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Abstract: Multi-hop networks have become popular network topologies in various emerging Internet
of Things (IoT) applications. Batched network coding (BNC) is a solution to reliable communications
in such networks with packet loss. By grouping packets into small batches and restricting recoding
to the packets belonging to the same batch; BNC has much smaller computational and storage
requirements at intermediate nodes compared with direct application of random linear network
coding. In this paper, we discuss a practical recoding scheme called blockwise adaptive recoding
(BAR) which learns the latest channel knowledge from short observations so that BAR can adapt to
fluctuations in channel conditions. Due to the low computational power of remote IoT devices, we
focus on investigating practical concerns such as how to implement efficient BAR algorithms. We also
design and investigate feedback schemes for BAR under imperfect feedback systems. Our numerical
evaluations show that BAR has significant throughput gain for small batch sizes compared with
existing baseline recoding schemes. More importantly, this gain is insensitive to inaccurate channel
knowledge. This encouraging result suggests that BAR is suitable to be used in practice as the exact
channel model and its parameters could be unknown and subject to changes from time to time.

Keywords: linear network coding; batched network coding; adaptive recoding

1. Introduction

Noise, interference and congestion are common causes of packet loss in network
communications. Usually, a packet has to travel through multiple hops before it can arrive
at the destination node. Traditionally, the intermediate nodes apply the store-and-forward
strategy. In order to maintain a reliable communication, retransmission is a common
practice. A feedback mechanism is applied so that a network node can acknowledge that
a packet is lost. However, due to the delay and bandwidth consumption of the feedback
packets, retransmission schemes come with a cost of degraded system performance.

In the era of the Internet of things (IoT), there is a diversity of devices and network
topologies. Embedded devices or microcomputers have been heavily deployed due to their
mobility, lightweight design, and low power consumption. Multi-hop wireless networks
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have become a common network topology, highlighting the issues in reliable transmission
as wireless links are more vulnerable to packet loss. The packet loss at each link accumulates
and the chance of successfully receiving a packet at the destination drops exponentially.
Fountain codes, such as in [1–3], can recover the lost packets without the need for feedback
because of their ratelessness property. However, the throughput still degrades quickly if
there is packet loss at each network link unless link-by-link feedback and retransmission
are adopted.

1.1. Network Coding-Based Approaches

Random linear network coding (RLNC) [4,5], a simple realization of network
coding [6–8], can achieve the capacity of multi-hop networks with packet loss even with-
out the need for feedback [9,10]. Unfortunately, a direct application of RLNC induces an
enormous overhead for the coefficient vectors, as well as high computational and storage
costs in network coding operations at intermediate nodes, where the intermediate nodes
are usually routers or embedded devices with low computational power and storage space.

Generation-based RLNC was proposed in [11] to resolve these issues. The input
packets of the file are partitioned into multiple subsets called the generations, and RLNC
is applied to each generation independently. This approach, however, cannot achieve an
optimal theoretical rate. Practical concerns and solutions have been further investigated
to improve this type of RLNC, such as decoding delay and complexity [12–20], packet
size [21–25], and coefficient overhead [26–28].

Instead of partitioning into disjoint subsets, overlapped subsets were investigated
in [29–32]. To further reduce the computational costs, the use of RLNC was restricted to
small subsets of coded packets generated from the input packets in [33–38]. Example codes
used for generating the coded packets include LDPC and fountain codes. This combination
of coding theory and network coding is another variant of RLNC called batched network
coding (BNC). BATS codes [38,39], a class of BNC, have a close-to-optimal achievable rate
where the achievable rate is upper bounded by the expectation of the rank distribution of
the batch transfer matrices that model the end-to-end network operations (packet erasures,
network coding operations, etc.) on the batches [40]. This hints that the network coding
operations, also known as recoding, have an impact on the throughput of BNC.

1.2. Challenges of Recoding in Practice

Baseline recoding is the simplest recoding scheme which generates the same number
of recoded packets for every batch. Due to its simple and deterministic structure, baseline
recoding appears in many BNC designs and analyses, such as [41–46]. However, the
throughput of baseline recoding is not optimal with finite batch sizes [47]. The idea of
adaptive recoding, aiming to outperform baseline recoding by generating different numbers
of recoded packets for different batches, was proposed in [47] without truly optimizing
the numbers. Two adaptive recoding optimization models for independent packet loss
channels were then formulated independently in [48,49]. A unified adaptive recoding
framework was proposed in [50], subsuming both optimization models and supporting
other channel models under certain conditions.

Although adaptive recoding can be applied distributively with local network infor-
mation, it is a challenge to obtain accurate local information when deploying adaptive
recoding in real-world scenarios. Adaptive recoding requires two pieces of information:
information distribution remaining in the received batches and the channel condition of
the outgoing link.

The first piece of information may change over time if the channel condition of the
incoming link varies. One reason for the variation is that the link quality can be affected by
interference from users of other networks around the network node. We proposed a simple
way to adapt to this variation in [49], grouping a few batches into a block and observing
the distribution of received batches in this block. This approach was later called blockwise
adaptive recoding (BAR) in [51,52].
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The second piece of information may also vary from time to time. In some scenarios,
such as deep-space [53–55] and underwater communications [56–58], feedback can be
expensive or is not available; therefore, a feedbackless network is preferred. Without
feedback, we cannot update our knowledge on the channel condition of the outgoing
link. Although we may assume an unchanged channel condition and measure information
such as the packet loss rate of the channel beforehand, this measurement, however, can be
inaccurate due to observational errors or precision limits.

1.3. Contributions

In this paper, we focus on the practical design of applying BAR in real-world applica-
tions. Specifically, we answer the following questions in this paper:

1. How does the block size affect the throughput?
2. Is BAR sensitive to an inaccurate channel condition?
3. How can one calculate the components of BAR and solve the optimization efficiently?
4. How can one make use of link-by-link feedback if it is available?

The first question is related to the trade-off between throughput and latency: a larger
block induces a longer delay but gives a higher throughput. We show by numerical
evaluations that a small block size can already give a significant throughput gain compared
with baseline recoding.

For the second question, we demonstrate that BAR performs very well with an inde-
pendent packet loss model on channels with dependent packet loss. We also show that
BAR is insensitive to an inaccurate packet loss rate. This is an encouraging result as this
suggests that it is feasible to apply BAR in real-world applications.

The third question is important in practice as BAR is suppose to run at network nodes,
usually routers or IoT devices with limited computational power, but also they may need
to handle a huge amount of network traffic. Furthermore, by updating the knowledge of
the incoming link from a short observation, we need to recalculate the components of BAR
and solve the optimization problem again. In light of this, we want to reduce the number of
computations to improve the reaction time and reduce the stress of congestion. We answer
this question by proposing an on-demand dynamic programming approach to build the
components and some implementation techniques to speed up the algorithm for BAR.

Lastly, for the fourth question, we consider both a perfect feedback system (e.g., the
feedback passes through a side-channel with no packet loss) and a lossy feedback system
(e.g., the feedback uses the reverse direction of the lossy channel for data transmission). We
investigate a few ways to estimate the packet loss rate and show that the throughput can be
further boosted by using feedback. Furthermore, a rough estimation is sufficient to catch up
the variation in the channel condition. In other words, unless there is another application
which requires a more accurate estimation on the packet loss rate, we may consider using
an estimation with low computational cost, e.g., the maximum likelihood estimator.

1.4. Paper Organization and Nomenclature

The paper is organized as follows. We first formulate BAR in Section 2. Then, we
discuss the implementation techniques for solving BAR efficiently and evaluate the through-
put of different block sizes in Section 3. In Section 4, we demonstrate that BAR is insensitive
to inaccurate channel models and investigate the use of feedback mechanisms. Lastly, we
conclude the paper in Section 5.

Some specific terminology and notations appear frequently throughout the paper.
We summarize some of the important terminology and frequently used notations in
Tables 1 and 2, respectively.
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Table 1. Terminology used for batched network coding (BNC).

Terminology Description

Batch A small set of coded packets.
Batch size The number of coded packets in a batch.

Rank of a batch A measure of “useful” information (linearly independent packets) retained in the batch.
Expected rank of a batch The expectation of the rank of the batch at the next network node.

Incoming rank distribution The distribution of the ranks of the batches arriving at the current network node.
Throughput The expectation of the rank distribution of the batches arriving at the destination node.

Recoding The network coding operations restricted to the packets belonging to the same batch.
Recoded packets The coded packets generated by recoding.

Recoder The module that performs recoding.
Baseline recoding A strategy that generates the same number of recoded packets per batch.

Adaptive recoding A strategy that generates different number of recoded packets per batch.
Block A set of batches.

Blockwise adaptive recoding Applying adaptive recoding block by block.

Table 2. Frequently used notations in this paper.

Notation Description

M Batch size.
rb The rank of the batch b.
tb The number of recoded packets for batch b.

E(rb, tb) The expected rank of batch b when its rank is rb at the current node and tb recoded packets are sent.
(h0, . . . , hM) The incoming rank distribution.

p The packet loss rate in the independent packet loss model.
L A block.

tLmax The total number of recoded packets in block L.
tb
max The maximum number of recoded packets allowed for batch b.

Binom(n, p) The binomial distribution.
Bp(t, i) The probability mass function of the binomial distribution Binom(t, 1− p).
βp(t, r) The sum of the first r probability masses of Binom(t, 1− p).

Beta(a, b) The beta distribution.
Ix(a, b) The regularized incomplete beta function.

2. Blockwise Adaptive Recoding

In this section, we briefly introduce BNC and then formulate BAR.

2.1. Network Model

As some intermediate nodes may be hardware-implemented routers or not easily
reachable for an upgrade, it is not required to deploy a BNC recoder at every intermediate
node. The nodes that do not deploy a recoder are transparent to the BNC network as
no network coding operations are performed. In the following text, we only consider
intermediate nodes that have deployed BNC recoders.

It is not practical to assume every intermediate node knows the information of the
whole network; thus, a distributed scheme that only requires local information is desirable.
For example, the statistics of the incoming batches, the channel condition of the outgoing
link, etc. In a general network, there may be more than one possible outgoing link to reach
the destination. We can assign one recoder or one management unit for each outgoing link
at an intermediate node [59,60]. In this way, we need a constraint to limit the number of
recoded packets of certain batches sent via the outgoing links. The details are discussed
in Section 2.4. In other words, we consider each route from the source to the destination
separately as a line network.
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Line networks are the fundamental building blocks of a general network. Conversely, a
recoding scheme for line networks can be extended to general unicast networks and certain
multicast networks [38,48]. A line network is a sequence of network nodes where the
network links only exist between two neighbouring nodes. An example of a line network
is illustrated in Figure 1. In this paper, we only consider line networks in our numerical
evaluations.

Figure 1. A three-hop line network. Network links only exist between two neighbouring nodes.

2.2. Batched Network Coding

Suppose we want to send a file from a source node to a destination node through
a multi-hop network. The file is divided into multiple input packets, where each packet
is regarded as a vector over a fixed finite field. A BNC has three main components: the
encoder, the recoder and the decoder.

The encoder of a BNC is applied at the source node to generate batches from the
input packets, where each batch consists of a small number of coded packets. Recently,
a reinforcement learning approach to optimize the generation of batches was proposed
in [61]. Nevertheless, batches are commonly generated using the traditional approach
as follows. To generate a batch, the encoder samples a predefined degree distribution
to obtain a degree, where the degree is the number of input packets that constitute the
batch. Depending on the application, there are various ways to formulate the degree
distribution [62–65]. According to the degree, a set of packets is chosen randomly from the
input packets. The size of the input packets may be obtained via certain optimizations,
such as in [66], to minimize the overhead. Each packet in the batch is formed by taking
random linear combinations on the chosen set of packets. The encoder generates M packets
per batch, where M is known as the batch size.

Each packet in a batch has a coefficient vector attached to it. Two packets in a batch
are defined as linearly independent of each other if and only if their coefficient vectors are
linearly independent from each other. Immediately after a batch is generated, the packets
within it are assigned as linearly independent from each other. This is accomplished by
suitably choosing the initial coefficient vectors [59,67].

