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Abstract: The subject of oil price forecasting has obtained an incredible amount of interest from
academics and policymakers in recent years due to the widespread impact that it has on various eco-
nomic fields and markets. Thus, a novel method based on decomposition–reconstruction–ensemble
for crude oil price forecasting is proposed. Based on the Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN) technique, in this paper we construct a recursive
CEEMDAN decomposition–reconstruction–ensemble model considering the complexity traits of
crude oil data. In this model, the steps of mode reconstruction, component prediction, and ensemble
prediction are driven by complexity traits. For illustration and verification purposes, the West Texas
Intermediate (WTI) and Brent crude oil spot prices are used as the sample data. The empirical result
demonstrates that the proposed model has better prediction performance than the benchmark models.
Thus, the proposed recursive CEEMDAN decomposition–reconstruction–ensemble model can be an
effective tool to forecast oil price in the future.

Keywords: oil price forecasting; complexity trait; component reconstruction; recursive CEEMDAN
algorithm; decomposition–reconstruction–ensemble model

1. Introduction

Crude oil, which is the world’s most important chemical raw material and strategic
resource, ensures the normal operation of the national economy and people’s livelihoods,
and it is a critical support for the development of the entire modern industrial society.
Crude oil plays an important role in the global economy, political situation, and military
strength of various countries as a basic energy source. As a result, changes in crude oil
prices have sparked widespread concern worldwide. Because of the interactive impact of
various factors such as the global economy, exchange rate changes, speculative behavior,
and geopolitics, the oil price always exhibits non-linearity, non-stationarity, and high
complexity, which poses significant challenges to crude oil price forecasting.

In the literature, various linear and nonlinear models have been used separately or in
combination to make forecast (see, e.g., Buyuksahin & Ertekin [1]). Linear methods assume
that a given time series is regular with no sudden movements. It becomes challenging
because sudden movements with variation and extreme values are normal in many real-
world time series such as financial data and renewable energy data (see, e.g., Xu et al. [2]).
Numerous nonlinear time series prediction methods (see, e.g., Kantz & Schreiber [3])
have been proposed in the literature to capture these nonlinearities. Conventional linear
methods can better approximate time series with no high volatility and multicollinearity.
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Zhang et al. [4] and Elman [5] show that nonlinear methods have the advantages when
modeling a complex structure in time series with high accuracy. No universal model is
suitable for all circumstances because each type of method outperforms others in different
domains. Individually capturing general patterns in the time series data using only one
linear or nonlinear model appears to be difficult (see, e.g., Khashei & Bijari [6]). To overcome
this limitation, Taskaya & Casey [7] proposed hybrid techniques with both linear and
nonlinear models. The hybrid methodology is a synthesis of various prediction methods. It
is usually a combination of traditional econometric models and AI algorithms (see, e.g.,
Wang et al. [8]) or a combination of different econometric models or AI algorithms.

In addition to the hybrid methodology, the ensemble learning algorithm is an impor-
tant paradigm to overcome the limitations of single methods. Both hybrid methodology
and the ensemble method consider the shortcomings of single models. With the divide-and-
conquer strategy (see, e.g., Yu et al. [9] and Dong et al. [10]), the decomposition–ensemble
learning methods are an important branch of ensemble learning paradigms. Because it
will take a lot of time to make individual prediction from all decomposed components, the
number of decomposed components is necessarily reduced. Yu et al. [11] first proposed a
decomposition–ensemble model with a reconstruction step that considered some data char-
acteristics. Recently, Yu & Ma [12] introduced a memory-trait-driven reconstruction method
into the decomposition and ensemble framework. Inspired by their work, a new model
based on decomposition–ensemble learning with a reconstruction step that considers the
data complexity traits is used to explore the price predictions of crude oil. In this model, all
steps of mode reconstruction, component prediction, and ensemble prediction are driven by
complexity traits. First, a decomposition–ensemble approach is used to decompose the oil
price time series. Second, the complexity of these decomposed components are separately
computed. Then, each component can be identified based on its complexity ranking from
high to low. Different components are predicted through appropriated models. Finally,
the forecasting for different components can be aggregated to produce the final prediction
output. The contributions of the article are as follows:

i. A novel decomposition–reconstruction–ensemble method is proposed with clustering
capability to capture the inner complexity traits. The performance of the proposed re-
cursive CEEMDAN for different complexity traits of data is tested and validated using
popular single models and several decomposition–reconstruction–ensemble models.

ii. The proposed recursive CEEMDAN technique is used to improve the performance
of the CEEMDAN decomposition method by recursively decomposing the rapidly
fluctuating components into less volatile sub-components.

iii. In the proposed recursive CEEMDAN decomposition–reconstruction–ensemble fore-
casting methodology, the reconstruction method, prediction method, and ensemble
method are determined by the complexity traits of the crude oil data themselves.

The remainder of this paper is organized as follows. Section 2 considers a comparison
to the related works. Research data and the decomposition–reconstruction–ensemble
method are discussed in Section 3. Section 4 presents the error measures to validate the
prediction models. Some main findings are illustrated by comparing the results of the
proposed model to the benchmark models. The prediction performance of the proposed
model is further discussed in Section 5. Section 6 summarizes this paper and provides the
improvement direction of future research.

