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Abstract: In quasi-synchronous frequency-hopping multiple access (QS-FHMA) systems, low-hit-
zone (LHZ) frequency-hopping sequence (FHS) sets have been well-applied to reduce mutual inter-
ference (MI). In this paper, we propose three constructions of LHZ FHS sets with new parameters via
interleaving techniques. The obtained sequences can be verified that they are optimal with respect to
the Peng–Fan–Lee bound.
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1. Introduction

Frequency-hopping multiple-access (FHMA) is widely used in modern communication
systems such as military radar communication systems, Bluetooth communication systems,
and more [1–3]. Simultaneous transmission of data by multiple users on the same frequency
leads to mutual interference (MI), which should be minimized to improve the quality and
reliability of the communication. In addition to this, there exists a strong association
between the Hamming correlation (HC) of the frequency hopping sequence (FHS) set and
the level of the MI. Therefore, it is reasonable to prioritize the construction of FHS sets
with a low HC for the significance of the HC in evaluating the performance of frequency
hopping sequences (FHSs).

The value of the MI will be maintained at a low level at the zone around the origin
between various users, and the low-hit-zone (LHZ) FHS sets will be employed in quasi-
synchronous (QS) FHMA systems. Thus, the construction of the optimal LHZ FHS set with
respect to the Peng–Fan–Lee bound is preferable to the construction of the optimal FHS set
with respect to the Peng–Fan bound [4] in some respects.

Numerous optimal LHZ FHS sets have been found that satisfy the Peng–Fan–Lee
bound [5]. Ma and Sun [6] constructed the first class of optimal LHZ FHS sets with
respect to the Peng–Fan–Lee bound in 2010. Using the Cartesian, Chung et al. [7] provided
a few constructions of the optimal LHZ FHS sets in 2013. By using the interleaving
technique, Niu et al. [8,9] obtained various constructions of optimal LHZ FHS sets in 2012
and 2014. Cai et al. [10,11] obtained classes of optimal LHZ FHS sets with optimal partial
HC properties in 2014 and 2015. Han et al. [12] and Wang et al. [13] constructed LHZ FHS
sets with different parameters in 2016. Using the Cartesian, Zhou et al. [14,15] introduced
some constructions of LHZ FHS sets in 2017. Ling et al. [16] obtained a class of optimal
LHZ FHS sets in the next year. Niu et al. [17,18] constructed a new class of optimal LHZ
FHS sets with large family sizes in 2019. In the same year, the construction by Han et al. [19]
of a class of LHZ FHS sets with the optimal partial HC. Niu et al. [20,21] constructed classes
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of optimal FHS sets in 2020. In 2022, Zhou et al. [22] constructed four classes of LHZ FHS
sets with optimal partial HC properties.

In this paper, we propose three constructions of LHZ FHS sets with new parameters by
interleaving technique and the LHZ FHS sets are optimal with respect to the Peng–Fan–Lee
bound. We make the following arrangement for the remaining portion of this paper. We
introduced some notations and the bounds on the FHS set in Section 2. We described how
the LHZ FHS set is constructed by using an interleaving technique in Section 3. Finally, we
made a few concluding remarks in Section 4.

2. Preliminaries

Let F = { f1, f2, · · · , fc} be a set with c available frequency slots. A sequence X = {xj}L−1
j=0

is called a FHS of length L over F for all xj, 0 ≤ j ≤ L− 1. For any two FHSs X = {xj}L−1
j=0 ,

Y = {yj}L−1
j=0 of length L over F, their Hamming correlation function HXY(τ) of sequences X

and Y at delay time τ is defined by

HXY(τ) =
L−1

∑
j=0

h[xj, yj+τ ] 0 ≤ τ ≤ L− 1,

where the subscript j + τ of the above equation needs to be modulo L, and h[xj, yj+τ ] = 1
if xj = yj+τ , and 0 otherwise.

For a sequence X, the Hamming autocorrelation of X can be defined as

Ha(X) = max
1≤τ≤L−1

{HXX(τ)}.