A recoder is applied at each intermediate node, performing network coding operations
on the received batches to generate recoded packets. This procedure is known as recoding.
Some packets of a batch may be lost when they pass through a network link. Each recoded
packet of a batch is formed by taking a random linear combination of the received packets
in a given batch. The number of recoded packets depends on the recoding scheme. For
example, baseline recoding generates the same number of recoded packets for every batch.
Optionally, we can also apply a recoder at the source node so that we can have more than
M packets per batch at the beginning. After recoding, the recoded packets are sent to the
next network node.

At the destination node, a decoder is applied to recover the input packets. Depend-
ing on the specific BNC, we can use different decoding algorithms, such as Gaussian
elimination, belief propagation and inactivation [68,69].

2.3. Expected Rank Functions

The rank of a batch at a network node is defined by the number of linearly independent
packets remaining in the batch, a measure of the amount of information carried by the
batch. Adaptive recoding aims to maximize the sum of the expected value of the rank
distribution of each batch arriving at the next network node. For simplicity, we called this
expected value the expected rank.
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For batch b, we denote its rank by rb and the number of recoded packets to be generated
by tb. The expectation of rb at the next network node, denoted as E(rb, tb), is known as the
expected rank function. We have

E(r, t) =
t

∑
i=0

Pr(Xt = i)
min{i,r}

∑
j=0

jζ i,r
j , (1)

where Xt is the random variable of the number of packets of a batch received by the next
network node when we send t packets for this batch at the current node, and ζ i,r

j is the
probability that a batch of rank r at the current node with i received packets at the next
network node has rank j at the next network node. The exact formulation of ζ i,r

j can be

found in [38], which is ζ i,r
j =

ζ i
jζ

r
j

ζ
j
jq
(i−j)(r−j)

, where q is the field size for the linear algebra

operations and ζm
j = ∏

j−1
k=0(1− q−m+k). It is convenient to use q = 28 in practice as each

symbol in this field can be represented by 1 byte. For a sufficiently large field size, say
q = 28, ζ i,r

j is very close to 1 if j = min{i, r}, and is very close to 0 otherwise. That is, we

can approximate ζ i,r
j by δj,min{i,r} where δ·,· is the Kronecker delta. This approximation has

also been used in the literature, see, e.g., [45,70–76].
Besides generating all recoded packets by taking random linear combinations, sys-

tematic recoding [39,47,59,67], which concerns received packets as recoded packets, can
be applied to save computational time. Systematic recoding can achieve a nearly indistin-
guishable performance compared with methods which generate all recoded packets by
taking random linear combinations [39]. Therefore, we can also use (1) to approximate the
expected rank functions for systematic recoding accurately.

For the independent packet loss model with packet loss rate p, we have Xt ∼
Binom(t, 1− p), a binomial distribution. If p = 1, then a store-and-forward technique
can guarantee the maximal expected rank. If p = 0, then no matter how many packets we
transmit, the next network node must receive no packets. Thus, we assume 0 < p < 1
in this paper. It is easy to prove that the results in this paper are also valid for p = 0 or 1
when we define 00 := 1, which is a convention in combinatorics such that Binom(t, 0) and
Binom(t, 1) are well-defined with correct interpretation. In the remaining text, we assume
ζ i,r

j = δj,min{i,r}. That is, for the independent packet loss model, we have

Eindep(r, t) =
t

∑
i=0

(
t
i

)
(1− p)i pt−i min{i, r}. (2)

A demonstration of the accuracy of the approximation ζ i,r
j ≈ δj,min{i,r} can be found in

Appendix A.
We also consider the expected rank functions for burst packet loss channels modelled

by Gilbert–Elliott (GE) models [77,78], where the GE model was also used in other BNC
literature such as [52,55,70]. A GE model is a two-state Markov chain, as illustrated in
Figure 2. In each state, there is an independent event to decide whether a packet is lost or
not. We define f (s, i, t) := Pr(St = s, Xt = i), where St is the random variable of the state
of the GE model after sending t packets of a batch. By exploiting the structure of the GE
model, computation of f can be performed by dynamic programming. Then, we have

EGE(r, t) =
t

∑
i=0

( f (G, i, t) + f (B, i, t))min{i, r}. (3)
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G
pG

B
pB

pGB

pBG
1− pGB 1− pBG

Figure 2. A Gilbert–Elliott (GE) model. In each state, there is an independent event to decide whether
a packet is lost or not.

It is easy to see that it would take more steps to compute (3) than (2). Therefore, a
natural question to ask is that for burst packet loss channels, is the throughput gap small
between adaptive recoding with (2) and (3)? We demonstrate in Section 4.2 that the gap is
small so we use (2) any time a nice throughput is received. Therefore, in our investigation
we mainly focus on (2).

In the rest of this paper, we refer to E(r, t) as Eindep(r, t) unless otherwise specified.
From [50], we know that when the loss pattern follows a stationary stochastic process,
the expected rank function E(r, t) is a non-negative, monotonically increasing concave
function with respect to t, which is valid for arbitrary field sizes. Further, E(r, 0) = 0 for
all r. However, we need to calculate the values of E(r, t) or its supergradients to apply
adaptive recoding in practice. To cope with this issue, we first investigate the recursive
formula for E(r, t).

We define the probability mass function of the binomial distribution Binom(t, 1− p)
by

Bp(t, i) =

{
(t

i)(1− p)i pt−i if 0 ≤ i ≤ t,
0 otherwise.

(4)

For integers r ≥ 0 and t ≥ −1, we define

βp(t, r) =

{
1 if t ≤ r− 1,

∑r−1
i=0 (

t
i)(1− p)i pt−i = ∑r−1

i=0 Bp(t, i) otherwise.
(5)

When t ≥ 0, the function βp(t, r) is the partial sum of the probability masses of a
binomial distribution Binom(t, 1− p). The case where t = −1 is used in the approximation
scheme in Section 3 and is discussed in that section.

The regularized incomplete beta function, defined as Ix(a, b) :=
∫ x

0 ta−1(1−t)b−1 dt∫ 1
0 ta−1(1−t)b−1 dt

([79],

Equation 8.17.2), can be used to express the partial sum of the probability masses of a
binomial distribution. When t ≥ r > 0, we can apply ([79], Equation 8.17.5) and obtain

βp(t, r) =
r−1

∑
i=0

(
t
i

)
(1− p)i pt−i = Ip(t− r + 1, r). (6)

There are different implementations of Ip(·, ·) available for different languages. For
example, the GNU Scientific Library [80] for C and C++, or the built-in function betainc in
MATLAB. However, most available implementations consider non-negative real parameters
and calculate different queries independently. This consideration is too general for our
application, as we only need to query the integral points efficiently. In other words, this
formula may be sufficient for prototyping or simulation, but it is not efficient enough for
real-time deployment on devices with limited computational power. Nevertheless, this
formula is useful for proving the following properties:

Lemma 1. Assume 0 < p < 1. Let Λ be an index set.

(a) Bp(t + 1, i) = (1− p)Bp(t, i− 1) + pBp(t, i) for i = 0, 1, . . . , t;
(b) βp(t + 1, r) ≤ βp(t, r) where the equality holds if and only if t + 1 < r or t ≥ r = 0;
(c) βp(t, r) ≤ βp(t + 1, r + 1) where the equality holds if and only if t < r;
(d) βp(t, r + 1) ≥ βp(t, r) where the equality holds if and only if t < r;
(e) 1 ≥ max

b∈Λ
βp(tb, rb) ≥ βp(ta + s, ra) for all a ∈ Λ and any non-negative integer s;
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(f) 0 ≤ min
b∈Λ

βp(tb, rb) ≤ βp(ta − s, ra) for all a ∈ Λ and any non-negative integer s such that

ta − s ≥ −1.

Proof. See Appendix B.

With the notation of βp(t, r), we can now write the recursive formula for E(r, t).

Lemma 2. E(r, t + 1) = E(r, t) + (1− p)βp(t, r), where t and r are non-negative integers.

Proof. Let Yi be independent and identically distributed Bernoulli random variables, where
Pr(Yi = 1) = 1− p for all i. When Yi = 1, the i-th packet is received by the next hop.

When we transmit one more packet at the current node, Yt+1 indicates whether this
packet is received by the next network node or not. If Yt+1 = 0, i.e., the packet is lost, then
the expected rank will not change. If Yt+1 = 1, then the packet is linearly independent
from all the already received packets at the next network node if the number of received
packets at the next network node is less than r. That is, the rank of this batch at the
next network node increases by 1 if ∑t

i=1 Yi < r. Therefore, the increment of E(r, t) is
Pr(Yt+1 = 1, ∑t

i=1 Yi < r). Note that ∑t
i=1 Yi ∼ Binom(t, 1− p). As Yi are all independent

and identically distributed, we have Pr
(
Yt+1 = 1, ∑t

i=1 Yi < r
)
= (1− p)βp(t, r).

The formula shown in Lemma 2 can be interpreted as a newly received packet that
is linearly independent of all the already received packets with a probability tends to 1
unless the rank has already reached r. This can also be interpreted as ζ i,r

j = δj,min{i,r} with a
probability tends to 1. The above lemma can be rewritten in a more useful form as stated
below.

Lemma 3. Let t and r be non-negative integers.

(a) E(r, t + 1) = E(r, t) + (1− p) if t < r;

(b) E(r, t) = (1− p)∑t−1
j=0 βp(j, r) = (1− p)

(
min{r, t}+ ∑t−1

j=r βp(j, r)
)

.

Proof. See Appendix C.

2.4. Blockwise Adaptive Recoding

The idea of adaptive recoding was presented in [47], and then independently formu-
lated in [48,49]. The former formulation imposes an artificial upper bound on the number
of recoded packets and then applies a probabilistic approach to avoid integer programming.
The latter investigates the properties of the integer programming problem and proposed
efficient algorithms to directly tackle this problem. These two formulations were unified
in [50] as a general recoding framework for BNC. This framework requires the distribution
of the ranks of the incoming batches, also called the incoming rank distribution. This
distribution, however, is not known in advance, and can continually change due to envi-
ronmental factors. A rank distribution inference approach was proposed in [81], but the
long solving time hinders its application in real-time scenarios.

A more direct way to obtain up-to-date statistics is to use the ranks of the few latest
batches, a trade-off between a latency of a few batches and the throughput of the whole
transmission. This approach was proposed in [49], and later called BAR in [51,52]. In other
words, BAR is a recoding scheme which groups batches into blocks and jointly optimizes
the number of recoded packets for each batch in the block.

We first describe the adaptive recoding framework and its relation to BAR. We fix an
intermediate network node. Let (h0, h1, . . . , hM) be the incoming rank distribution, tr the
number of recoded packets to be sent for a batch of rank r, and tavg the average number of
recoded packets to be sent per batch. The value of tr is a non-negative real number that is
interpreted as follows. Let ε = tr − btrc be the fractional part of tr. There is an ε chance to
transmit btrc+ 1 recoded packets, and a 1− ε chance to transmit btrc packets. That is, the
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fraction is the probability of transmitting one more packet. Similarly, E(r, tr) is defined as
the linear interpolation by (1− ε)E(r, btrc) + εE(r, btrc+ 1). The framework maximizes
the expected rank of the batches at the next node, which is the optimization problem:

max
tr≥0,∀r∈{0,1,...,M}

M

∑
r=0

hrE(r, tr) s.t.
M

∑
r=0

hrtr = tavg. (7)

For BAR, the incoming rank distribution is obtained from the recently received few
batches. Let a block be a set of batches. We assume that the blocks at a network node are
mutually disjoint. Suppose the node receives a block L. For each batch b ∈ L, let rb and tb
be the rank of b and the number of recoded packets to be generated for b, respectively. Let
tLmax = tavg/|L| be the number of recoded packets to be transmitted for the block L. The
batches of the same rank are considered individually with the notations rb and tb, and the
total number of packets to be transmitted for a block is finite; therefore, we assume tb for
each b ∈ L is a non-negative integer, and tLmax is a positive integer. By dividing both the
objective and the constraint of the framework by |L|, we obtain the simplest formulation of
BAR:

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb) s.t. ∑

b∈L
tb = tLmax. (8)

To support scenarios with multiple outgoing links for the same batch, e.g., load
balancing, we may impose an upper bound on the number of recoded packets per batch.
Let tb

max be a non-negative integer that represents the maximum number of recoded packets
allowed to be transmitted for the batch b. This value may depend on the rank of b at the
node. Subsequently, we can formulate the following optimization problem based on (8):

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb)

s.t. ∑
b∈L

tb = tLmax

tb ≤ tb
max, ∀b ∈ L.

