column of L.

Proof. See Appendix A.

The next proposition shows that if a message packet cannot be recovered at a node, it
cannot be recovered at any of the following nodes. Equivalently, if a message packet can be
recovered at a node, it can be recovered at all the previous nodes.

Proposition 2. If a message packet cannot be recovered at the node u, then it cannot be recovered
at the node u+ on the next hop.

Proof. If the ith message packet cannot be recovered at the node u, by Lemma 1, we have
ei 6∈ Col(H(u)). Due to Col(H(u+)) = Col(H(u)Φ(u)E(u)) ⊆ Col(H(u)), ei 6∈ Col(H(u+))
and hence the ith message packet cannot be recovered at the node u+.

In general, performing an elementary operation as used in Gauss–Jordan elimination
on the received packets of a batch does not affect the rank of the batch, and hence does not
affect the decoding performance. However, recovering message packets at the intermediate
nodes helps to improve the number of message packets to be received/recovered in the
next hop. We use an example to illustrate this fact.

Example 1. Consider a line network with L = 2, M = 3 and N1 = M at node 1. Suppose that

H(1) =




1 0 a
0 1 b
0 0 c


,

where a, b, c 6= 0 are elements from the base field. Using systematic recoding on H(1), no additional
packets should be generated and Y(1) is transmitted by node 1. When the second packet is lost from
node 1 to 2, we obtain

H(2) =




1 a
0 b
0 c


,

At destination node 2, we can only recover one message packet. On the other hand, suppose that we
apply the Gaussian elimination step at node 1 and the result should be H(1)D = I. Then, node 1
transmits Y(1)D instead of Y(1). In this case, if we still erase the second packet, the following node
can recover 2 message packets. Moreover, since the Gaussian elimination step preserves the column
space of the batch transfer matrix, (Col(H(u)) = Col(H(u)D)), the rank and number of recoverable
message packets at the destination node should be at least as good as in the recoding schemes without
this step.

Note that the recovery of the message packets at an intermediate node is a linear
operation on a batch and hence can be regarded as a part of the inner code. The effect of
the recovery of the message packets can be captured by the coefficient vectors: the same
operation applied on the received packets of a batch is applied on the coefficient vectors as
well. The destination node does not need to know the exact operations at each intermediate,
but only the coefficient vectors of the received packets.

5.3. Side Information for Message Packet Recovery

We discuss some general properties involved in the recovery of message packets at the
node u+, which provide guidance for the design of new inner codes. The recoverability of
a message packet depends on the knowledge of H(u), which is delivered by the coefficient
vectors. Note that the original purpose of the coefficient vectors is for the destination node
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to decode the batches. A natural question to consider is the following: if more information
is delivered from node u to u+, could more message packets be recovered at node u+?

Proposition 3. Suppose that X, H(u), Φ(u) and E(u) in (6) are mutually independent. Φ(u) and X
are conditionally independent given H(u+) and Y(u+).

Proof. See Appendix A.

The above proposition states that Φ(u) and X are conditionally independent at the
node u+. The next proposition further shows that knowing Φ(u) at the node u+ does not
help to recover more message packets at node u+. It actually shows a stronger result that
knowing any variable that is independent with X given H(u+) and Y(u+) at the node u+
does not help in recovering more message packets at the node u+.

Proposition 4. Suppose that X, H(u), Φ(u) and E(u) in (6) are mutually independent. Let S be
any random variable that is conditionally independent with X given H(u+) and Y(u+). Given the
instance of H(u+) and Y(u+) at the node u+, further knowing the instance of S at the node u+ does
not help to recover more message packets at u+.

Proof. See Appendix A.

Based on the above analysis, we know that the existing coefficient vectors are sufficient
for the recovery of message packets at the intermediate nodes. In other words, it is not
necessary for a network node to add further information to assist the recovery of the
message packets in the following nodes.

5.4. Recoding with Message Packet Protection

Let r = rank(H(u)) and V be an Nu × Nu matrix such that H(u)V is in reduced column
echelon form. To recover message packets, we perform the same column operations on
Y(u) and obtain Y(u)V = XH(u)V. If ei is the jth column of H(u)V, then the jth column of
Y(u)V is equal to the ith message packet.