2. Related Work
2.1. Forecasting by Statistical Models

Statistical models, which are also known as random time series models, include
exponential smoothing (ES) (see, e.g., Kourentzes et al. [13]), auto-regressive integrated
moving average (ARIMA) model (see, e.g., Guo [14]), generalized auto-regressive condi-
tional heteroskedasticity (GARCH) model (see, e.g., Zhang et al. [15]), hidden Markov
model (HMM) (see, e.g., Isah & Bon [16]), and vectorial auto-regression (VAR) (see, e.g.,
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Mirmirani & Li [17]). For example, Zolfaghari & Gholami [18] showed that ARIMA models
had a good forecasting impact on international crude oil prices. To modify the mean
and variance of the log returns of crude oil prices, Zhu et al. [19] introduced a hidden
Markov model to obtain the behavior of random events and subjective factors for time
series fluctuations. Using a VAR model, Drachal [20] applied the global economic policy
uncertainty index, production, volatility index, and crude oil volatility to predict crude oil
prices. Despite their simplicity and ease of implementation, these statistical models cannot
directly process time series with nonlinear characteristics due to their linear correlation
structure. Meanwhile, as the soft computing technology has advanced, many different
intelligent algorithms have been developed and widely used in various data predictions.
However, conventional statistical and econometric models are constrained by stringent
theoretical assumptions, including linearity, stationarity, and dependence on specific dis-
tributional properties. As a result, these methods may encounter limitations in accurately
forecasting wind power time series that are non-stationary, nonlinear, and characterized by
complex dynamics.

2.2. Forecasting by Artificial Intelligence and Machine Learning Methods

A crucial presumption in the application of econometric models is that the time
series data under study are a linear process. However, crude oil prices do not satisfy this
requirement, which can result in less accurate forecasting outcomes. In contrast, various
nonlinear intelligence and machine learning methods (e.g., the support vector machine
(SVM) proposed by Yu et al. [21] and the extreme learning machine (ELM) proposed by
Wang et al. [22]) have emerged to satisfy the requirements, and they can be applied to time
series prediction tasks. Moreover, deep learning is gaining popularity in machine learning,
since conventional machine learning techniques employ shallow structures. Recently,
an artificial neural network (ANN) (see, e.g., Jammazi & Aloui [23]), a back-propagation
neural network (BPNN) (see, e.g., Khashei & Bijari [6]), long short-term memory (LSTM)
networks (see, e.g., Urolagin et al. [24]), and convolutional neural networks (CNNs) (see,
e.g., Li et al. [25]) can implement time series with nonlinear characteristics and have high
prediction precision. For example, Wang & Wang [26] created a crude oil price forecasting
model that utilized a random Elman recurrent neural network, and the predictive power
of the model was analyzed in comparison to other models. Yu et al. [27] incorporated the
cutting-edge AI method of EELM into an ensemble model formulation to forecast crude
oil prices, and findings showed that the suggested unique ensemble learning paradigm
statistically outperformed all investigated benchmark models. However, these models
have some drawbacks, including local minima, over-fitting, and a large sample size. While
it has been demonstrated that ensemble models can outperform individual models, they
are still susceptible to issues such as overfitting and being trapped in local extrema, which
can limit their ability to generalize effectively.

2.3. Forecasting by Hybrid Models

To overcome the limitations of the aforementioned techniques, hybrid models have
been proposed. It is not uncommon for researchers to employ a combination of econo-
metric models and artificial intelligence algorithms or even a combination of econometric
models and artificial intelligence algorithms. For example, Cheng et al. [28] predicted
crude oil prices in 2018 using the vector error correction and nonlinear auto-regressive
neural network (VEC-NAR) model. To enhance the technical indicator-based crude oil price
forecasting, He et al. [29] implemented a unique hybrid forecast approach using scaled prin-
cipal component analysis (s-PCA). In-sample and out-of-sample performance comparisons
revealed that the s-PCA model was superior to the compared models. Wang & Fang [30]
developed a novel combination of the FNN model and stochastic time effective function
for crude oil prices forecasting, i.e., the WT-FNN model, and the findings revealed that the
WT-FNN model had the best predictive impact. Zhang et al. [15] offered a novel hybrid
technique to predict crude oil prices based on the least square support vector machine,
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particle swarm optimization, and GARCH model. The experimental findings demon-
strated that this approach might accurately estimate crude oil prices. To predict crude oil
prices accurately, Wang et al. [31] employed a Markov model to implement the GARCH-
MIDAS model for both short-term and long-term state conversion, but they discovered
that short-term predictions were more accurate. Like the hybrid approach, our proposed
decomposition–ensemble method also takes into account the shortcomings of single models.
The biggest difference is that the ensemble learning employs several identical individual
methods for ensemble prediction.