For any given FHS set Q, the maximum Hamming autocorrelation (MHAC) Ha(Q), the
maximum Hamming crosscorrelation (MHCC) Hc(Q) and the maximum Hamming correlation
(MHC) of Q are, respectively, defined as

Hm(Q) = max{Ha(Q), Hc(Q)},

Ha(Q) = max
1≤τ≤L−1

{HXX(τ) | X ∈ Q},

Hc(Q) = max
0≤τ≤L−1

{HXY(τ) | X, Y ∈ Q, X 6= Y}.

In 2004, Peng and Fan proposed a lower bound for an FHS set as follows.

Lemma 1 (Peng-Fan bound [4]). Let Q (L, N, c, Hm(Q)) be a set, then we have

Hm(Q) ≥
(NL− c)L
(NL− 1)c

,

where (L, N, c, Hm(Q)) denotes a set of N FHSs of length L with size c, with the MHC Hm(Q).

If each parameter of the FHS set Q substituted into the above equation satisfies the
equal sign case, the Q is said to be the optimal FHS set.

For any FHS set Q, if Ha ≥ 0, Hc ≥ 0, the LHZ Zh of Q is defined as

Zh = min{Zah, Zch},
where

Zah = max
1≤τ≤G

{G | HXX(τ) ≤ Ha, ∀X ∈ Q},

Zch = max
0≤τ≤G

{G | HXY(τ) ≤ Hc, ∀X, Y ∈ Q, X 6= Y}.



Entropy 2023, 25, 1044 3 of 14

In 2006, Peng, Fan and Lee proposed a lower bound for the LHZ FHS set as follows.

Lemma 2 (Peng–Fan–Lee bound [5]). Let Q(L, N, c, Zh, Hm(Q) be the LHZ FHS set. Then,
for any positive integer Z, 0 ≤ Z ≤ Zh, we have

Hm(Q) ≥
(NZ + N − c)L
(NZ + N − 1)c

,

where (L, N, c, Zh, Hm(Q)) denotes a set of N FHSs of length L with size c, with the MHC Hm(Q)
and the LHZ Zh.

If each parameter of the LHZ FHS set Q substituted into the above equation satisfies
the equal sign case, the Q is said to be the optimal LHZ FHS set.

3. Interleaving Technique of FHSs

Let A = (a0, a1, · · · , aL−1) be a (L, c, Ha(A)) FHS, and E = (e0, e1, · · · , eT−1) be a shift
sequence of length T over a frequency slot set of size p, i.e., ei ∈ p, 0 ≤ i < T. A matrix of
TL can be obtained through the sequences A and E in the following way.

γ =


a0+e0 a0+e1 . . . a0+eT−1

a1+e0 a1+e1 . . . a1+eT−1
...

...
. . .

...
aL−1+e0 aL−1+e1 . . . aL−1+eT−1



=


b0 b1 . . . bT−1
bT bT+1 . . . b2T−1
...

...
. . .

...
bT(L−1) bT(L−1)+1 . . . bTL−1

.

(1)

Reading each element of the matrix γ by row, we have a sequence B = (b0, b1, · · · , bTL−1)
of length TL. Let B be called the interleaved sequence and E is called a shift sequence. The
interleaved sequence B can be written as

B = I(Le0(A), Le1(A), · · · , LeT−1(A)),

where I is the interleaving operator and L is the shift operator.
Let U = (u0, u1, · · · , uT−1) be another shift sequence over a frequency slot set of size

p and V = I(Lu0(A), Lu1(A), · · · , LuT−1(A)). Considering the shift factor, we can obtain
Lτ(V), where τ = Tτ1 + τ2(0 ≤ τ2 < T, 0 ≤ τ1 < L). By the matrix representation, Lτ(V)
could be written as

auτ2+τ1 . . . auT−1+τ1 au0+τ1+1 . . . auτ2−1+τ1+1

auτ2+τ1+1 . . . auT−1+τ1+1 au0+τ1+2 . . . auτ2−1+τ1+2
...

. . .
...

...
. . .

...
auτ2+τ1−1 . . . auT−1+τ1−1 au0+τ1 . . . auτ2−1+τ1

. (2)

Obviously, Lτ(V) is just another interleaved sequence. Namely, we have

Lτ(V) = I(Luτ2+τ1(A), · · · , LuT−1+τ1(A), Lu0+τ1+1(A), · · · , Luτ2−1+τ1+1(A)).