(9)

Note that we must have ∑b∈L tb
max ≥ tLmax. In the case where this inequality does

not hold, we can include more batches in the block to resolve this issue. When tb
max is

sufficiently large for all b ∈ L, (9) degenerates into (8).
The above optimization only depends on the local knowledge at the node. The batch

rank rb can be known from the coefficient vectors of the received packets of batch b. As
a remark, the value of tLmax can affect the stability of the packet buffer. For a general
network transmission scenario with multiple transmission sessions, the value of tLmax can
be determined by optimizing the utility of certain local network transmissions [82,83].

Though we do not discuss such optimizations in this paper, we consider solving BAR
with a general value of tLmax.

On the other hand, note that the solution to (9) may not be unique. We only need to
obtain one solution for recoding purpose. In general, (9) is a non-linear integer program-
ming problem. A linear programming variant of (9) can be formulated by using a technique
in [81]. However, such a formulation has a huge amount of constraints and requires the
values of E(rb, t) for all b ∈ L and all possible t to be calculated beforehand. We defer the
discussion of this formulation to Appendix H.

A network node will keep receiving packets until it has received enough batches to
form a block L. A packet buffer is used to store the received packets. Then, the node
solves (9) to obtain the number of recoded packets for each batch in the block, i.e., {tb}b∈L.
The node then generates and transmits tb-recoded packets for every batch b ∈ L. At
the same time, the network node continually receives new packets. After all the recoded
packets for the block L are transmitted, the node drops the block from its packet buffer and
then repeats the procedure by considering another block.
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We do not specify the transmission order of the packets. Within the same block, the
ordering of packets can be shuffled to combat burst loss, e.g., [43,44,52]. Such shuffling can
reduce the burst error length experienced by each batch so that the packet loss events are
more “independent” from each other. On the other hand, we do not specify the rate control
mechanism, as it should be separated as another module in the system. This can be reflected
in BAR by choosing suitable expected rank functions, e.g., modifying the parameters in the
GE model. BAR is only responsible for deciding the number of recoded packets per batch.

The size of a block depends on its application. For example, if an interleaver is applied
to L batches, we can group the L batches as a block. When |L| = 1, the only solution is
tb = tLmax, which degenerates into baseline recoding. Therefore, we need to use a block
size of at least 2 in order to utilize the throughput enhancement of BAR. Intuitively, it is
better to optimize (9) with a larger block size. However, the block size is related to the
transmission latency as well as the computational and storage burdens at the network
nodes. Note that we cannot conclude the exact rank of each batch in a block until the
previous network node finishes sending all the packets of this block. That is, we need to
wait for the previous network node to send the packets of all the batches in a block until
we can solve the optimization problem. Numerical evaluations in Section 3.5 show that
|L| = 2 already has obvious advantage over |L| = 1, and it may not be necessary to use a
block size larger than eight.

3. Implementation Techniques for Blockwise Adaptive Recoding

In this paper, we focus on the implementation and performance of BAR. Due to the
non-linear integer programming structure of (9), we need to make use of certain properties
of the model in order to solve it efficiently. The authors of [49] proposed greedy algorithms
to solve (9), which were then generalized in [50] to solve (7). The greedy algorithms in [50]
have an potential issue when certain probability masses in the incoming rank distribution
are too small, as they may take too many iterations to find a feasible solution. The number
of iterations is in the order of ∑M

r=0 tr, depending on the solution to (7). That is, we cannot
establish a bound on the time complexity as the incoming rank distribution can be arbitrary.

For BAR, we do not have this issue because the number of recoded packets in a block,
tLmax, is fixed.

In this section, we first discuss the greedy algorithm to solve (9) in Section 3.1. Then, we
propose an approximation scheme in Section 3.2, and discuss its application to speed up the
solver for practical implementations in Section 3.3. The algorithms in Sections 3.1 and 3.3
are similar to that in [50], but they are modified to optimize BAR. Note that the algorithms
in [50] are generalized from [49], so the correctness of the aforementioned modified algo-
rithms is inherited directly from the generalized proofs in [50]. For the approximation
scheme in Section 3.2, which did not appear in [50], a more detailed discussion is provided
in this section.

The algorithms in this section frequently query and compare the values of (1 −
p)βp(t, r) for different t ∈ {−1, 0, 1, . . . , tLmax} and r ∈ {0, 1, 2, . . . , M}. We suppose a
lookup table is constructed so that the queries can be performed in O(1) time. The table
is reusable if the packet loss rate of the outgoing link is unchanged. We only consider the
subset {−1, 0, 1, . . . , tLmax} × {0, 1, 2, . . . , M} of the βp domain because

1. the maximum rank of a batch is M;
2. any tb cannot exceed tLmax as ∑b∈L tb = tLmax.

The case t = −1 will be used by our approximation scheme so we keep it in the lookup table.
We can build the table on-demand by dynamic programming, discussed in Section 3.4.

3.1. Greedy Algorithm

We first discuss the case tLmax ≤ ∑b∈Lmin{rb, tb
max}. This condition means that the

value of tLmax is too small such that the node has just enough or even not enough time to
forward the linearly independent packets received. It is trivial that every {tb}b∈L satisfying
0 ≤ tb ≤ min{rb, tb

max} and ∑b∈L tb = tLmax is a solution to (9), because every such recoded
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packet gains 1− p to the expected rank by Lemma 3(a),where this gain is maximal according
to the definition of βp(t, r).

For tLmax > ∑b∈Lmin{rb, tb
max}, we can initialize tb by min{rb, tb

max} for every b ∈ L
as every such recoded packet gains the maximal value 1− p to the expected rank. After
this, the algorithm chooses the batch that can gain the most expected rank by sending one
more recoded packet, and assigns one more recoded packet to it. The correctness is due to
the concavity of the expected rank functions.

The above initialization reduces most iterations in the algorithm, as in practice, the
difference between the number of recoded packets and the rank of the batch is not huge.
Algorithm 1 is the improved greedy algorithm. Unlike the version in [50], the complexity
of Algorithm 1 does not depend on the solution.

Algorithm 1: Solver for BAR.
Data: tLmax; {rb}b∈L
Result: An assignment {t∗b}b∈L solving (9)
t← tLmax ; tb ← 0, ∀b ∈ L ;
foreach b ∈ L do

if min{rb, tb
max} ≥ t then

tb ← t ;
return The assignment {tb}b∈L ;

else
tb ← min{rb, tb

max} ; t← t− tb ;

while t > 0 do
T ← {b ∈ L : tb = tb

max} ;
b← an element in arg maxb∈L\T βp(tb, rb) ;
tb ← tb + 1 ;
t← t− 1 ;

return The assignment {tb}b∈L ;

Theorem 1. Algorithm 1 can be ran inO(|L|+max{0, tLmax−∑b∈Lmin{rb, tb
max}} log |L|) time.

Proof. There are totally max{0, tLmax−∑b∈Lmin{rb, tb
max}} iterations in the while loop. The

query of µ = arg maxb∈L\T βp(tb, rb) can be implemented by using a binary heap. The
initialization of the heap, i.e., heapify, takes O(|L|) time, which can be performed outside the
loop. Each query in the loop takes O(1) time. The update from βp(tµ, rµ) into βp(tµ + 1, rµ),
if tµ < tµ

max − 1, takes O(log |L|) time. For tµ = tµ
max − 1, we may remove the entry from the

heap, taking the same time complexity as the update above. As ∑b∈Lmin{rb, tb
max} ≥ tLmax

by assumption, the algorithm will not query an empty heap. Therefore, the overall time
complexity is O(|L|+ max{0, tLmax −∑b∈Lmin{rb, tb

max}} log |L|).
In the algorithm, we assume that a lookup table for βp(t, r) is pre-computed. The table

can be reused unless there is an update on the outgoing channel condition. Nevertheless,
we will discuss an efficient way to construct the lookup table in Section 3.4, and the
insignificance of the measurement or prediction errors of the loss probability of the outgoing
channel in Section 4.

As the query arg maxb∈L\T βp(tb, rb) is run repeatedly and an update is performed
after every query, we can use a binary heap as described in the proof in real implementation.
Note that by Lemma 1(b), βp(tµ, rµ) ≥ βp(tµ + 1, rµ), so the update is a decrease key
operation in a max-heap. In other words, a Fibonacci heap [84] cannot benefit from this
operation here.

3.2. Equal Opportunity Approximation Scheme

Algorithm 1 increases tb step by step. From a geometric perspective, the algorithm
finds a path from the interior of a compact convex polytope that models the feasible solu-
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tions to the facetH : ∑b∈L tb = tLmax. If we have a method to move a non-optimal feasible
point on H towards an optimal point, together with a fast and accurate approximation to
(8) or (9), then we can combine them to solve (9) faster than using Algorithm 1 directly.
This idea is illustrated in Figure 3. A generalized tuning scheme can be found in [50] based
on the algorithm in [49]. However, there is no approximation scheme proposed in [50].

t2

t1

tLmax

tLmax

t∗2

t∗1

r2

r1

Figure 3. This figure illustrates the idea of modifying the output of an approximation scheme with
two batches, where L = {1, 2}, tLmax ≥ r1 + r2 and t1

max, t2
max ≥ tLmax. The red and blue dots represent

the optimal and approximate solutions on the facet t1 + t2 = tLmax, respectively. Algorithm 1 starts
the search from an interior point (r1, r2), while a modification approach starts the search from the
blue dot.

We first give an approximation scheme in this subsection. The approximation is based
on an observation of the solution for (8) that does not impose an upper boundary on tb: A
batch of higher rank should have more recoded packets transmitted than a batch of lower
rank. Unless most tb

max are too small, the approximation for (8) is also a good approximation
for (9).

Theorem 2. Let L be a block where |L| ≥ 2. If {tb}b∈L solves (8) and tb ≥ rb for all b ∈ L, then
tm < tn for all m, n ∈ L such that rm < rn.

Proof. See Appendix D.

As we cannot generate any linearly independent packets for a batch of rank 0, we
have E(0, ·) = 0. Therefore, we can exclude batches of rank 0 from L before we start the
approximation. We define L = {b ∈ L : rb > 0} ⊆ L. When tLmax > ∑b∈L rb, we have
tb ≥ rb for all b ∈ L. An easy way to obtain an approximation is to assign {tb}b∈L following
the guidelines given in Theorem 2 by:

• tb = 0 for all b ∈ L \ L;
• tb = rb + ` for all b ∈ L.

where ` = (tLmax −∑b∈L rb)/|L|. In the case where ` is not an integer, we can round it up
for batches with higher ranks and round it down for those with lower ranks.

The above rules allocate the unassigned packets to batches equally after rb packets
have been assigned to each batch b. Thus, we call this approach the equal opportunity
approximation scheme. The steps of this scheme are summarized in Algorithm 2.

Note that we do not need to know the packet loss rate p to apply this approxima-
tion. That is, if we do not know the value of p, we can still apply this approximation to
outperform baseline recoding.

Theorem 3. Algorithm 2 approximates (8) in O(|L|) time. If tLmax ≤ ∑b∈L rb, then the algorithm
solves (8).
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Algorithm 2: Equal opportunity approximation scheme.

Data: tLmax; {rb}b∈L
Result: An assignment {tb}b∈L approximating (8)
`← tLmax ; tb ← 0, ∀b ∈ L ; L← 0 ;
foreach b ∈ L do

if rb ≥ ` then
tb ← ` ;
return The assignment {tb}b∈L ;

else if rb > 0 then
tb ← rb ; `← `− rb ; L← L + 1 ;

if L = 0 then
return An arbitrary feasible solution {tb}b∈L ;

r ← ` mod L ; `← b`/Lc ;
foreach b ∈ L s.t. rb > 0 do

tb ← rb + ` ;

for the r elements which have the largest rb, b ∈ L do
tb ← tb + 1 ;

return The assignment {tb}b∈L ;

Proof. It is easy to see that Algorithm 2 outputs {tb}b∈L which satisfies ∑b∈L tb = tLmax.
That is, the output is a feasible solution of (8). Note that |L| ≤ |L|, so the assignments and
the branches before the last for loop take O(|L|) time in total. The variable L after the first
foreach loop equals |L|. Adding one to the number of recoded packets for r = ` mod L
batches with the highest ranks can be performed in O(|L|) time. Therefore, the overall
running time is O(|L|).