2.4. Forecasting by the Decomposition–Ensemble Learning Method

Recent studies have established a novel ensemble predicting approach called the
decomposition ensemble to manage the challenge of forecasting nonlinear time-series data.
Similar to the hybrid method, this approach considers the limitations of single models.
Ensemble learning employs multiple identical single techniques for ensemble prediction,
whereas the hybrid model employs multiple distinct single models for combination pre-
diction. Oil price predictions typically rely on various significant studies. For example,
Li et al. [25] and Li et al. [32] decomposed the monthly crude oil futures price data into
multiple modes using VMD. Then, they forecast each mode using a SVM that was op-
timized by a genetic algorithm and a BPNN that was optimized by a genetic algorithm.
Using the Akaike information criterion (AIC) to determine a reasonable lag, Ding [33]
proposed a decomposition ensemble model using ensemble empirical mode decomposition
(EEMD) for crude oil forecasting. Yu et al. [9] used empirical mode decomposition (EMD)
to decompose crude oil prices and the feedforward neural network (FNN) to forecast the
components. Zheng et al. [34] recently proposed a method combining an empirical mode de-
composition algorithm, quadratic surface support vector regression, and the autoregressive
integrated moving average method for the stock indices and future price forecasting. The
study obtained better forecasting results than the direct forecasting model. However, the
existing literature on constructing the decomposition–ensemble framework has some limita-
tions. It primarily focuses on selecting decomposition–reconstruction–prediction–ensemble
methods based on the characteristics of the model, rather than taking into account the
characteristics of the data themselves. Therefore, the method proposed in this paper has the
ability of selecting appropriate decomposition methods, reconstruction methods, prediction
methods, and ensemble methods based on the specific traits of the data.

3. Methodology
3.1. Recursively Decomposition Method

In this paper, we propose a recursive CEEMDAN-based technique for time series
forecasting, which attempts to extract more stable sub-components from rapidly changing
components to improve the prediction accuracy. The architecture of the proposed method
is given in Figure 1.

The proposed method recursively calls the CEEMDAN decomposition technique (see,
e.g., Torres et al. [35]) for each component until it satisfies one of the following two conditions:

• The component becomes less complex than the given series.
• The correlation between the component and the given series exceeds a specified threshold.

The first condition takes into account the sample entropy values of each component.
According to the methods proposed by Richman & Moorman [36], the sample entropy value
is greater for more complicated components. Therefore, the more complicated components
are decomposed again into their own sub-components via CEEMDAN in the algorithm.

The second condition employs Pearson correlation (see, e.g., Hauke & Kossowski [37])
to determine the similarity between the specified component and the series. High correla-
tion is a termination criterion for this recursive method. Recursive decomposition is halted
if a sub-component is substantially connected with its higher component regardless of its
fluctuation rate.
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Figure 1. General framework of the recursive CEEMDAN decomposition–reconstruction–
ensemble methodology.

The pseudo-code of the proposed method is indicated in Algorithm 1. After the given
data have been decomposed into components via CEEMDAN at line 1, all components are
called in the loop at line 2 where each component is analyzed. At line 3, a sample entropy
value of each component and the input data, which is the first condition of the proposed
algorithm, is calculated using the sample entropy (SE) method (see, e.g., Richman &
Moorman [36]). At line 4, the correlation results are obtained. At line 5, the second condition
of the proposed algorithm which measures the correlation between upper component and
the sub-component is calculated. If the sub-component has a higher sample entropy value
than its upper component and their correlation is low, the given component must be re-
decomposed by CEEMDAN. In this case, the Recursive Method function is called again
for this sub-component at line 7. Otherwise, no more decomposition is required for the
sub-component. At line 8, the ultimate decomposition result is formed.
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Algorithm 1: Recursive CEEMDAN-based decomposition method

Input: the original time series data
Output: the decomposed time series
1: Decompose the input time series data with the method CEEMDAN (different IMFs
are obtained).
2: for each component imf in IMFs do
3: Compute each component’s and the input data’s sample entropy im fSE, inputdataSE.
4: Derive the correlation between the selected component imf and the input data im fcorr.
5: if im fSE <inputdataSE and im fcorr <0.9
then
6: Output the selected component imf.
else
7: Go to step 1 and decompose the selected imf.
8: return The decomposed imfs and their sub-components.

Then, based on the recursive CEEMDAN algorithm, different decomposed com-
ponents of the original data and their sub-components are obtained. The decomposed
components are identified as low-complexity components when they have smaller com-
plexity traits than the original time series after the first decomposition. The decomposed
components with larger complexity traits than the original time series will be recognized
as high-complexity components when they are recursively decomposed only once. Then,
other decomposed components are recognized as medium-complexity components, which
implies that these components have larger complexity traits than the original time series
and they will be recursively decomposed two or more times.

3.2. Performance Evaluation Criteria

To verify the validity of a forecast, the model outcomes are assessed. Numerous
experiments are conducted to evaluate the forecasting performance of the proposed hybrid
model and the reference models. In this paper, we use three popular accuracy measures
with the following corresponding definitions:

MAE =
1
N

N

∑
t=1
|dt −Ot|, (1)

RMSE =

√√√√ 1
N

N

∑
t=1

(dt −Ot)2, (2)

MAPE =
1
N

N

∑
t=1

∣∣∣∣dt −Ot

dt

∣∣∣∣, (3)

where dt and Ot are the real and predicted values at time t (t = 1, 2, . . . , N); N is the number
of samples in the testing data set; and d̂t and Ôt are the average values of the actual value
and predicted value, respectively.

In addition, a Diebold–Mariano (DM) test (see, e.g., Yu et al. [38]) is chosen to prove
the superiority of the proposed model. Furthermore, popular single models and sev-
eral decomposition–reconstruction–ensemble models are built as benchmark models to
test the effectiveness of the proposed model. In detail, ES is constructed as the single
benchmark model for the traditional econometric model. For AI models, SVR, ELM, and
ANN are developed as single benchmark models. As a benchmark model for decomposi-
tion–reconstruction–ensemble models, four similar decomposition–reconstruction–ensemble
frameworks with different basic prediction models are built.
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4. Empirical Result
4.1. Research Data

In this paper, the weekly WTI and Brent crude oil spot price from the US Energy
Information Administration (EIA) (http://www.eia.doe.gov/ (accessed on 11 August
2022)) were selected as sample data. The sampling period was from 1 January 2010 to
31 December 2021, and there are 627 observations in total. The training set accounts for
70% of the total sample size, which includes 418 observations, and the test set accounts for
30% of the total sample size, which includes 209 observations. The test data set is used to
evaluate how well the proposed model performed compared to the benchmark models.