Let s be the number of message packets that can be recovered from Y(u). By Proposi-
tion 1, there are exactly s distinct columns in H(u)V with only 1 non-zero entry being one.
Therefore, by proper row and column permutations, H(u)V is of the form




Is 0 0
0 Ir−s 0
0 T 0


, (7)

where Ik is the k × k identity matrix, 0 is an all-zero matrix of proper size, and T is an
(Nu − r)× r matrix where each column is not zero.

Denoting the first r columns of the corresponding column permutation matrix as the
Nu × r matrix P, each of the first s columns of H(u)VP has only 1 non-zero entry.

We have discussed the decoding step, which is represented by V. However, to generate
a recoded batch, some redundant packets are to be generated. The following proposition
states that using the random linear inner code at node u, the node u+ can recover almost
no message packets when the number of received packets at u+ is fewer than rank(H(u)).
Denote by ζm,n

k the probability that an m× n uniformly random matrix over Fq has rank k.
See, e.g., ([23], Section 3.3.2) for the formula of ζm,n

k .

Proposition 5. Suppose that the random linear inner code over Fq is used at the node u and Nu+ <

r = rank(H(u)). Under the condition that ei ∈ Col(H(u)), the probability that ei ∈ Col(H(u+))

is 1−∑Nu+
k=0 ζ

r−1,Nu+
k qk−Nu+ and it converges to zero as q→ ∞.

Proof. See Appendix A.



Entropy 2023, 25, 1055 20 of 28

It is unavoidable that the number of received packets at u+ is smaller than rank(H(u))
due to packet loss. Together with Proposition 2, Proposition 5 implies that as long as the
event Nu+ < rank(H(u)) occurs once at some node u, the destination node receives almost
no message packets from a systematic batch. Therefore, random linear recoding is not
preferred for the recovery of message packets. Thus, we are motivated to extend systematic
inner codes for the recovery of message packets.

We propose two designs of recoding that can protect the message packets during
recoding. We first define two recoding matrices. Suppose that s message packets are
recoverable at the node u and the rank of the batch is r.

Message Protection Recoding
For an integer w with 0 ≤ w ≤ N′u − s, let R be an r× N′u matrix of the form

R =

[
Is Us,w Ur,N′u−s−w0 0

]
,

where Um,n is the m× n uniformly random matrix.

Systematic Message Protection Recoding
For an integer w with 0 ≤ w ≤ N′u − s, let Rsys be an r× N′u matrix of the form: when
w < N′u − r,

Rsys =

[
Is Us,w 0 Ur,N′u−r−w0 0 Ir−s

]
;

when w ≥ N′u − r,

Rsys =

[
Is Us,w 0
0 0 J

]
,

where J is the first N′u − w− s columns of Ir−s.

The inner code operations at node u consist of (i) the Gauss–Jordan elimination
represented by the matrix V, (ii) the column permutation and removal of the all-zero
columns represented by the matrix P, and (iii) (systematic) message protection recoding
R (Rsys). When the overall recoding matrix at node u is VPR, the inner code is called the
message protection inner code (MPIC). When the overall recoding matrix at node u is VPRsys,
the inner code is called the systematic message protection inner code (SMPIC).

The value of w controls the level of protection of message packets. When w = 0, no
additional protection is provided for message packets, and we can check that SMPIC has
the same rank performance as the systematic inner code. When w = N′u − s, all recoded
packets generated by linear combinations are used to protect the message packets.

The computation cost of the proposed message protection recoding at a network node
is mainly determined by (1) the Gauss–Jordan elimination for the recovery of the message
packets, and (2) the generation of the recoded packets. To simplify the discussion, we
only consider the case with w = 0. At node u, Gauss–Jordan elimination is applied on
the Nu received packets. As the packet length T is much larger than the batch size M, the
computation cost of processing the transfer matrix H(u) is ignored. Hence, when the rank
of H(u) is r, the computation cost of recovering the message packets is about r(Nu − 1)
LCOs. If the previous node also uses message protection recoding, the cost at node u can
be reduced, as the message packets received directly can help to simplify the Gauss–Jordan
elimination. Let s0 be the message packet received at node u, and we have s0 ≤ s ≤ r. In this
case, the computation cost for Gauss–Jordan elimination is about (r− s0)(Nu − 1) LCOs.
For a batch of rank r, the cost of generating recoded packets using R or Rsys is linear with
the number of entries in uniformly random sub-matrices. Therefore, the overall recoding
computation cost for SMPIC with w = 0 is about ((r− s0)(Nu − 1) + r(N′u − r)) LCOs. In
contrast, for RLIC, the computation cost is N′uNu LCOs, and for SIC, the computation cost
is (N′u − Nu)Nu LCOs.
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5.5. Numerical Evaluations