If L = ∅, i.e., the whole block is lost, then any feasible {tb}b∈L is a solution, and
the optimal objective value is 0. If tLmax ≤ ∑b∈L rb, then the algorithm terminates with an
output satisfying tb ≤ rb for all b ∈ L, which is an optimal solution.

For the step that adds 1 to the number of recoded packets for r = ` mod L batches
with the highest ranks in the algorithm, the worst linear time case can be achieved by
using introselect [85] (which is quickselect [86] with a random pivot, but changes to use the
median of medians [87] pivot strategy when the complexity grows). We use the selection
algorithm to find the r-th largest element, making use of its intermediate steps. During an
iteration, one of the following three cases will occur. If the algorithm decides to search a
part larger than the pivot, then the discarded part does not contain the largest r elements.
If a part smaller than the pivot is selected, then the discarded part is part of the largest r
elements. If the pivot is exactly the r-th largest element, then the part larger than the pivot
together with the pivot are part of the largest r elements.

In practice, the batch size M is small. We can search these r batches with the highest
ranks in O(|L| + M) time using a counting technique as an efficient alternative. The
technique is to use part of the counting algorithm [88]. We first compute a histogram of
the number of times each rank occurs, taking O(M) time for initialization and O(|L|) time
to scan the block. Then, we can scan and count the frequencies of the histogram from the
highest rank, and eliminate the part where the count exceeds ` mod |L|. This takes O(M)
time. Lastly, we scan the ranks of the batches again in O(|L|) time. If included in the
modified histogram, we add 1 to the corresponding tb and minus 1 to the corresponding
frequency in the histogram.

Algorithm 2 is a (1− p)-approximation algorithm, although the relative performance
guarantee factor 1− p is not tight in general. However, this suggests that the smaller
the packet loss rate p, the more accurate the output the algorithm gives. We defer this
discussion to Appendix E.
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3.3. Speed-Up via Approximation

In this subsection, we discuss the implementation that corrects an approximate solu-
tion to an optimal solution for (9). Algorithm 3 is a greedy algorithm that uses any feasible
solution of (8) as a starting point. The foreach loop removes the exceeding recoded packets,
assigning the released slot to another batch following the iterations in Algorithm 1. This
can be regarded as mimicking a replacement of βp(·, ·) with the smallest possible value for
the batch b that violates the constraint tb ≤ tb

max. After this, the intermediate solution is a
feasible solution to (9). Then, the last loop finds an increase to the objective by reassigning
some slots among the batches.

Algorithm 3: Solver for BAR via approximation.

Data: tLmax; rb, b ∈ L
Result: An assignment {t∗b}b∈L solving (9)
tb ← 0, ∀b ∈ L ;
Run an approximation to get tb, b ∈ {a ∈ L : ra > 0} ;
T ← {b ∈ L : tb ≥ tb

max} ;
foreach a ∈ L s.t. ta > ta

max do
while ta > ta

max do
b← an element in arg maxb∈L\T βp(tb, rb) ;
tb ← tb + 1 ; ta ← ta − 1 ; T ← {a ∈ L : ta ≥ ta

max} ;

while mina∈L βp(ta − 1, ra) < maxb∈L\T βp(tb, rb) do
a← an element in arg mina∈L βp(ta − 1, ra) ;
b← an element in arg maxb∈L\T βp(tb, rb) ;
ta ← ta − 1 ; tb ← tb + 1 ; T ← {a ∈ L : ta ≥ ta

max} ;

return The assignment {tb}b∈L ;

Note that the algorithm may query βp(ta − 1, ra) for a ∈ L. If ta = 0, then it has access
to the value βp(−1, ra). Recall that we defined βp(−1, ·) = 1, the upper bound of βp(·, ·)
by (10). Therefore, these values act as barriers to prevent outputting a negative number of
recoded packets.

Theorem 4. Let {tb}b∈L be an approximate solution of (8) computed inO(Tapprox) time. Algorithm 3
can be run in O(Tapprox + |L|+ ∑b∈L |t∗b − tb| log |L|) time.

Proof. The assignments before the foreach loop takes O(Tapprox + |L|) time. There are a
total of ∑b∈L |t∗b − tb|/2 iterations in the loops. The queries for the minimum and maximum
values can be implemented using a min-heap and a max-heap, respectively. Similar to
Algorithm 1, we can use binary heaps, taking O(|L|) initialization time, O(1) query time,
and O(log |L|) update time. Each iteration contains at most two heap queries and four
heap updates. The update of the set T can be performed implicitly by setting βp(ta, ra) to 0
during the heap updates for a ∈ T. The overall time complexity is then O(Tapprox + |L|+
∑b∈L |t∗b − tb| log |L|).

In the last while loop, we need to query the minimum of βp(ta − 1, ra) and the
maximum of βp(tb, rb). It is clear that we need to decrease the key βp(tb, rb) to βp(tb + 1, rb)
in the max-heap, and increase the key βp(ta − 1, ra) to βp(ta − 2, ra) in the min-heap.
However, we can omit the updates for batches a and b in the max-heap and min-heap,
respectively, i.e., reduce from four heap updates to two heap updates. We defer this
discussion to Appendix G.

3.4. Construction of the Lookup Table

In the above algorithms, we assume that we have a lookup table for the function βp(·, ·)
so that we can query its values quickly. In this subsection, we propose an on-demand
approach to construct a lookup table by dynamic programming.
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Due to the fact that ∑t
i=0 Bp(t, i) = 1, we have

0 ≤ βp(t, r) ≤ 1. (10)

Furthermore, it is easy to see that

βp(t, r) = 0 if and only if r = 0 and t ≥ 0; (11)

βp(t, r) = 1 if and only if t ≤ r− 1. (12)

A tabular form of βp is illustrated in Figure 4 after introducing the boundaries 0 and
1 s.

1 1 1 1 1
0 1 1 1 1
0 βp(1, 1) 1 1 1

0 βp(2, 1) βp(2, 2) 1 1

0 βp(3, 1) βp(3, 2) βp(3, 3) 1

0 βp(4, 1) βp(4, 2) βp(4, 3) βp(4, 4)

Figure 4. The tabular appearance of the function βp(t, r) after introducing boundaries 0 and 1 s. The
rows and columns correspond to t = −1, 0, 1, . . . and r = 0, 1, 2, . . ., respectively. The row above the
line is βp(−1, ·).

Being a dynamic programming approach, we need the following recursive relations:

Bp(t + 1, r) = (1− p)Bp(t, r− 1) + pBp(t, r) for 0 ≤ r ≤ t; (13)

Bp(r, r) = (1− p)Bp(r− 1, r− 1) for r > 0; (14)

βp(t, r) = βp(t, r− 1) + Bp(t, r− 1) for 1 < r ≤ t + 1, (15)

where (13) is stated in Lemma 1(a); and (14) and (15) are by the definitions of Bp(t, r)
and βp(t, r), respectively. The boundary conditions are Bp(0, 0) = 1, Bp(i,−1) = 0, and
βp(i, 1) = Bp(i, 0) for i = 0, 1, . . .. The table can be built in-place in two stages. The first
stage fills in Bp(y, x− 1) at the (y, x) position of the table. The second stage finishes the
table by using (15). Figure 5 illustrates the two stages where the arrows represent the
recursive relations (13)–(15). As βp(0, 1) = βp(1, 2) = . . . = 1, the corresponding entries
can be substituted in directly.

1 1 1 1 1
0 Bp(0, 0) 1 1 1

0 Bp(1, 0) Bp(1, 1) 1 1

0 Bp(2, 0) Bp(2, 1) Bp(2, 2) 1

0 Bp(3, 0) Bp(3, 1) Bp(3, 2) Bp(3, 3)

0 Bp(4, 0) Bp(4, 1) Bp(4, 2) Bp(4, 3)

(a)

1 1 1 1 1
0 βp(0, 1) 1 1 1

0 βp(1, 1) βp(1, 2) 1 1

0 βp(2, 1) βp(2, 2) βp(2, 3) 1

0 βp(3, 1) βp(3, 2) βp(3, 3) βp(3, 4)

0 βp(4, 1) βp(4, 2) βp(4, 3) βp(4, 4)

(b)

Figure 5. The figures illustrate the two stages of the table generation. The indices start from (−1, 0).
The first row has the index y = −1, which is the row above the line. Compared to Figure 4,
βp(0, 1) = βp(1, 2) = . . . = 1 can be substituted in directly without using the relation (15). (a) The
first stage of the table generation. The 1 and 0 s paddings are generated first. The solid and dashed
arrows represent (13) and (14), respectively. (b) The second stage of the table generation. The 1 and
0 s paddings are kept. The arrows represent the recursive relation (15) with the Bp function in-place.

We can compute the values in the table on-demand. Suppose we have {tb}b∈L in an
iteration of Algorithm 1 so that we need the values of βp(tb, rb) for b ∈ L. Let b′ be an
element in arg maxb∈L rb. The table has rb′ + 1 columns. By the criteria of selecting b in
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Algorithm 1 and by Lemmas 1(c) and (d),we have maxb∈L tb = tb′ . From Figure 5, we know
we have to calculate all rows of β(t, r) for t ≤ tb′ . Furthermore, the recursive relations on a
row only depend on the previous row; thus, we need to prepare the values of Bp in the next
row so that we have the values to compute βp in the next row. As an example, Figure 6
illustrates the values we have prepared when tb′ = 2.

1 1 1 1 1
0 βp(0, 1) 1 1 1

0 βp(1, 1) βp(1, 2) 1 1

0 βp(2, 1) βp(2, 2) βp(2, 3) 1

0 Bp(3, 0) Bp(3, 1) Bp(3, 2) Bp(3, 3)

∗ ∗ ∗ ∗ ∗

Figure 6. The values prepared when tb′ = 2. The asterisks represent the values that are not yet
initialized.

Each entry in the table is modified at most twice during the two stages. Each assign-
ment takes O(1) time. Therefore, the time and space complexities for building the table
are both O(MR), where R is the number of rows we want to construct. When restricted by
the block size, we know that R ≤ tLmax. The worst case is that we only receive one rank-M
batch for the whole block, which is unlikely to occur. In this case, we have the worst case
complexity O(MtLmax).

Note that we can use fixed-point numbers instead of floating point numbers for a
more efficient table construction. Furthermore, the numerical values in the table are not
important as long as the orders for any pair of values in the table are the same.

3.5. Throughput Evaluations

We now evaluate the performance of BAR in a feedbackless multi-hop network. Note
that baseline recoding is a special case of BAR with block size 1. Our main goal here is
to show the throughput gain of BAR among different block sizes. In the evaluation, all
(recoded) packets of a batch are sent before sending those of another batch.

Let (h0, h1, . . . , hM) be the incoming rank distribution of batches arriving at a network
node. The normalized throughput at a network node is defined as the average rank of
the received batches divided by the batch size, i.e., ∑M

i=0 ihi/M. In our evaluations in this
subsection, we set tLmax = M|L| for every block L. That is, the source node transmits M
packets per batch. We assume that every link in the line network has independent packet
loss with the same packet loss rate p. In this topology, we set a sufficiently large tb

max for
every batch, say, tb

max = tLmax.
We first evaluate the normalized throughput with different batch sizes and packet

loss rates. Figure 7 compares adaptive recoding (AR) and baseline recoding (BR) when
we know the rank distribution of the batches arriving at each network node before the
node applies BAR. In other words, Figure 7 shows the best possible throughput of AR. We
compare the effect of block sizes later. We observe that

1. AR has a higher throughput than BR under the same setting;
2. the difference in throughput between AR and BR is larger when the batch size is

smaller, the packet loss probability is larger, or the length of the line network is longer.