Table 1 displays these initial crude oil price series with their statistical measurements,
which include the minima, maxima, means, and standard deviations. We find that the
rejection of the null hypothesis of Gaussian distribution results from the Anderson and
Darling test, which is confirmed by the time series data with nonzero skewness and
positive excess kurtosis. Overall, the chosen observations are not stationary, and the model
construction should consider necessary data preprocessing.

Table 1. Descriptive statistics of crude oil spot price data.

Observations Max Min Aver Range Std.dev.Skewness Kurtosis AD Test

WTI 627 112.81 3.92 69.3636 108.89 22.3042
0.0734 1.9038 10.4 ***

Brent 627 126.62 14.24 75.6762 112.38 26.4016
0.1842 1.8713 13.65 ***

*** denotes rejections of the null hypothesis at the 1% level.

4.2. Experimental Result Analysis

First, the original time series of WTI and Brent crude oil prices are decomposed by
CEEMDAN, as shown in Figures 2 and 3. In particular, the price series of WTI and Brent
crude oil are decomposed into 8 IMF components and one residual term. Each of the
intrinsic mode functions can be categorized into high and low frequencies, with each
component showcasing unique characteristics. The decomposition analysis reveals that the
residue component exhibits noteworthy long-term trends, while sub-components 1 to 8 are
stationary or nearly stationary, as illustrated in Figures 2 and 3. However, the effectiveness
of the decomposition process in improving crude oil price forecasting performance remains
an open topic for further discussion in subsequent sections.

In the second step, component reconstruction is performed to reduce the computa-
tional time complexity. According to Tables 2 and 3, different decomposed modes have
different degrees of complexity, and the complexity traits of each decomposed mode show
a downward trend with an increasing time scale. Subsequently, based on the recursive
CEEMDAN algorithm, all components are recognized as high-complexity components,
medium-complexity components, and low-complexity components. More concretely, IMFs
and residual components are identified as low-complexity when they have smaller com-
plexity traits than the original time series after the first decomposition. The IMFs with
larger complexity traits than the original time series will be recognized as high-complexity
components when they are recursively decomposed with only one step. Then, other IMFs
are recognized as medium-complexity components. These components have larger com-
plexity traits than the original time series, and they will be recursively decomposed with
two or more steps. Tables 2 and 3 report the test results of the complexity traits for each
decomposed component of WTI and Brent crude oil prices, respectively.

http://www.eia.doe.gov/
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Figure 2. CEEMDAN decomposition results of the WTI crude oil prices (dollars per barrel).
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Figure 3. CEEMDAN decomposition results of the Brent crude oil prices (dollars per barrel).

Table 2. Complexity test results of the IMF components for WTI crude oil.

IMFs Sample Entropy Complexity Traits

IMF1 1.7830
high-complexityIMF2 1.0767

IMF3 0.6369

IMF4 0.4913 medium-complexityIMF5 0.3749

IMF6 0.1481

low-complexityIMF7 0.0713
IMF8 0.0262
Res 0.0027
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Table 3. Complexity test results of the IMF components for Brent crude oil.

IMFs Sample Entropy Complexity Traits

IMF1 1.7466
high-complexityIMF2 1.1038

IMF3 0.6331

IMF4 0.5276 medium-complexityIMF5 0.3936

IMF6 0.1420

low-complexityIMF7 0.0591
IMF8 0.0199
Res 0.0019

Next, it is necessary to select a suitable method to predict different components.
According to the complexity test results, nine components are reduced into six components
after the reconstruction. In addition, the complexity traits of the decomposition components
will change when the components change. Based on the reconstruction method, three
kinds of components with different degrees of complexity, namely the high-complexity
component, medium-complexity component, and low-complexity component, can be
obtained. Then, the selection of suitable predictive methods driven by complexity traits
is achieved through the trial-and-error approach. Tables 4–9 presents the selection results
for predicting different decomposed components of WTI and Brent crude oil prices with
complexity traits.

Tables 4–6 show the performance value of different combination models such as X-SVR-
SVR, SVR-X-SVR, and SVR-SVR-X. For example, in the X-SVR-SVR model (see Table 4), the
second and third SVR methods indicate that the medium-complexity component and low-
complexity component use the SVR model, while X will try four different methods (i.e., ES,
SVR, ELM, ANN) to find a suitable model for the high-complexity component. To facilitate
computational convenience, the ADD is temporarily employed as an ensemble method
for investigating the correlation between the memorable component and the prediction
method. Based on the aforementioned explanations, Table 4 presents the experimental
findings regarding the high-complexity components.

For the parameter of the ES, a simple first-order ES with a smoothing constant is chosen.
The smoothing constant is determined using the principle of the minimum root mean square
error. For the parameters of the SVR model, the Gaussian RBF kernel function is adopted,
and the grid search method is used to set the regularization and kernel parameters. For the
ELM and ANN models, the number of nodes in the hidden layer is set to 30.