Then, the obtained HC function of the interleaved sequence B and V at delay time
τ can be expressed as the summation of the inner product between the (1) and (2). Then,
we have

HBV(τ) =
T−τ2−1

∑
t=0

HAA(ut+τ2 − et + τ1) +
T−1

∑
t=T−τ2

HAA
(
ut+τ2−T − et + τ1 + 1

)
.
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For any τ2, 0 ≤ τ2 < T, let

d(E,U)
t,τ2

=

{
et − ut+τ2 , 0 ≤ t ≤ T − 1− τ2

et − ut+τ2−T − 1, T − τ2 ≤ t ≤ T − 1
,

where d(E,U)
t,τ2

needs to be modulo p. Then, the HC function of B and V can be rewritten as

HBV(τ) =
T−1

∑
t=0

HAA

(
τ1 − d(E,U)

t,τ2

)
.

Lemma 3. According to the above notation, for the sequences B and V, corresponding to the shift
sequences E and U, we have

HBV(τ) = THa, for τ1 < min
0≤t,τ2<T

{
d(E,U)

t,τ2

}
,

where τ = Tτ1 + τ2(0 ≤ τ2 < T, 0 ≤ τ1 < L).

Besides, we introduce a class of construction methods by an interleaving technique
as follows.

Step 1: Select an (L, N, c, Hm(A)) FHS set A,

A =
{

ai =
(

ai
0, ai

1, · · · , ai
L−1

)
| 0 ≤ i < N

}
.

Step 2: For a given T, and gcd(L, T) = 1, generate a set of shift sequences,

E =
{

ej =
(

ej
0, ej

1, · · · , ej
T−1

)
| 0 ≤ j < M

}
.

Step 3: Construct the FHS set B = {bk | 0 ≤ k < NM}, where k = iM + j(0 ≤ j < M, 0 ≤
i < N). Then for any 0 ≤ k < NM,

bk = I
(

Lej
0(ai), Lej

1(ai), · · · , Lej
T−1(ai)

)
.

By the above construction, we can deduce the LHZ and MHC of this LHZ FHS set
as follows.

Theorem 1. The sequence set B = {bk | 0 ≤ k < NM} generated by the interleaving technique
is a (TL, NM, c, Zh, THm(A)) LHZ FHS set, where

Zh + 1 =

min
{

min
ej1∈E

{
min

0≤t,τ2<T

{
Td(

ej1 ,ej1)
t,τ2

+ τ2

}}
, min

ej1 6=ej2∈E

{
min

(0≤t,τ2<T

{
Td(

ej1 ,ej2)
t,τ2

+ τ2

}}}
.

Proof of Theorem 1. For any two FHSs bk1 , bk2 ∈ B, which correspond to the shift se-
quences ej1 and ej2 ∈ E , then the MHC of Hm(B) in the LHZ can be verified as follows.

Case 1: k1 = k2. Then we have ej1 = ej2 . From Lemma 3, the MHAC of the sequences

is THa(A), when 0 < τ2 ≤ minej1∈E

{
min0≤t,τ2<T

{
Td(

ej1 ,ej1)
t,τ2

+ τ2

}}
. The case does not

need to be concerned when the τ2 = 0.
Case 2: k1 6= k2.

(1) If ai1 6= ai2 and ej1 = ej2 , according to the displacement characteristics, the MHCC of
the sequences is THc(A) for any τ1 and τ2.
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(2) If ai1 6= ai2 , ej1 6= ej2 or ai1 = ai2 , ej1 6= ej2 , the MHCC of the sequences is THc(A), for

0 ≤ τ < min
ej1 6=ej2∈E

{
min

0≤t,τ2<T

{
Td(

ej1 ,ej2 )
t,τ2

+ τ2

}}
.

From the above cases, for any τ, 0 ≤ τ ≤ Zh, the MHC Hm(B) of B is given by
Hm(B) = max{Ha(B), Hc(B)} = max{THa(A), THc(A)} = THm(A), where

Zh + 1 =

min

{
min

ej1 6=ej2∈E

{
min

0≤t,τ2<T

{
Td(

ej1 ,ej2 )
t,τ2

+ τ2

}}
, min

ej1∈E

{
min

0≤t,τ2<T

{
Td(

ej1 ,ej1)
t,τ2

+ τ2

}}}
.