In terms of throughput, the percentage gains of AR over BR using M = 4 and p = 0.2
are 23.3 and 33.7% at the 20-th and 40-th hops, respectively. They become 43.8 and 70.3%,
respectively, when p = 0.3.

Although the above figure shows that the throughput of BNC with AR maintains a
good performance when the length of the line network is long, many applications use a
much shorter line network. We zoom into the figure for the first 10 hops in Figure 8 for
practical purposes.



Entropy 2023, 25, 1054 17 of 39

20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Length of Line Network

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(a) p = 0.2

20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Length of Line Network

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

AR, M = 16 BR, M = 16
AR, M = 8 BR, M = 8
AR, M = 4 BR, M = 4

(b) p = 0.3

Figure 7. Adaptive recoding (AR) vs. baseline recoding (BR) in line networks of different lengths,
batch sizes and packet loss rates.
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Figure 8. The first 10 hops in Figure 7.

Now, we consider the effect of different block sizes. Figure 9 shows the normalized
throughput of different |L| and p with M = 8. The first 10 hops in Figure 9 are zoomed in
in Figure 10. We observe that

1. a larger |L| results a better throughput;
2. using |L| = 2 already gives a much larger throughput than using |L| = 1;
3. using |L| > 8 gives little extra gain in terms of throughput.
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Figure 9. The effect of different block sizes with M = 8.
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Figure 10. The first 10 hops in Figure 9.

Next, we show the performance of the equal opportunity approximation scheme. Figure 11
compares the normalized throughput achieved by Algorithm 2 (AS) and the true optimal
throughput (AR). We compare the best possible throughput of AR here, i.e., the same setting as
in Figure 7. The first 10 hops in Figure 11 are zoomed in in Figure 12. We observe that

1. the approximation is close to the optimal solution;
2. the gap in the normalized throughput is smaller when the batch size is larger, the

packet loss probability is smaller, or the length of the line network is shorter.
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Figure 11. Approximation vs. optimal AR in line networks of different lengths, batch sizes and
packet loss rates.
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Figure 12. The first 10 hops in Figure 11.
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4. Impact of Inaccurate Channel Models

In this section, we first demonstrate that the throughput of BAR is insensitive to
inaccurate channel models and packet loss rates. Then, we investigate the feedback design
and show that although feedback can enhance the throughput, the benefit is insignificant.
In other words, BAR works very well without the need of feedback.

4.1. Sensitivity of βp(t, r)

We can see that our algorithms only depend on the order of the values of βp(·, ·);
therefore, it is possible that the optimal {tb}b∈L for an incorrect p is the same for a correct
p. As shown in Figure 4, the boundaries 0 and 1 s are unaffected by p ∈ (0, 1). That is,
we only need to investigate the stability of βp(t, r) for t ≥ r > 0. We calculate values of
βp(t, r) corrected to four digital places in Figure 13 for M = 4, and p = 0.1, 0.45 and their
1% relative changes. We can see that the order of the values are mostly the same when we
slightly change p.

0.1000 1 1 1
0.0100 0.1900 1 1
0.0010 0.0280 0.2710 1
0.0001 0.0037 0.0523 0.3439
0.0000 0.0005 0.0086 0.0815
0.0000 0.0001 0.0013 0.0159
0.0000 0.0000 0.0002 0.0027

(a) p = 0.1.

0.1010 1 1 1
0.0102 0.1918 1 1
0.0010 0.0285 0.2734 1
0.0001 0.0038 0.0533 0.3468
0.0000 0.0005 0.0088 0.0829
0.0000 0.0001 0.0013 0.0163
0.0000 0.0000 0.0002 0.0028

(b) p = 0.101.

0.0990 1 1 1
0.0098 0.1882 1 1
0.0010 0.0275 0.2686 1
0.0001 0.0036 0.0513 0.3410
0.0000 0.0004 0.0083 0.0800
0.0000 0.0001 0.0012 0.0154
0.0000 0.0000 0.0002 0.0026

(c) p = 0.099.
0.4500 1 1 1
0.2025 0.6975 1 1
0.0911 0.4252 0.8336 1
0.0410 0.2415 0.6090 0.9085
0.0185 0.1312 0.4069 0.7438
0.0083 0.0692 0.2553 0.5585
0.0037 0.0357 0.1529 0.3917

(d) p = 0.45.

0.4545 1 1 1
0.2066 0.7024 1 1
0.0939 0.4319 0.8377 1
0.0427 0.2475 0.6163 0.9115
0.0194 0.1358 0.4152 0.7505
0.0088 0.0723 0.2628 0.5676
0.0040 0.0377 0.1589 0.4013

(e) p = 0.4545.

0.4455 1 1 1
0.1985 0.6925 1 1
0.0884 0.4186 0.8295 1
0.0394 0.2355 0.6016 0.9055
0.0175 0.1268 0.3986 0.7370
0.0078 0.0662 0.2479 0.5494
0.0035 0.0338 0.1471 0.3822

(f) p = 0.4455.

Figure 13. The values of βp(t, r) for r = 1, 2, 3, 4 and t = 1, 2, . . . with different p. The coloured
numbers are the largest eight values smaller than 1.

We can also check with the condition number [89] to verify the stability. Roughly
speaking, the relative change in the function output is approximately equal to the condition
number times the relative change in the function input. A small condition number of
βp(t, r) means that the effect of the inaccurate p is small. As shown in Figure 13, the
values of βp(t, r) drop quickly when t increases. In the view of the throughput, which is
proportional to the sum of these values, we can tolerate a larger relative change, i.e., a
larger condition number, when βp(t, r) is small. We calculate condition numbers of βp(t, r)
in Figure 14 by the formula stated in Theorem 5.

1.0000 - - -
2.0000 0.9474 - -
3.0000 1.9286 0.8967 -
4.0000 2.9189 1.8585 0.8479
5.0000 3.9130 2.8388 1.7898
6.0000 4.9091 3.8268 2.7596
7.0000 5.9062 4.8187 3.7412

(a) p = 0.1

1.0000 - - -
2.0000 0.7097 - -
3.0000 1.5714 0.4899 -
4.0000 2.4906 1.2070 0.3296
5.0000 3.4375 2.0325 0.9059
6.0000 4.4000 2.9157 1.6288
7.0000 5.3721 3.8326 2.4384

(b) p = 0.45

Figure 14. The condition numbers of βp(t, r) for r = 1, 2, 3, 4 and t = 1, 2, . . ..

Theorem 5. Let p ∈ (0, 1) and t ≥ r > 0. The condition number of βp(t, r) with respect to p is
pt−r+1(1−p)r−1t!

Ip(t−r+1,r)(t−r)!(r−1)! , or equivalently,
∑r−1

j=0 (−1)j(r−1
j )pt−r+j+1

∑r−1
j=0 (−1)j(r−1

j )pt−r+j+1/(t−r+j+1)
.

Proof. See Appendix F.
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4.2. Impact of Inaccurate Channel Models

To demonstrate the impact of an inaccurate channel model, we consider three different
channels to present our observations.

• ch1: independent packet loss with constant loss rate p = 0.45.
• ch2: burst packet loss modelled by the GE model illustrated in Figure 2 with the

parameters used in [70], namely pGB = pBG = pG = 0.1, pB = 0.8.
• ch3: independent packet loss with varying loss rates p = 0.45 + 0.3 sin(2πc/1280),

where c is the number of transmitted batches.

All the three channels have the same average packet loss rate of 0.45. The formula of ch3 is
for demonstration purpose only.

We now demonstrate the impact of inaccurate p on the throughput. We consider a
line network where all the links use the same channel (ch1, ch2, or ch3). In this topology,
we set a sufficiently large tb

max for every batch, say, tb
max = tLmax. Similar to the previous

evaluation, all (recoded) packets of a batch are sent before sending those of another batch.
Furthermore, we set tLmax = M|L| for every block L.

In Figure 15 we plot the normalized throughput of the first 80 received blocks at the
fourth hop where |L| = M = 4 or 8. We use BAR with (2) for each network although ch2 is
a bursty channel. The black curves with BAR are the throughput of BAR where the loss
rate is known. For ch1 and ch2, this loss rate p is a constant of 0.45. The red and blue
curves are the throughput of BAR when we guess p = 0.65 and 0.25, respectively, which
is ±0.2 from the average loss rate of 0.45. As there is no feedback, we do not change our
guess on p for these curves. We can see that the throughput is actually very close to the
corresponding black curves. This suggests that in the view of the throughput, BAR is not
sensitive to p. Even with a wild guess on p, BAR still outperforms BR, as illustrated by the
green curves. Regarding ch2, we also plot the orange curve with GE BAR, which is the
throughput achieved by BAR with (3). We can see that the gap between the throughput
achieved by BAR with (2) and (3) is very small. As a summary of our demonstration:

1. We can use BAR with (2) for bursty channels and the loss in throughput is insignificant.
2. BAR with an inaccurate constant p can achieve a throughput close to the one when

we have the exact real-time loss rate.
3. We can see a significant throughput gain from BR by using BAR even with inaccurate

channel models.
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Figure 15. Throughput with inaccurate channel conditions.

4.3. Feedback Design

Although an inaccurate p can give an acceptable throughput, we can further enhance
the throughput by adapting the varying p values. To achieve this goal, we need to use
feedback.
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We adopt a simple feedback strategy which lets the next node return the number of
received packets of the batches for the current node to estimate p. Although the next node
does not know the number of lost packets per batch, it knows the number of received
packets per batch. Therefore, we do not need to introduce more overhead to the transmitted
packets by the current node.

When we estimate p, we have to know the number of packets lost during a certain
time frame. If the time frame is too small, the estimation is too sensitive so the estimated p
changes rapidly and unpredictably. If the time frame is too long, we captured too much
out-dated information about the channel so the estimated p changes too slowly and may
not be able to adapt to the real loss rate. Recall that the block size is not large as we want to
keep the delay small. We use a block as an atomic unit of the time frame. The next node
gives feedback on the number of received packets per block. The current node uses the
feedback of the blocks in the time frame to estimate p. We perform an estimation of p per
received feedback. In this way, the estimated p is the same for each block so that we can
apply BAR with (2).

If the feedback is sent via a reliable side channel, then we can assume that the current
node can always receive the feedback. However, if the feedback is sent via an unreliable
channel, say, the reverse direction of the same channel the data packets were sent from, then
we need to consider feedback loss. Let Λ be a set of blocks in a time frame with received
feedback. We handle the case of feedback loss by considering the total number of packets
transmitted for the blocks in Λ as the total number of packets transmitted during the time
frame. In this way, we can also start the estimation before a node sends enough blocks to
fill up a time frame. Suppose no feedback is received for every block in a time frame, then
we reuse the previously estimated p for BAR.

At the beginning of the transmission, we have no feedback yet so we have no in-
formation to estimate p. To outperform BR without the knowledge of p, we can use the
approximation of BAR given by Algorithm 2. Once we have received at least one feedback,
we can then start estimating p.

4.4. Estimators

Let x and n be the total number of packets received by the current node and the total
number of packets transmitted by the previous node, respectively, in a time frame for
observation. That is, the number of packets lost in the time frame is n− x. We introduce
three types of estimators for our numerical evaluations.

(1) Maximum likelihood estimator (MLE): The MLE, denoted by p̂MLE, estimates p by
maximizing the likelihood function. p̂MLE = (n− x)/n is a well-known result which can
be obtained via derivative tests. This form collides with the sample average, so by the law
of large numbers, p̂MLE → p when n→ ∞ if p does not change over time.