Tables 4–6 illustrate that an ANN is suitable for high-complexity component forecast-
ing, while SVR is suitable for both medium-complexity and low-complexity component
forecasting. The ANN-SVR-SVR has better prediction accuracy than other model com-
binations for WTI crude oil price forecasting. Tables 7–9 show the experimental results
of the high-complexity component, medium-complexity component, and low-complexity
component, respectively. Similarly, the SVR-SVR-SVR has better prediction performance
than other model combinations for Brent crude oil price forecasting according to Tables 7–9.

Table 4. Prediction performance comparison of a high-complexity component under different
prediction methods for WTI crude oil price data.

MAE ES SVR ELM ANN

X-ES-ES 1.6191 0.8133 1.9097 0.7849
X-SVR-SVR 1.3695 0.3162 1.6804 0.3021
X-ELM-ELM 1.6175 0.8159 1.9106 0.7875
X-ANN-ANN 1.4411 0.5109 1.7242 0.5010
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Table 4. Cont.

RMSE ES SVR ELM ANN

X-ES-ES 2.3884 1.1637 2.8503 1.0986
X-SVR-SVR 2.0536 0.6285 2.5845 0.4857
X-ELM-ELM 2.3882 1.1643 2.8512 1.0093
X-ANN-ANN 2.1183 0.8655 2.6417 0.7459

MAPE ES SVR ELM ANN

X-ES-ES 0.0470 0.0239 0.0583 0.0204
X-SVR-SVR 0.0426 0.0149 0.0544 0.0116
X-ELM-ELM 0.0470 0.0239 0.0583 0.0204
X-ANN-ANN 0.0450 0.0210 0.0562 0.0178

Table 5. Prediction performance comparison of a medium-complexity component under different
prediction methods for WTI crude oil price data.

MAE ES SVR ELM ANN

ES-X-ES 1.6191 1.4027 1.6186 1.4060
SVR-X-SVR 0.7643 0.3162 0.7647 0.3649
ELM-X-ELM 1.9101 1.7173 1.9106 1.7136
ANN-X-ANN 0.8195 0.4422 0.8199 0.5010

RMSE ES SVR ELM ANN

ES-X-ES 2.3884 2.0670 2.3883 2.0730
SVR-X-SVR 1.0727 0.6285 1.0729 0.6910
ELM-X-ELM 2.8510 2.5929 2.8512 2.5999
ANN-X-ANN 1.1255 0.6794 1.1257 0.7459

MAPE ES SVR ELM ANN

ES-X-ES 0.0470 0.0430 0.0470 0.0433
SVR-X-SVR 0.0231 0.0149 0.0231 0.0164
ELM-X-ELM 0.0583 0.0550 0.0583 0.0550
ANN-X-ANN 0.0223 0.0162 0.0223 0.0178

Table 6. Prediction performance comparison of a low-complexity component under different pre-
diction methods for WTI crude oil price data.

MAE ES SVR ELM ANN

ES-ES-X 1.6191 1.6247 1.6170 1.6973
SVR-SVR-X 0.4036 0.3162 0.4050 0.4554
ELM-ELM-X 1.9084 1.9032 1.9106 1.9668
ANN-ANN-X 0.4123 0.3561 0.4143 0.5010

RMSE ES SVR ELM ANN

ES-ES-X 2.3884 2.3445 2.3882 2.3963
SVR-SVR-X 0.6679 0.6285 0.6684 0.8033
ELM-ELM-X 2.8504 2.8165 2.8512 2.8629
ANN-ANN-X 0.5871 0.5563 0.5878 0.7459

MAPE ES SVR ELM ANN

ES-ES-X 0.0470 0.0471 0.0469 0.0494
SVR-SVR-X 0.0163 0.0149 0.0163 0.0194
ELM-ELM-X 0.0583 0.0581 0.0583 0.0603
ANN-ANN-X 0.0141 0.0132 0.0141 0.0178
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Table 7. Prediction performance comparison of a high-complexity component under different
prediction methods for Brent crude oil price data.

MAE ES SVR ELM ANN

X-ES-ES 1.6801 0.8727 2.0259 0.8862
X-SVR-SVR 1.3609 0.3096 1.7325 0.3148
X-ELM-ELM 1.6803 0.8732 2.0269 0.8872
X-ANN-ANN 1.4301 0.5547 1.7848 0.5687

RMSE ES SVR ELM ANN

X-ES-ES 2.3661 1.2018 2.7537 1.2179
X-SVR-SVR 1.8842 0.4478 2.3509 0.4611
X-ELM-ELM 2.3661 1.2018 2.7542 1.2180
X-ANN-ANN 1.9614 0.7250 2.4200 0.7447

MAPE ES SVR ELM ANN

X-ES-ES 0.0332 0.0180 0.0401 0.0183
X-SVR-SVR 0.0269 0.0071 0.0341 0.0072
X-ELM-ELM 0.0332 0.0180 0.0401 0.0183
X-ANN-ANN 0.0287 0.0127 0.0349 0.0129

Table 8. Prediction performance comparison of a medium-complexity component under different
prediction methods for Brent crude oil price data.