We perform numerical evaluations to verify the performance of the new inner codes
in terms of both the average rank and the average number of recoverable message packets
and compare it with that of the random linear inner code (RLIC) and the systematic inner
code (SIC). We use line networks of length up to 50 hops, where each link has the same
independent packet erasure probability 0.2. The batch size M = 16 and the number of
packets to transmit N′u = 20 for all nodes u. Since the performance of SMPIC and MPIC
shows negligible differences in simulation, we only show the results for SMPIC, where we
evaluate w = 0 and w = N′u − s as representatives.

Our numerical evaluation results are shown in Figure 7. We plot the average number
of recoverable message packets and the average rank at node 0 to 50 for SIC, RLIC, SMPIC
with w = 0 (denoted by SMPIC0) and SMPIC with w = N′u − s (denoted by SMPIC1), each
with 500 trials. We have the following observations.

• SIC and RLIC have almost the same rank performance. SIC has a larger number of
recoverable message packets than RLIC. However, for both SIC and RLIC, the number
of recoverable message packets drops quickly.

• SMPIC0 has similar rank performance to SIC and RLIC and has a much higher average
number of recoverable message packets than that of SIC and RLIC.

• SMPIC1 has the highest average number of recoverable message packets among the
four inner codes, at the cost of a reduced average rank.

The recoding computation costs at each network node are also determined in the
experiments and are illustrated in Figure 8. For RLIC, as N′u = 20 and the expectation
of Nu = 16, the recoding computation cost is about 320 LCOs. For SIC, the recoding
computation cost is about 64 LCOs. The recoding computation cost of SMPIC0 also matches
the formula that we have derived, where the expectation of s0 is 1− ε = 0.8 multiplied by
the number of recovered message packets in the previous hop. In Figure 8, we also show
the computation cost of SMPIC1, which is close to that of SMPIC0.
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Figure 7. The average number of recovered message packets and the average rank at node 0 to 50
for SIC, RLIC, SMPIC with w = 0 (denoted by SMPIC0) and SMPIC with w = N′u − s (denoted by
SMPIC1), each with 500 trials.
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Figure 8. The average number of linear combination operations at node 0 to node 49 for SIC, RLIC,
SMPIC with w = 0 (denoted by SMPIC0) and SMPIC with w = N′u − s (denoted by SMPIC1), each
with 500 trials.

6. Concluding Remarks

In this paper, we propose a design for systematic batched network codes, where the
outer code is systematic and the inner code can protect the systematic property during
network coding. Our design of the systematic code preserves the most salient features
of the BATS code. The diagonal embedding approach is proposed to improve the design
efficiency of the systematic outer code, and it can also be used for non-systematic outer
coding to reduce the coding overhead and computation cost.

The discussion in this paper can help to evaluate when and how to adopt systematic
batched network codes. When the computation cost and the encoding latency are the major
concerns, the use of systematic outer codes is preferred due to the lower computation cost
compared to the ordinary outer code. The decision regarding whether to use message
protection recoding depends on both the computation constraints and the application
scenario. When the decoding computation is sensitive and the intermediate nodes have
an additional computation capability, it is beneficial to use message protection recoding.
Message protection recoding is also preferred for some application scenarios, e.g., for
communications where part of the content can be consumed when ready, a systematic code
is better. Another useful scenario for systematic codes is a network with dynamic network
link qualities: the communication is reliable most of the time and serious packet loss occurs
only in a small fraction of the time.

There are still many refinements to be applied for the systematic batched network
codes. This paper focused on the inner code design for unicast communications. The
current inner codes designed to protect the message packets may not be suitable to achieve
the multicast gain of network coding. Further study of the inner code design for multicast
communication is desired.

7. Patents

Patents resulting from this work are listed in the following:

CN115811381A The design framework of the systematic BATS code (including the outer
code and inner code), invented by the authors of this paper, published on 17 March
2023.