(2) Minimax estimator: The minimax estimator achieves the smallest maximum risk
among all estimators. With the popular mean squared error (MSE) as the risk function,
it is a Bayes estimator with respect to the least favourable prior distribution. As studied
in [90,91], such prior distribution is a beta distribution Beta(

√
n/2,

√
n/2). The minimax

estimator of p, denoted by p̂MM, is the posterior mean, which is
√

n
1+
√

n
n−x

n + 1
1+
√

n
1
2 , or

equivalently, n−x+0.5
√

n
n+
√

n .
(3) Weighted Bayesian update: Suppose the prior distribution is Beta(a, b), where the

hyperparameters can be interpreted as a pseudo-observation having a successes and b
failures. Given a sample of s successes and f failures from a binomial distribution, the
posterior distribution is Beta(a + s, b + f ). To fade out the old samples captured by the
hyperparameters, we introduce a scaling factor 0 ≤ γ ≤ 1 and let the posterior distribution
be Beta(γa + s, γb + f ). This factor can also prevent the hyperparameters from growing
indefinitely. The estimation of p, denoted by p̂Bayes, is the posterior mean with s = n− x
and f = x, which is γa+n−x

γ(a+b)+n . To prevent a bias when there are insufficient samples, we
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select a non-informative prior as the initial hyperparameters. Specifically, we use the
Jeffreys prior, which is Beta(1/2, 1/2).

We first show the estimation of p by different schemes in Figure 16. We use BAR
with (2) and |L| = M = 4. The size of the time frame is W blocks. For p̂MLE and p̂MM, the
observations in the whole time frame have the same weight. For p̂Bayes, the effect of each
observation deceases exponentially faster. We consider an observation is out of the time
frame when it is scaled into 10% of the original value. That is, we define the scaling factor
by γ = W

√
0.1. In each subplot, the black curve is the real-time p. The red and blue curves

are for the estimation without and with feedback loss, respectively. In each case, the two
curves are the 25 and 75% percentiles from 1000 runs, respectively.
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Figure 16. The 25 and 75% percentiles of the estimation of p by different schemes where |L| = M = 4
in 1000 runs.

We can see that a larger W has a slower response to the change in p in ch3. Among the
estimators, p̂Bayes has the fastest response speed as its observations in the time frame are
not fairly weighted. Furthermore, although ch1 and ch2 have the same average loss rate,
the estimation has a larger variance when the channel is bursty.

4.5. Throughput Evaluations

As discussed in Section 4.2, the guessed p values have an insignificant impact on the
throughput. We now show the throughput achieved by the estimation schemes in Figure 17.
The parameters for the networks and BAR are the same as in Section 4.2. We do not wildly
guess p here so it is no surprise that we can achieve nearly the same throughput as when
we know the real p for ch1 and ch2. If we look closely, we can see from Figure 15 that for
ch3, there is a small gap between the throughput of BAR when we know the real-time p
and the one of BAR when using a constant p. Although the estimation may not be accurate
at all times, we can now adapt to the change in p to finally achieve a throughput nearly the
same as when we know the real-time p. On the other hand, whether the feedback is lost or
not, the plots shown in Figure 17 are basically the same.

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 4, w/ feedback

Blocks

N
o
rm

a
li
ze
d
T
h
ro
u
g
h
p
u
t

BAR, ch1 p̂MLE, ch1 p̂MM, ch1 p̂Bayes, ch1 Baseline, ch1 BAR, ch2 p̂MLE, ch2 p̂MM, ch2

p̂Bayes, ch2 Baseline, ch2 BAR, ch3 p̂MLE, ch3 p̂MM, ch3 p̂Bayes, ch3 Baseline, ch3 GE BAR, ch2

10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 4, w/o feedback

Blocks
10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 16, w/ feedback

Blocks
10 20 30 40 50 60 70 80

0.1

0.15

0.2

0.25

0.3

0.35

0.4

W = 16, w/o feedback

Blocks

Figure 17. Throughput with estimated p via feedback where |L| = M = 4.
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5. Conclusions

We proposed BAR in this paper which can adapt to variations in the incoming channel
condition. In a practical perspective, we discussed how to calculate the components of BAR
and how to solve BAR efficiently. We also investigated the impact of an inaccurate channel
model on the throughput achieved by BAR. Our evaluations showed that

1. BAR is insensitive to the channel model: guessing the loss rate still outperforms BR.
2. For bursty channels, the throughput achieved by BAR with an independent loss

model is nearly identical to one with the real channel model. That is, we can use the
independent loss model for BAR in practice and apply the techniques in this paper to
reduce the computational costs of BAR.

3. Feedback can slightly enhance the throughput for channels with a dynamic loss rate.
This suggests that BAR works very well without the need of feedback. On the other
hand, feedback loss barely affects the throughput of BAR. Therefore, we can send the
feedback through a lossy channel without the need of retransmission. Unless we need
to use an accurate estimated loss rate in other applications, we can use MLE with a
small time frame for BAR to reduce the computational time.

These encouraging results suggest that BAR is suitable to be deployed in real-world
applications.

One drawback of our proposed scheme is that we need to change the default behaviour
of some intermediate network nodes, which can be a practical problem in existing networks.
In fact, this is a common issue for all network coding schemes. Some routers have hard-
wired circuits to efficiently handle heavy traffic, so it is unfeasible to deploy other schemes
on them without replacing the hardware. For these heavy-loaded nodes, one may consider
producing a hardware to speed up the network coding operations, e.g., [92,93], inducing
extra costs on the deployment. On the other hand, the protocol for BNC is not standardized
yet, meaning two parties may adopt BAR with incompatible protocols, thus restricting the
application of BNC in public networks. However, it is not easy to build a consensus on the
protocol, because there are still many research directions to improve the performance of
BNC so the protocol design is subject to change in the near future.

6. Patents

The algorithms in Section 3 are variants of those that can be found in the U.S. patent
10,425,192 granted on 24 September 2019 [94]. The linear programming-based algorithm
for BAR in Appendix H can be found in the U.S. patent 11,452,003 granted on 20 September
2022 [95].
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Appendix A. Accuracy of the Approximation ζi,r
j ≈ δj,min{i,r}

We demonstrate the accuracy of the approximation ζ i,r
j ≈ δj,min{i,r} by showing the

percentage error of the expected rank function corrected to three decimal places when
q = 28, p = 0.2 and Xt ∼ Binom(t, 1− p) in Table A1. That is, the table shows the values

100
∣∣∣∑t

i=0 (
t
i)(1− p)i pt−i(min{r, i} −∑

min{i,r}
j=0 jζ i,r

j )
∣∣∣

∑t
i=0 (

t
i)(1− p)i pt−i ∑

min{i,r}
j=0 jζ i,r

j

for different r and t.
From the table, we can see that only three pairs of (r, t) have percentage errors larger

than 0.1%, where they occur when r, t ≤ 2. For all the other cases, the percentage errors
are less than 0.1%. Therefore, such an approximation is accurate enough for practical
applications.
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Table A1. Percentage error when approximating expected rank functions.

t r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16

1 0.39216 0.00153 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.13140 0.15741 0.00061 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 0.03841 0.08032 0.08397 0.00033 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.01025 0.03091 0.05791 0.05042 0.00020 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00258 0.01024 0.02761 0.04398 0.03229 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6 0.00062 0.00308 0.01091 0.02502 0.03416 0.02155 0.00008 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00015 0.00087 0.00382 0.01147 0.02258 0.02685 0.01479 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 0.00003 0.00023 0.00122 0.00457 0.01178 0.02023 0.02123 0.01036 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
9 0.00001 0.00006 0.00037 0.00165 0.00526 0.01182 0.01798 0.01686 0.00738 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
10 0.00000 0.00002 0.00011 0.00055 0.00210 0.00585 0.01163 0.01585 0.01342 0.00532 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00000 0.00000 0.00003 0.00017 0.00077 0.00257 0.00632 0.01125 0.01388 0.01070 0.00387 0.00002 0.00000 0.00000 0.00000 0.00000
12 0.00000 0.00000 0.00001 0.00005 0.00027 0.00103 0.00302 0.00665 0.01072 0.01208 0.00854 0.00284 0.00001 0.00000 0.00000 0.00000
13 0.00000 0.00000 0.00000 0.00002 0.00009 0.00038 0.00131 0.00344 0.00685 0.01009 0.01046 0.00682 0.00210 0.00001 0.00000 0.00000
14 0.00000 0.00000 0.00000 0.00000 0.00003 0.00013 0.00052 0.00160 0.00381 0.00693 0.00940 0.00901 0.00545 0.00156 0.00001 0.00000
15 0.00000 0.00000 0.00000 0.00000 0.00001 0.00004 0.00020 0.00069 0.00190 0.00412 0.00689 0.00866 0.00773 0.00436 0.00117 0.00000
16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00007 0.00028 0.00087 0.00219 0.00436 0.00677 0.00792 0.00660 0.00349 0.00088
17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00010 0.00037 0.00106 0.00246 0.00454 0.00656 0.00718 0.00562 0.00279
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00004 0.00015 0.00048 0.00126 0.00271 0.00466 0.00629 0.00647 0.00476
19 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00006 0.00020 0.00060 0.00147 0.00293 0.00471 0.00598 0.00579
20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00008 0.00027 0.00073 0.00167 0.00311 0.00470 0.00563
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Appendix B. Proof of Lemma 1

We have the following properties when a and b are positive integers and 0 ≤ x ≤ 1
([79], Equations 8.17.20 and 8.17.21):

Ix(a, b)− Ix(a + 1, b) =
(

a + b− 1
a

)
xa(1− x)b; (A1)

Ix(a, b + 1)− Ix(a, b) =
(

a + b− 1
b

)
xa(1− x)b. (A2)

Proof of Lemma 1(a). It is trivial for i = 0. For i > 0, recall the recursive formula of
binomial coefficients ([79], Equation 1.2.7):(

t + 1
i

)
=

(
t

i− 1

)
+

(
t
i

)
, i = 1, 2, . . . , t.

Applying the formula, we have

Bp(t + 1, i)

=

(
t + 1

i

)
(1− p)i pt+1−i

= (1− p)
(

t
i− 1

)
(1− p)i−1 pt−(i−1) + p

(
t
i

)
(1− p)i pt−i

= (1− p)Bp(t, i− 1) + pBp(t, i).

Proof of Lemma 1(b). Case I: t < r. By (10) and (12), βp(t + 1, r) ≤ 1 = βp(t, r), and the
equality holds if and only if t + 1 ≤ r− 1 < r.

Case II: t ≥ r > 0. By (6) and (A1),

βp(t, r)− βp(t + 1, r)

= Ip(t− r + 1, r)− Ip(t− r + 2, r)

=

(
t

t− r + 1

)
pt−r+1(1− p)r

> 0.

Case III: t ≥ r = 0. By (11), the equality always hold.

Proof of Lemma 1(c). Case I: t < r. By (12), the equality always hold.
Case II: t ≥ r > 0. By (6) and (A2),

βp(t + 1, r + 1)− βp(t, r)

= Ip(t− r + 1, r + 1)− Ip(t− r + 1, r)

=

(
t
r

)
pt−r+1(1− p)r

> 0.

Case III: t ≥ r = 0. By (10) and (11), βp(t, r) = 0 < βp(t + 1, r + 1).

Proof of Lemma 1(d). Case I: t = −1. By definition, βp(t, r + 1) = βp(t, r) = 1.
Case II: t ≥ 0. Recall that βp(t, r) is the partial sum of the probability mass of the

binomial distribution Binom(t, 1− p). By summing one more term, i.e., βp(t, r + 1), the
partial sum must be larger than or equal to βp(t, r). Note that Bp(t, i) 6= 0 when 0 ≤ i ≤ t,
so the equality holds if and only if βp(t, r) = 1 and if t < r by (12).

Proof of Lemma 1(e) and (f). Inductively by Lemma 1(b), we have

βp(ta + u, ra) ≤ βp(ta, ra) ≤ βp(ta − v, ra) (A3)
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for all a ∈ Λ where u, v are non-negative integers such that ta − v ≥ −1. By (10),

0 ≤ min
b∈Λ

βp(tb, rb) ≤ βp(ta, ra) ≤ max
b∈Λ

βp(tb, rb) ≤ 1 (A4)

for all a ∈ Λ. Combining (A3) and (A4), the proof is complete.

Appendix C. Proof of Lemma 3

By Lemma 3(a), we have E(r, t + 1) = E(r, t) + (1− p)βp(t, r). If t < r, we have

βp(t, r) =
r−1

∑
i=0

Bp(t, i) = 1,

which proves Lemma 3(a).
For Lemma 3(b), note that we have the initial condition

E(r, 0) = Bp(0, 0)min{r, 0} = 0 = (1− p)
(0)−1

∑
j=0

βp(j, r).