MAE ES SVR ELM ANN

ES-X-ES 1.6801 1.3943 1.6815 1.4119
SVR-X-SVR 0.7827 0.3096 0.7840 0.3126
ELM-X-ELM 2.0282 1.7682 2.0269 1.7719
ANN-X-ANN 0.9064 0.4804 0.9052 0.5687

RMSE ES SVR ELM ANN

ES-X-ES 2.3661 1.9098 2.3662 1.9345
SVR-X-SVR 1.0163 0.4478 1.0169 0.4989
ELM-X-ELM 2.7549 2.3742 2.7542 2.3938
ANN-X-ANN 1.1946 0.6384 1.1943 0.7447

MAPE ES SVR ELM ANN

ES-X-ES 0.0332 0.0279 0.0333 0.0284
SVR-X-SVR 0.0159 0.0071 0.0159 0.0076
ELM-X-ELM 0.0401 0.0348 0.0401 0.0347
ANN-X-ANN 0.0185 0.0111 0.0185 0.0129

Table 9. Prediction performance comparison of a low-complexity component under different pre-
diction methods for Brent crude oil price data.

MAE ES SVR ELM ANN

ES-ES-X 1.6801 1.6119 1.6815 1.7146
SVR-SVR-X 0.3768 0.3096 0.3780 0.4635
ELM-ELM-X 2.0246 1.9625 2.0269 2.0606
ANN-ANN-X 0.4521 0.3216 0.4544 0.5687
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Table 9. Cont.

RMSE ES SVR ELM ANN

ES-ES-X 2.3661 2.2772 2.3662 2.3468
SVR-SVR-X 0.5445 0.4478 0.5451 0.6216
ELM-ELM-X 2.7533 2.6762 2.7542 2.7416
ANN-ANN-X 0.6444 0.5183 0.6453 0.7447

MAPE ES SVR ELM ANN

ES-ES-X 0.0332 0.0317 0.0333 0.0337
SVR-SVR-X 0.0091 0.0071 0.0091 0.0108
ELM-ELM-X 0.0401 0.0386 0.0401 0.0405
ANN-ANN-X 0.0109 0.0079 0.0109 0.0129

5. Discussion
5.1. Prediction Performance Comparison

In this part, the proposed model, four single models (i.e., ES, SVR, ELM, ANN),
and four decomposition–reconstruction–ensemble models (i.e., D-R-ES, D-R-SVR, D-R-
ELM, D-R-ANN), which are considered benchmark models, are performed to predict
the testing dataset of WTI and Brent crude oil prices. Here, “D” denotes the chosen
decomposition method, and “R” denotes the proposed reconstruction rule of the component.
The results are shown in Tables 10–13. According to these results, the proposed model
almost outperforms all of the considered benchmark models. The final form of the proposed
model is simply the decomposition–reconstruction–ensemble model with the form of “D-R-
SVR” for Brent crude oil price forecasting. Thus, the model with the form of “D-R-SVR” is
not considered a target model in Table 13.

Table 10. Performance comparison of WTI crude oil spot price data.

Model MAE RMSE MAPE

ES 1.9048 2.5800 0.0583
SVR 0.3858 0.8642 0.0201
ELM 1.9102 2.8511 0.0583
ANN 0.5857 0.8727 0.0203
D-R-ES 1.6191 2.3884 0.0470
D-R-SVR 0.3162 0.6285 0.0149
D-R-ELM 1.7635 2.6664 0.0520
D-R-ANN 0.5010 0.7459 0.0178
Proposed Model 0.3021 0.4857 0.0116

Table 11. Performance comparison of Brent crude oil spot price data.

Model MAE RMSE MAPE

ES 2.0208 2.7528 0.0400
SVR 0.3811 0.6554 0.0104
ELM 2.0270 2.7542 0.0401
ANN 0.7461 1.1956 0.0198
D-R-ES 1.6801 2.3661 0.0332
D-R-SVR 0.3096 0.4478 0.0071
D-R-ELM 1.8305 1.4877 0.0332
D-R-ANN 0.5687 0.7447 0.0129
Proposed Model 0.3096 0.4478 0.0071
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Table 12. Performance comparison of WTI crude oil spot price data with DM test.

D-R-ES D-R-SVR D-R-ELM D-R-ANN ES SVRELM ANN

Proposed Model −5.0627 (***) −2.2336 (**) −4.6018 (***) −4.7393 (***) −4.5974 (***) −1.8938 (**)
−4.6011 (***) −4.4155 (***)

D-R-ES 5.1956 −2.5090 (***) 4.9168 −2.5018 (***) 5.2711
−2.5084 (***) 4.8856

D-R-SVR −4.7382 (***) −1.7617 (**) −4.7335 (***) −1.7749 (**)
−4.7374 (***) −4.2466 (***)

D-R-ELM 4.5240 0.9932 4.9374
−1.2236 4.5142

D-R-ANN −4.5195 (***) −0.7064
−4.5233 (***) −3.4376 (***)

ES 4.9323
−0.9629 4.5096

SVR −4.9365 (***) −0.0656

ELM 4.5134
*** and ** denote 1% significant level and 5% significant level.

Table 13. Performance comparison of Brent crude oil spot price data with DM test.

D-R-ES D-R-ELM D-R-ANN ES SVRELM ANN

Proposed Model −4.7937 (***) −4.8754 (***) −5.3732 (***) −4.8701 (***) −2.0571 (**)
−4.8761 (***) −3.9619 (***)

D-R-ES −3.1369 (***) 4.5017 −3.1250 (***) 4.6181
−3.1378 (***) 3.7919

D-R-ELM 4.6596 0.9593 4.7483
−0.2304 4.1415

D-R-ANN −4.6543 (***) −1.8099
−4.6603 (***) −3.5135 (***)

ES 4.7429
−0.9702 4.1362

SVR −4.7490 (***) −4.6727 (***)

ELM 4.1432
*** and ** denote 1% significant level and 5% significant level.