CN2023105394085 The design of the triangular embedded outer code, invented by L.M.
and S.Y., filed on 15 May 2023.
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Appendix A. Proofs Regarding Recoverability of Message Packets

Proof of Proposition 1. For the sufficiency, if ei is a column of L, then ei ∈ Col(L) = Col(Hu).
Now, we prove the necessity. If ei ∈ Col(Hu), then ei ∈ Col(L). Let r = rank(Hu). By

the property of reduced column echelon form, all the zero columns are on the right of the
non-zero columns in L, and hence the first r columns are all the non-zero columns of L.
Then, we can write ei = ∑r

j=1 cjlj, where cj is a constant and lj is the jth non-zero column
of L.

For j = 1, . . . , r, denote by ij the row index of the leading 1 of lj, which must exist due
to the property of reduced column echelon form. Further, as the (ij, j) entry is the only
non-zero entry on the ijth row of L, cj = 0 for j such that ij 6= i. If there exists no j such that
ij = i, then ei = 0, a contradiction. Therefore, there must a unique j∗ such that ij∗ = i, and
hence ei = lj∗ .

Proof of Proposition 3. Denote by x, y+, h+ and φ the instances of X, Yu+, Hu+ and Φu,
respectively. As P(x, φ|y+, h+) = P(φ|y+, h+)P(x|y+, h+, φ); to prove this claim, it is
sufficient to show that

P(x|y+, h+, φ) = P(x|y+, h+) (A1)

for all instances x, y+, h+ and φ. If y+ 6= xh+, (A1) holds as both sides are 0.
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Suppose that y+ = xh+. As X, Hu, Φu and Eu are independent and Hu+ = HuΦuEu,
we obtain

P(x|y+, h+, φ) =
P(x)P(h+, φ)

P(y+, h+, φ)

=
P(x)P(h+, φ)

∑x′ :x′h+=y+ p(x′)P(h+, φ)

=
P(x)

∑x′ :x′h+=y+ p(x′)
.

Similarly,

P(x|y+, h+) =
P(x)P(h+)

P(y+, h+)

=
P(x)P(h+)

∑x′ :x′h+=y+ p(x′)P(h+)

=
P(x)

∑x′ :x′h+=y+ p(x′)
.

Therefore, (A1) holds when y+ = xh+. The proof is completed.

Proof of Proposition 4. Denote by x, y+, h+ and s the instances of X, Yu+, Hu+ and S,
respectively. It is sufficient to show that P(x|y+, h+, s) = P(x|y+, h+) for all instances
x, s, y+, h+. If y+ 6= xh+, the equality holds as both sides are 0. Suppose that y+ = xh+.
As X and S are independent given Hu+ and Yu+, we obtain

P(x|y+, h+, s) =
P(x, s|y+, h+)

P(s|y+, h+)

=
P(s|y+, h+)P(x|y+, h+)

P(s|y+, h+)

= P(x|y+, h+).

Proof of Proposition 5. For convenience, we omit the subscripts of Hu, Φu and Eu.
Assume that H ∈ FM×Nu

q is fixed with rank(H) = r and ei ∈ Col(H). Since
rank(H) = r, and ei ∈ Col(H), we can extend {ei} to a basis of Col(H), denoted by W.
Then, there exists a full row rank matrix C ∈ Fr×Nu

q such that H = WC and Hu+ = WCΦE.
Let Φ∗ = ΦE; then, Φ∗ is an Nu × Nu+ uniformly random matrix.

Notice that C is full row rank, and C can be written as C = KC′, where C′ is an
invertible matrix with the first r rows being C and K is made up of the first r rows of
an identity matrix. Since C′Φ∗ is still an Nu × Nu+ uniformly random matrix, we have
that CΦ∗ is an r× Nu+ uniformly random matrix. In the following, we let M = CΦ∗ and
we have ei ∈ Col(Hu+) if and only if e1 ∈ Col(M). Let mT be the first row of M and M̃
be the submatrix of M with the first row removed. Then, e1 ∈ Col(M) is equivalent to
∃x s.t. M̃x = 0, mTx 6= 0; in other words, m 6⊥ Null(M̃).