We can evaluate Lemma 2 recursively and obtain the first equality in Lemma 3(b).
By Lemma 3(a), we can show that when t < r, we have

E(r, t) = t(1− p). (A5)

This implies that when t ≥ r, we have

E(r, t) = (1− p)

(
r +

t−1

∑
j=r

βp(j, r)

)
. (A6)

When t < r, the summation term ∑t−1
j=r βp(j, r) in (A6) equals 0. So, we can combine

(A5) and (A6) and give

E(r, t) = (1− p)

(
min{r, t}+

t−1

∑
j=r

βp(j, r)

)
.

Appendix D. Proof of Theorem 2

Suppose tm > tn for some rm < rn, i.e.,

tm > tn ≥ rn > rm. (A7)

We define

t′b =


tm if b = n,
tn if b = m,
tb otherwise

for all b ∈ L. We consider the difference of

∑
b∈L

E(rb, t′b)− ∑
b∈L

E(rb, tb)

= [E(rm, tn) + E(rn, tm)]− [E(rm, tm) + E(rn, tn)]

= [E(rn, tm)− E(rn, tn)] + [E(rm, tn)− E(rm, tm)]

= (1− p)

[(
tm−1

∑
j=0

βp(j, rn)−
tn−1

∑
j=0

βp(j, rn)

)
+

(
tn−1

∑
j=0

βp(j, rm)−
tm−1

∑
j=0

βp(j, rm)

)]
(A8)
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= (1− p)

[
tm−1

∑
j=tn

βp(j, rn)−
tm−1

∑
j=tn

βp(j, rm)

]

= (1− p)
tm−1

∑
j=tn

(
βp(j, rn)− βp(j, rm)

)
> 0, (A9)

where

• (A8) follows Lemma 3(b);
• (A9) follows Lemma 1(d) together with (A7).

The above result contradicts that {tb}b∈L solves (8), which gives us that tm ≤ tn for all
rm < rn.

Next, we suppose tm = tn for some rm < rn, i.e.,

tm = tn ≥ rn > rm. (A10)

We define

t′′b =


tn + 1 if b = n,
tm − 1 if b = m,
tb otherwise

for all b ∈ L. Moreover, we compare the difference of

∑
b∈L

E(ri, t′′i )− ∑
b∈L

E(ri, ti)

= [E(rn, tn + 1) + E(rm, tm − 1)]− [E(rn, tn) + E(rm, tm)]

= [E(rn, tn + 1)− E(rn, tn)]− [E(rm, tm)− E(rm, tm − 1)]

= (1− p)[βp(tn, rn)− βp(tm − 1, rm)] (A11)

≥ (1− p)[βp(tm, rm + 1)− βp(tm − 1, rm)] (A12)

> 0, (A13)

where

• (A11) follows Lemma 3(a)
• (A12) follows (A10) and Lemma 1(d)
• (A13) follows Lemma 1(c) together with (A10).

This contradicts {tb}b∈L and solves (8). Therefore, we have tm 6= tn for all rm < rn.
Combining the two cases, the proof is complete.

Appendix E. Performance Guarantee and Bounded Error of Algorithm 2

We start the discussion with the following theorem.

Theorem A1. Let SOL and OPT be the solution given by Algorithm 2 and the optimal solution of
(8), respectively, then 

SOL ≥ (1− p)OPT,

OPT− SOL ≤ (1− p) ∑
b∈L

rb+|L|`′−1

∑
j=rb+`

βp(j, rb),

where `′ = (tLmax −∑b∈L rb)/|L| and ` = b`′c.

Proof. We first show that the algorithm has a relative performance guarantee factor of
1− p. As stated in Theorem 3, when tLmax ≤ ∑b∈L rb, the algorithm guarantees an optimal
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solution. Therefore, we only consider tLmax > ∑b∈L rb. Let {tb}b∈L be the approximation
given by the algorithm.

Note that any linear combinations of r-independent vectors cannot obtain more than
r-independent vectors. Therefore, the expected rank of a batch at the next hop must be no
larger than the rank of the batch at the current hop, and, be non-negative. That is,

0 ≤ E(rb, t) ≤ rb, ∀t ≥ 0, b ∈ L. (A14)

This gives a bound of the optimal solution by

0 ≤ OPT ≤ ∑
b∈L

rb. (A15)

We consider the exact formula of the approximation:

SOL = (1− p) ∑
b∈L

rb + (1− p) ∑
b∈L

tb−1

∑
j=rb

βp(j, rb) (A16)

≥ (1− p) ∑
b∈L

rb (A17)

≥ (1− p)OPT, (A18)

where

• (A16) is stated in Lemma 3(b)
• (A17) holds as βp(j, rb) ≥ 0 for all j, rb, which is by (10);
• (A18) follows the inequality (A15).

Lastly, we show the bounded error. Let {t∗b} be a solution to (8). We write t∗b = rb + `b
where `b ≥ 0 for all b ∈ L. Note that the constraint of (8), i.e., ∑b∈L t∗b = tLmax, suggests that

`b ≤ tLmax − ∑
b∈L

rb = |L|`′. (A19)

On the other hand, it is easy to see that the approximation must either give tb = rb + `
or tb = rb + `+ 1. That is, we have tb ≥ rb + `. By Lemma 3(b),we have

SOL ≥ (1− p) ∑
b∈L

[
rb +

rb+`−1

∑
j=rb

βp(j, rb)

]
. (A20)

We consider the difference between OPT and SOL:

OPT− SOL

≤ (1− p) ∑
b∈L

(
rb+`b−1

∑
j=rb

βp(j, rb)−
rb+`−1

∑
j=rb

βp(j, rb)

)
(A21)

= (1− p) ∑
b∈L

rb+`b−1

∑
j=rb+`,
`b>`

βp(j, rb)−
rb+`−1

∑
j=rb+`b ,
`b<`

βp(j, rb)


≤ (1− p) ∑

b∈L

rb+`b−1

∑
j=rb+`,
`b>`

βp(j, rb) (A22)

≤ (1− p) ∑
b∈L

rb+|L|`′−1

∑
j=rb+`

βp(j, rb), (A23)

where
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• (A21) is the difference between the exact form of OPT by Lemma 3(b) after substituting
the lower bound of SOL shown in (A20);

• the condition `b > ` in the summation of (A22) can be removed, as we have rb + `b −
1 < rb + ` if `b ≤ `;

• (A23) follows (A19) and the fact shown in (10) that the extra βp(j, rb) terms are non-
negative.

The proof is done.

If the relative performance guarantee factor of 1− p is tight, we need both equalities
in (A17) and (A18) to hold. First, by (10), we know that βp(j, rb) is always non-negative.
The equality in (A17) holds if and only if ∑tb−1

j=rb
βp(j, rb) = 0 for all b ∈ L. The sum equals

0 only when

• rb = 0 and tb ≥ 0 according to (11); or
• tb − 1 < rb which forms an empty sum.

The equality in (A18) holds if and only if OPT = ∑b∈L E(rb, t∗b) = ∑b∈L rb. Note that
(A14) shows that E(rb, t∗b) is upper bounded by rb. This implies that we need E(rb, t∗b) = rb
for all b ∈ L. When t∗b ≤ rb, we can apply Lemma 3(a) to obtain E(rb, t∗b) = (1− p)t∗b ,
which equals rb if and only if rb = 0, as we assumed 0 < p < 1 in this paper. By Lemma 2,
E(rb, t) is a monotonic increasing function in terms of t for all rb ≥ 0. Therefore, when
rb 6= 0 we need t∗b > rb, which implies that tLmax > ∑b∈L rb. Then, the approximation will
also give tb > rb for some b ∈ L in this case, and the equality in (A17) does not hold.

That is, we have SOL = (1− p)OPT only when rb = 0 for all b ∈ L. In this case, we
have SOL = OPT = 0. In practice, the probability of having rb = 0 for all b ∈ L is very
small. Therefore, we can consider that the bound is not tight in most cases but it guarantees
that the approximation is good when the packet loss probability is small.

Appendix F. Proof of Theorem 5

Let B(a, b; y) :=
∫ y

0 xa−1(1− x)b−1 dx be the incomplete beta function. We have the
beta function B(a, b) := B(a, b; 1).

From (6), we have βp(t, r) = Ip(t− r + 1, r) = B(t−r+1,r;p)
B(t−r+1,r;1) . By direct calculation, the

condition number is∣∣∣∣∣∣
p dβp(t,r)

dp

βp(t, r)

∣∣∣∣∣∣ =
∣∣∣∣∣ p d

dp

∫ p
0 xt−r(1− x)r−1 dx

B(t− r + 1, r; 1)Ip(t− r + 1, r)

∣∣∣∣∣
=

pt−r+1(1− p)r−1

B(t− r + 1, r; 1)Ip(t− r + 1, r)

=
pt−r+1(1− p)r−1∫ p

0 xt−r(1− x)r−1 dx

=
pt−r+1 ∑r−1

j=0(−1)j(r−1
j )pj∫ p

0 xt−r ∑r−1
j=0(−1)j(r−1

j )xj dx
(A24)

=
∑r−1

j=0(−1)j(r−1
j )pt−r+j+1

∑r−1
j=0(−1)j(r−1

j )
∫ p

0 xt−r+j dx

=
∑r−1

j=0(−1)j(r−1
j )pt−r+j+1

∑r−1
j=0(−1)j(r−1

j )pt−r+j+1/(t− r + j + 1)
,

where the absolute value disappears as both numerator and denominator are non-negative.
The first form of the condition number can be obtained by substituting B(t− r + 1, r; 1) =
(t−r)!(r−1)!

t! into (A24).
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Appendix G. Corrupted Heaps

In this appendix, we explain why we can omit two of the heap updates in Algorithm 3.
Before we start, we need some mathematical descriptions of the optimal solutions of

BAR. Then, we will introduce our lazy evaluation technique on a modified heap that we
called the corrupted heap.

To simplify the notations, we redefine βp(tb, rb) as

βp(t, r) =


0 if tb ≥ tb

max,
1 if tb ≤ min{rb, tb

max} − 1,

∑rb−1
i=0 (tb

i )(1− p)i ptb−i otherwise.

in this appendix. In other words, βp(·, ·) is now a function of b. When tb ≥ tb
max, βp(tb, rb)

is the smallest possible value in the image of βp(·, ·). Therefore, the algorithms in this paper
will not assign more recoded packets to the batch b.

Appendix G.1. Optimality Properties of BAR

First, we introduce the following theorem that states a condition for non-optimality
(or optimality after taking contraposition).

Theorem A2. Let {tb}b∈L be a feasible solution of (9). Then, {tb}b∈L is not an optimal solution of
(9) if and only if there exists two distinct batches κ and ρ with tρ ≥ 1 such that (1− p)βp(tκ , rκ) >
(1− p)βp(tρ − 1, rρ).

Proof. We first prove the sufficient condition. If {tb}b∈L does not solve (9), then it means
that there exists another configuration {t′b}b∈L which can give a higher objective value.
Since ∑b∈L tb = ∑b∈L t′b = tLmax, there exists distinct κ, ρ ∈ L such that t′κ > tκ and t′ρ < tρ.
Note that t′ρ ≥ 0 so we must have tρ ≥ 1. We define

Θ = {κ : t′κ > tκ} and Φ = {ρ : t′ρ < tρ},

where
∑

θ∈Θ
(t′θ − tθ) = ∑

φ∈Φ
(tφ − t′φ) > 0. (A25)

Using the fact that {t′b}b∈L gives a larger objective value and by Lemma 3(b),we have

∑
θ∈Θ

t′θ−1

∑
t=tθ

(1− p)βp(t, rθ) > ∑
φ∈Φ

tφ−1

∑
t=t′φ

(1− p)βp(t, rφ). (A26)

Now, we fix κ and ρ such that

κ ∈ arg max
θ∈Θ

βp(tθ , rθ) and ρ ∈ arg min
φ∈Φ

βp(tφ − 1, rφ).