Furthermore, the decomposition–reconstruction–ensemble models make predictions
better than the single models according to Tables 10 and 11. In particular, for WTI crude
oil price forecasting, the decomposition–reconstruction–ensemble models have average
MAE, RMSE, and MAPE values of 1.0867, 1.6535, and 0.0345, respectively, while the
single models have average MAE, RMSE, and MAPE values of 1.2334, 1.8382, and 0.0408,
respectively. For the Brent crude oil price forecasting, the prediction accuracy values for
the decomposition–reconstruction–ensemble models are 1.1463, 1.5782, and 0.0233, while
those for the single models are 1.3429, 1.9266, and 0.0290. The main reason is that the
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decomposition–reconstruction–ensemble can minimize the complexity of crude oil data,
which boosts its prediction performance compared to benchmark single models.

Comparing with the eight benchmark models, i.e., ES, SVR, ELM, ANN, D-R-ES,
D-R-SVR, D-R-ELM, and D-R-ANN, the proposed model shows superior performance
in crude oil price forecasting. In Table 10, the proposed model improves the prediction
accuracy by 59.89%, 63.33%, and 61.82% on average compared to the benchmark single
models and by 52.42%, 55.06%, and 53.10% on average compared to the benchmark decom-
position–reconstruction–ensemble models. Then, Table 11 shows that the proposed model
improves the accuracy of the Brent crude oil price forecasting by 62.01%, 65.88%, and 65.66%
on average compared to the benchmark single models and by 52.96%, 51.17% and 51.47% on
average compared with the benchmark decomposition–reconstruction–ensemble models.
Therefore, the proposed recursive CEEMDAN decomposition–reconstruction–ensemble
prediction method can effectively improve the prediction performance of WTI and Brent
crude oil prices.

In addition, the DM test is used to compare the prediction performance of different
models in the benchmark models in Tables 12 and 13 to statistically prove the superiority
of the proposed model for WTI and Brent crude oil price forecasting. These conclusions are
statistically proven by data from the DM test, as indicated by the p-values (in brackets). First,
at a significance level of 5%, the proposed model outperforms all benchmark models, which
suggests that the proposed recursive CEEMDAN decomposition–reconstruction–ensemble
prediction model is better than the listed benchmark models for WTI and Brent crude
oil price forecasting. Second, when the decomposition–reconstruction–ensemble models
in the benchmark models are tested as the target models in Tables 12 and 13, only the
D-R-SVR can be proven to be better than all single models with the significance level of
5%. Third, focusing on different decomposition–reconstruction–ensemble models in the
benchmark models, although the D-R-SVR can be statistically demonstrated to be better
than their D-R-based counterparts at the confidence level of 5%, it is essential to choose
the appropriate prediction model for the reconstructed components with different degrees
of complexity.

5.2. Further Discussion

In this section, we perform the EEMD decomposition method and two different recon-
struction rules to compare the prediction performance of the proposed model. The two rules
are mode reconstruction based on the threshold setting of SE (see, e.g., Zhang et al. [39])
and fine-to-coarse (FTC) (see, e.g., Yu et al. [38] and Zhang et al. [39]). Different models are
performed as the benchmark models, which are denoted in the form of R-D-R-SA, where
“R-D” indicates different recursive decomposition methods to be compared, “R” indicates
different reconstruction rules, and “SA” represents the selected predictive methods driven
by the complexity traits and simple addition for the final ensemble. Tables 14 and 15 and
Figures 4 and 5 show the results of different models. Similarly, the DM test is performed
to evaluate the accuracy of different prediction models, and the corresponding results are
presented in Table 16. According to Tables 14–16 and Figures 4 and 5, the main findings are
as follows.

First, as Tables 14 and 15 show, no model can outperform other models under all
indicators. Compared with the EEMD decomposition-based models, the proposed model
for WTI crude oil price forecasting improves the prediction accuracy by 10.10%, 13.28%,
and 11.35% on average, and the proposed model for Brent crude oil price forecasting
improves the prediction accuracy by 17.27%, 21.0%, and 16.50% on average. One possible
reason is that CEEMDAN minimizes the complexity of WTI and Brent crude oil price data.
Thus, it can effectively filter out the meaningful components and significantly enhance the
forecast accuracy.

Second, the proposed model is better than the benchmark models based on other
reconstruction rules. In concrete, compared with the benchmark models with different
reconstruction rules, the proposed model for WTI crude oil price forecasting improves the
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prediction accuracy by 3.51%, 6.75%, and 4.59% on average, and the proposed model for
Brent crude oil price forecasting improves the prediction accuracy by 7.78%, 9.40%, and
7.05% on average. Table 16 also shows that the DM test at the 10% level of significance
confirms the superiority of the suggested model. Thus, the WTI and Brent crude oil
data can be better predicted using the proposed reconstruction approach based on the
complexity trait.