When M̃ has rank k, the null space of M̃ has dimension Nu+ − k. The probability

m 6⊥ Null(M̃) is 1− qk

qNu+
.
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Therefore, the probability e1 ∈ Col(M) is:

Pr(e1 ∈ Col(M)) =
Nu+

∑
k=0

ζ
r−1,Nu+
k (1− qk

qNu+
)

= 1−
Nu+

∑
k=0

ζ
r−1,Nu+
k qk−Nu+ .

Observe that

Pr(e1 ∈ Col(M)) =
Nu+−1

∑
k=0

ζ
r−1,Nu+
k (1− qk

qNu+
)

≤
Nu+−1

∑
k=0

ζ
r−1,Nu+
k

= 1− ζ
r−1,Nu+
Nu+

= 1−
Nu+−1

∑
i=0

(1− q−r+1+i).

Since ∑Nu+−1
i=0 (1− q−r+1+i)→ 1 as q→ ∞, Pr(e1 ∈ Col(M))→ 0, as q→ ∞.

Appendix B. BATS Code Parameters Used in Numerical Experiments

For the numerical experiments of the BATS outer code in Sections 3.4 and 4.3, we use
the BATS code with the following parameters.

• The batch size M is 16.
• We use the degree distribution Ψ asymptotically optimized for the rank-M rank

distribution. The non-zero entries of Ψ are listed in Table A1.
• The following formula determines the number of LDPC packets:

{
0.0101K +

√
3K, K < 20000

0.0101K +
√

4K, otherwise.

• The number of HDPC packets is max(ln(K), 5).
• The decoder has a limit on the number of inactivated packets and the limit is 150.

Table A1. The non-zero entries of the degree distribution used in the numerical experiments.

Ψ17 Ψ18 Ψ19 Ψ20 Ψ23 Ψ27 Ψ31 Ψ35

0.0588 0.0571 0.0245 0.0899 0.1170 0.0921 0.0678 0.0679

Ψ43 Ψ45 Ψ63 Ψ73 Ψ123 Ψ126 Ψ239

0.0608 0.0604 0.0671 0.0671 0.0599 0.0222 0.0457

Appendix C. Pseudocodes for BATS Outer Encoding and Decoding

Algorithm A1 is the pseudocode for the encoding of the BATS outer code, and
Algorithm A2 is the pseudocode for the two-step decoding of the BATS outer code.
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Algorithm A1 The encoding process of the BATS outer code.
Input:
• B: all the input packets.
• range: a range of index of batches.
Output:

• X: an array of the generated batches.
1: procedure ENC(B, range)
2: Bp ← Solve the precode constraint

[
B Bp

]
P = 0.

3: B′ ←
[
B Bp

]

4: BA, BI ← Split B′ into active packets and inactive packets.
5: X← [] . Initialize an array for the generated batches.
6: for i in range do . Line 7 to line 13 generate batches with key i.
7: Use i as the seed for the pseudo random number generator.
8: dA

i ← Sample a degree from the degree distribution Ψ.
9: dB

i ← Randomly choose an inactive degree.
10: Bi ← Randomly choose dA

i packets from BA and dB
i packets from BI .

11: Gi ← Create a (dA
i + dB

i )×M matrix with independently uniform entries.
12: Xi ← BiGi
13: Append Xi onto the end of X.
14: return X

Algorithm A2 The two-step decoding process of the BATS outer code.
Input:
• [Y1, Y2, . . . , Yn]: an array of n batches.
• [H1, H2, . . . , Hn]: an array of batch transfer matrices of the n batches.
Output:
• B: Recovered input packets

1: procedure DEC([Y1, Y2, . . . , Yn], [H1, H2, . . . , Hn])
2: Ω← {1, 2, . . . , n} . The index set of unsolved batches
3: for i in 1 . . . n do
4: Use i as the seed for the pseudo number generator.
5: dA

i ← Sample a degree from the degree distribution Ψ.
6: Gi ← Create a (dA

i )×M matrix with independently uniform entries.

7: while ∃i ∈ Ω, such that dA
i = rank(GiHi) do

8: Bi ← Solve the system BiGiHi = Yi.
9: for b in Bi do

10: Mark b as decoded.
11: for j in indices of other batch such that b ∈ Bj do
12: Update the batch equation BjGjHj = Yj by canceling b from that equa-

tion.
13: Remove i from Ω.
14:

[
B, Bp

]
← Decode the precode using the decoded packets.

15: return B
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