We have

∑
θ∈Θ

(t′θ − tθ)(1− p)βp(tκ , rκ)

≥ ∑
θ∈Θ

(t′θ − tθ)(1− p)βp(tθ , rθ)

≥ ∑
θ∈Θ

t′θ−1

∑
t=tθ

(1− p)βp(t, rθ) (A27)



Entropy 2023, 25, 1054 32 of 39

> ∑
φ∈Φ

tφ−1

∑
t=t′φ

(1− p)βp(t, rφ) (A28)

≥ ∑
φ∈Φ

(tφ − t′φ)(1− p)βp(tφ − 1, rφ) (A29)

≥ ∑
φ∈Φ

(tφ − t′φ)(1− p)βp(tρ − 1, rρ),

where

• (A27) and (A29) follows Lemma 1(b);
• (A28) is the inequality shown in (A26).

Applying (A25), we have

(1− p)βp(tκ , rκ) > (1− p)βp(tρ − 1, rρ),

which proves the sufficient condition.
Now we consider the necessary condition, where we have

(1− p)βp(tκ , rκ) > (1− p)βp(tρ − 1, rρ) (A30)

for some distinct κ and ρ. Let

t′b =


tκ + 1 if b = κ,
tρ − 1 if b = ρ,
tb otherwise

for all b ∈ L. Then, we consider the following:

∑
b∈L

E(rb, t′b)

= ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rκ , tκ + 1) + E(rρ, tρ − 1)

= ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rρ, tρ − 1) + [E(rκ , tκ) + (1− p)βp(tκ , rκ)] (A31)

> ∑
b∈L\{κ,ρ}

E(rb, tb) + E(rκ , tκ) + [E(rρ, tρ − 1) + (1− p)βp(tρ − 1, rρ)] (A32)

= ∑
b∈L\{ρ}

E(rb, tb) + E(rρ, tρ) (A33)

= ∑
b∈L

E(rb, tb),

where

• (A31) and (A33) follow Lemma 3(a)
• (A32) follows (A30).

meaning that {tb}b∈L is not an optimal solution of (9).

Next, we define the sub-problems (A34) of (9) for k ∈ {0, 1, . . . , tLmax}, which present
the optimal substructure of (9).

max
tb∈{0,1,2,...},∀b∈L ∑

b∈L
E(rb, tb)

s.t. ∑
b∈L

tb = k

tb ≤ tb
max, ∀b ∈ L.

(A34)
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Note that we assume ∑b∈L tb
max ≥ tLmax ≥ k, or otherwise we should include more

batches in the block.
We define a multiset Ωr that collects the value of (1− p)βp(t, r) for all integers t ≥ 0,

i.e.,
Ωr = {(1− p)βp(t, r) : t ∈ {0, 1, 2, . . .}}.

By Lemma 3(b),we have E(r, t) = (1− p)∑t−1
j=0 βp(j, r). As E(r, t) is concave with

respect to t, βp(t, r) is a monotonic decreasing function on t (also stated in Lemma 1(b)).
This implies the following lemma.

Lemma A1. E(r, t) equals the sum of the largest t elements in Ωr.

Proof. By Lemma 3(b), E(r, t) = (1− p)∑t−1
j=0 βp(j, r). By Lemma 1(b), βp(t, r) is a mono-

tonic decreasing function on t. By (10) and (12), we have βp(0, r) = 1 ≥ βp(t, r) for all
positive integers t. Therefore, E(r, t) is the sum of the largest t elements in Ωr.

We fix a block L and define a multiset

Ω :=
⊎

b∈L
Ωrb = {(1− p)βp(tb, rb) : tb ∈ {0, 1, 2, . . . , tb

max − 1}, b ∈ L}.

If two batches a, b ∈ L have the same rank, i.e., ra = rb, then for all t, we have
(1 − p)βp(t, ra) = (1 − p)βp(t, rb). As Ω is a multiset, the duplicated values are not
eliminated. Now, we have the following lemma to connect (A34) and Ω.

Lemma A2. The optimal value of (A34) is the sum of the largest k elements in Ω.

Proof. Let {tb}b∈L solves (A34). We suppose the optimal value is not the sum of the largest
k elements in Ω. However, Lemma A1 states that E(rb, tb) equals the sum of the largest tb
elements in Ωrb for all b ∈ L. This means that there exists two distinct batches κ, ρ ∈ L
with tκ ≤ tb

max − 1 and tρ ≥ 1 such that (1− p)βp(tκ , rκ) > (1− p)βp(tρ − 1, rρ).
By setting tLmax = k, we can apply Theorem A2 which gives that {tb}b∈L is not an

optimal solution of (A34). The proof is completed by contradiction.

We define a multiset Ω′
tLmax

which is a collection of the largest tLmax elements in Ω. By

Lemma A2, ∑ω∈Ω′
tLmax

ω is the optimal value of (9). For any non-optimal solution (t(k)b )b∈L,

we define a multiset

fk := {(1− p)βp(t, rb) : t ∈ {0, 1, . . . , t(k)b − 1}, b ∈ L},

where the value k ∈ {0, 1, . . . , tLmax − 1} is the number of elements in Ω′
tLmax

which are also
contained in fk.

Appendix G.2. Lazy Evaluations

We consider an iteration in the last while loop in Algorithm 3. Suppose we choose to
increase tb by 1 and decrease ta by 1.

Lemma A3. If batch a is selected by the max-heap or batch b is selected by the min-heap in any
future iteration, then the optimal solution is reached.

Proof. Suppose batch a with key A is selected by the max-heap in a future iteration. Note
that A was once the smallest element in fk for some k. Therefore, at the current state
where k′ > k, every element in fk′ must be no smaller than A. Equivalently, we have
(1 − p)βp(tκ , rκ) ≤ (1 − p)βp(tρ − 1, rρ) for all κ, ρ ∈ L. By Theorem A2, the optimal
solution is reached. The min-heap counterpart can be proved in a similar fashion.
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Suppose we omit the update for the batch ρ in the heap. We call the key of the batch
ρ a corrupted key, or the key of the batch ρ is corrupted. A key which is not corrupted is
called an uncorrupted key. A heap with corrupted keys is called a corrupted heap. In other
words, the key of a batch is corrupted in a corrupted max-heap if and only if the same
batch was once the minimum of the corresponding original min-heap, and vice versa. As
a remark, we do not have a guaranteed maximum portion of corrupted keys as an input.
Furthermore, we do not adopt the carpooling technique. This suggests that the heap here is
not a soft heap [97].

Lemma A4. If the root of a corrupted heap is a corrupted key, then the optimal solution is reached.

Proof. We only consider a corrupted max-heap in the proof. We can use similar arguments
to show that a corrupted min-heap also works.

In a future iteration, suppose batch a is selected by the corrupted max-heap. We
consider the real maximum in the original max-heap. There are three cases.

Case I: batch a is also the root of the original max-heap. As the key of a is corrupted, it
means that the batch was once selected by the corresponding min-heap. By Lemma A3, the
optimal solution is reached.

Case II: the root of the original max-heap is batch a′ where the key of a′ is also
corrupted. Similar to Case I, batch a′ was once selected by the corresponding min-heap,
and we can apply Lemma A3 to finish this case.

Case III: the root of the original max-heap is batch a′′ where the key of a′′ is not
corrupted. In this case, the uncorrupted key of a′′ is also in the corrupted max-heap. Note
that the corrupted key of a is no larger than the actual key of a in the original max-heap.
This means that the key of a, a′′ and the corrupted key of a have the same value. It is
equivalent to let the original max-heap select batch a, as every element in fk′ must be no
smaller than the key of a′′, where k′ represents the state of the current iteration. Then, the
problem is reduced to Case I.

Combining the three cases, the proof is completed.

Theorem A3. The updates for batch a in the max-heap and batch b in the min-heap can be omitted.

Proof. When we omit the updates, the heap itself becomes a corrupted heap. We have to
make sure that when a batch with corrupted key is selected, the termination condition of
the algorithm is also met.

We can express the key of batch π in a corrupted max-heap and min-heap by βp(tπ +
sπ , rπ) and βp(tπ − 1− uπ , rπ), respectively, where sπ , uπ are non-negative integers. When
sπ or uπ is 0, the key is uncorrupted in the corresponding corrupted heap. By Lemma 1(b),
we have

βp(tπ + sπ , rπ) ≤ βp(tπ , rπ),

βp(tπ − 1, rπ) ≤ βp(tπ − 1− uπ , rπ).

That is, the root of the corrupted max-heap is no larger than the root of the original
max-heap. Similar for the min-heap. Mathematically, we have

max
π∈L

βp(tπ + sπ , rπ) ≤ max
π∈L

βp(tπ , rπ), (A35)

min
π∈L

βp(tπ − 1, rπ) ≤ min
π∈L

βp(tπ − 1− uπ , rπ). (A36)

Suppose a corrupted key is selected. By Lemma A4, we know that the optimal solution
is reached. Therefore, we can apply the contrapositive of Theorem A2 and know that

(1− p)βp(tκ , rκ) ≤ (1− p)βp(tρ − 1, rρ) (A37)
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for all κ, ρ ∈ L. We can omit the condition tρ ≥ 1 because by (10) and (12), we have
βp(−1, ·) = 1 ≥ βp(·, ·). The inequality (A37) is equivalent to

max
π∈L

βp(tπ , rπ) ≤ min
π∈L

βp(tπ − 1, rπ).

We can mix this inequality with (A35) and (A36) to show that when a corrupted key is
selected, we have

max
π∈L

βp(tπ + sπ , rπ) ≤ min
π∈L

βp(tπ − 1− uπ , rπ),

which is the termination condition shown in Algorithm 3 after we replaced the heaps into
corrupted heaps.

We just showed that once a corrupted key selected, the termination condition is
reached. In the other words, before a corrupted key is selected, every previous selection
must be an uncorrupted key. That is, the details inside the iterations are unaffected. If
an uncorrupted key is selected where it also satisfies the termination condition, then no
corrupted key is touched, and the corrupted heap still acts as a normal heap at this point.

The correctness of the algorithm when using a corrupted heap is proven. Moreover,
we do not need to mark which key is corrupted. This is, we can omitted the mentioned
heap updates for a normal heap.

We do not need to mark down which key is corrupted while the algorithm still works,
so we can simply omit the mentioned updates as lazy evaluations. As there are two heaps
in algorithm, we can reduce from four to two heap updates.

Appendix H. Linear Programming Formulation of BAR

In [81], a distributionally robust optimization [98] for AR is formulated as a linear
programming problem. It is based on an observation that when the expected rank function
E(r, t) is concave with respect to t, we can reformulate it by

E(r, t) = min
i∈{0,1,...,ı̄}

(∆r,it + ξr,i)

if we fix an artificial upper bound t ≤ ı̄, where ∆r,t := E(r, i + 1) − E(r, i) and ξr,i :=
E(r, i)− i∆r,i. In (9), we implicitly have t ≤ tLmax, so we can make use of this expression to
write (9) as

max
tb ,eb≥0,∀b∈L ∑

b∈L
eb

s.t. ∑
b∈L

tb = tLmax

tb ≤ tb
max, ∀b ∈ L

eb ≤ E(rb, i) + (E(rb, i + 1)− E(rb, i))(tb − i), ∀b ∈ L, ∀i ∈ {0, 1, . . . , tLmax},

where tb is allowed to be a non-integer. A non-integer tb means that we first generate btbc
recoded packets, then we generate one more recoded packet with probability tb − btbc.
Note that there are |L|tLmax constraints for eb.

To turn such a non-deterministic solution into a deterministic one, we perform the
following steps:

1. Collect the batches with non-integer recoded packets into a set S.
2. Calculate R = ∑b∈S(tb − btbc). Note that R is an integer for BAR.
3. For every b ∈ S, remove the fractional part of tb.
4. Randomly select R batches from S and add one recoded packet to each of these batches.

We have an integer R because ∑b∈L tb = tLmax. Furthermore, we have R < |S|. Re-
ferring to the idea of Algorithm 1, we have the same value of ∆rb ,btbc for all b ∈ S. After
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removing the fractional part of tb for all b ∈ S, it becomes the sub-problem (A34) (defined
in Appendix G.1) with k = tLmax− R. The last step follows Algorithm 1 such that the output
is a solution to (9) where tb for all b ∈ L are all integers.
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