Third, the proposed model has lower MAE, RMSE, and MAPE than other models
based on the EEMD decomposition models and reconstruction rules from Figures 4 and 5.
For example, compared with different reconstruction methods in the benchmark models,
the proposed model for WTI crude oil price forecasting improves the prediction accuracy by
10.89%, 16.03%, and 12.75% on average, and the proposed model for Brent crude oil price
forecasting improves the prediction accuracy by 20.04%, 24.32%, and 18.84% on average.
Thus, the proposed model improves the prediction performance in WTI and Brent crude
oil price forecasting. Meanwhile, as shown in Table 16, when the proposed model is used
as the target model, all p-values of the DM test fall below the threshold of 10%, so the
proposed model has a significantly higher level of accuracy in its predictions than the
benchmark models.

Table 14. Performance comparison of WTI crude oil spot price data with EEMD decomposition
method and different reconstruction rules.

Model MAE RMSE MAPE

R-EEMD-R-SA 0.3332 0.5057 0.0121
R-EEMD-TE-SA 0.3738 0.5651 0.0124
R-EEMD-FTC-SA 0.3428 0.7486 0.0178
R-CEEMD-TE-SA 0.3128 0.5319 0.0122
R-CEEMD-FTC-SA 0.3380 0.5946 0.0134
Proposed Model 0.3021 0.4857 0.0116

Table 15. Performance comparison of Brent crude oil spot price data with EEMD decomposition
method and different reconstruction rules.

Model MAE RMSE MAPE

R-EEMD-R-SA 0.3350 0.5906 0.0087
R-EEMD-TE-SA 0.4450 0.6231 0.0088
R-EEMD-FTC-SA 0.4492 0.6555 0.0099
R-CEEMD-TE-SA 0.4175 0.5958 0.0097
R-CEEMD-FTC-SA 0.3269 0.5134 0.0072
Proposed Model 0.3096 0.4478 0.0071

Table 16. DM test results across different models for WTI and Brent crude oil price forecasting.

R-EEMD-R-S R-EEMD-TE-S R-EEMD-FTC-S R-CEEMD-TE-S R-CEEMD-FTC-S

Proposed Model (WTI) −2.1569 (**) −3.1099 (***) −1.3059 (*) −3.8245 (***) −1.5388 (*)
Proposed Model (Brent) −2.4887 (***) −34.0993 (***) −3.2081 (***) −1.9624 (**) −1.8207 (**)

***, ** and * denote 1% significant level, 5% significant level and 10% significant level.
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Figure 4. Performance comparison of different models for WTI crude oil price forecasting.

Figure 5. Performance comparison of different models for Brent crude oil price forecasting.

6. Conclusions and Future Directions

This paper proposes a new complexity-traits-driven recursively CEEMDAN decomposi-
tion–reconstruction–ensemble method for WTI and Brent crude oil price forecasting. All
steps of component reconstruction for decomposed components, component prediction,
and ensemble prediction are driven by the complexity traits, and the proposed method
proves to be more effective than the benchmark models.

In the empirical analysis, the proposed recursive CEEMDAN decomposition–
reconstruction–ensemble learning paradigm is significantly better than the most popular
single models, different decomposition–reconstruction–ensemble models, and ensemble
models based on the EEMD decomposition methods or different reconstruction rules. Based
on the empirical experiments, four insightful conclusions can be summarized.

First, the prediction accuracy of WTI and Brent crude oil price data demonstrates
that the proposed model outperforms all benchmark models. Specifically, compared with
different benchmark models, the proposed model for WTI crude oil price forecasting
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improves the prediction accuracy by 56.16%, 59.19%, and 57.46% on average, and the
proposed model for Brent crude oil price forecasting improves the prediction accuracy by
57.48%, 58.53%, and 58.56% on average. Therefore, the proposed model can be a useful tool
to forecast WTI and Brent crude oil prices in the near future.

Second, CEEMDAN can achieve better prediction performance than the EEMD decom-
position-based method. For example, compared with the EEMD decomposition-based
models, on average, the proposed model improves the prediction accuracy by 10.10%,
13.28%, and 11.35% for WTI crude oil price forecasting and by 17.27%, 21.0%, and 16.50%
for Brent crude oil price forecasting.

Third, the prediction performance of crude oil price data can be further improved
by selecting appropriate prediction models for the reconstructed components with dif-
ferent degrees of complexity. For example, compared with the benchmark decomposi-
tion–reconstruction–ensemble models (i.e., D-R-KRR, D-R-ELM, D-R-SVR, and D-R-ANN),
on average, the proposed model improves the prediction accuracy by 52.42%, 55.06%, and
53.10% for WTI crude oil price forecasting and by 52.96%, 51.17%, and 51.47% for Brent
crude oil price forecasting. Therefore, it is essential to choose the appropriate prediction
models according to the complexity traits.

Finally, compared with the existing reconstruction rules, the recursively decomposition-
reconstruction method based on the complexity traits can reduce the modeling complexity
well, which shows its usefulness and efficacy in WTI and Brent crude oil price forecasting.
For example, on average, the proposed model improves the prediction accuracy by 10.89%,
16.03%, and 12.75% for WTI crude oil price forecasting and by 20.04%, 24.32%, and 18.84%
for Brent crude oil price forecasting. Thus, mode reconstruction driven by complexity traits
is effective.

In addition to the sample entropy used by our recursive CEEMDAN method, other
time series features such as the frequency change rate and autocorrelation can be used.
Future research extensions will focus on the following: (1) verifying more advanced
decomposition methods under the proposed framework in this paper and (2) exploring
more results in other research areas such as the stock market, power market, and other
emerging markets using the proposed complexity-trait-driven reconstruction-ensemble
learning paradigm.
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