4. Optimal FHS Set with LHZ

In this section, the optimal LHZ FHS set with the new parameters is constructed based
on different shift sequences through the interleaving technique [23,24].

Construction 1. Step 1: Select an optimal FHS set A (L, N, c, Hm(A)) that satisfies the Peng–
Fan bound, A =

{
ai =

(
ai

0, ai
1, . . . , ai

L−1
)
| 0 ≤ i < N

}
.

Step 2: Let T, u, k be three positive integers, θ is an integer, T > 2, uT = L and k = u− 1. The
shift sequence E =

{
ej

i | 0 ≤ i < T, 0 ≤ j < k
}

. We have

ej
i =

(
ej

0, ej
1, . . . , ej

T−1

)
= (θ ± j, θ + u± j, . . . , θ + (T − 1)u± j).

Step 3: Construct the LHZ FHS set B = {bp | 0 ≤ p < kN}, p = ik + j(0 ≤ j < k, 0 ≤ i < N),
where for each 0 ≤ p < kN,

bp = bik+j = I
(

Lθ±j(ai), Lθ+u±j(ai), . . . , Lθ+(T−1)u±j(ai)
)

Theorem 2. The LHZ FHS set B (TL, kN, c, T − 1, THm(A)) constructed by Construction 1
is an optimal LHZ FHS set if T satisfies Td (NL−c)L

(NL−1)c e = dT (N(L−T)−c)L
(N(L−T)−1)c e. By permuting the

sequences within a set of shift sequences, the resulting set of sequences is also an optimal LHZ
FHS set.

Proof of Theorem 2. The shift sequence set is represented by a kT matrix,

E =


e0

0 e0
1 . . . e0

T−1
e1

0 e1
1 . . . e1

T−1
. . . . . . . . . . . .

ek−1
0 ek−1

1 . . . ek−1
T−1



=


θ θ + u . . . θ + (T − 1)u

θ ± 1 θ ± 1 + u . . . θ ± 1 + (T − 1)u
· · · · · · · · · · · ·

θ ± (k− 1) θ ± (k− 1) + u . . . θ ± (k− 1) + (T − 1)u

.

The ej can be written as the following two cases.
Case 1: {

ej
i = ej+s

i − s,
ej

i = ej+t
i+1 − u− t,

(3)
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Case 2: {
ej

i = ej+s
i + s,

ej
i = ej+t

i+1 − u + t,
(4)

where 0 ≤ i + 1 ≤ T − 1, 0 ≤ j + t, j + s ≤ k− 1. From (3), we have

ej
i = ej+s

i − s = ej+t
i+1 − u− t. (5)

From (5), we have
ej+s

i = ej+t
i+1 − u− t + s. (6)

We can obtain the relationship between the parameters of the rows and columns in
the shift matrix from the above equation.

If any parameter meets the condition s = u + t, then (s− t)T = L. But the maximum
value of s− t is k− 1. Therefore, the shift sequence ej

i are not identical to each other.
It can be learned from (5) that when s = 1 and τ2 = 0, the value

min
ej1 ,ej2∈E

{
min

0<t<T

{
dej1 ,ej2

t,τ2

}}
= 1.

Therefore, from the Theorem 2, the LHZ Zh of B is T− 1. The same analysis as above for (4),
the LHZ Zh of B is T − 1.

Concurrently, if the columns of the shift matrix are transformed, different represen-
tations of the shift matrix can be obtained. The following shift matrix is one of such
representations.

E =


e0

v e0
T−1 . . . e0

1
e1

v e1
T−1 . . . e1

1
. . . . . . . . . . . .

ek−1
v ek−1

T−1 . . . ek−1
1



=


θ + vu θ + (T − 1)u . . . θ + u

θ ± 1 + vu θ ± 1 + (T − 1)u . . . θ ± 1 + u
· · · · · · · · · · · ·

θ ± (k− 1) + vu θ ± (k− 1) + (T − 1)u . . . θ ± (k− 1) + u

,

where 1 < v < T− 1. Based on the above proof, it can be shown that each element in a shift
matrix is distinct and shift matrices do not collide with each other in rows and columns.
Therefore, we have the LHZ Zh of B is T − 1.

Moreover, we have

Hm(A) =
⌈
(NL− c)L
(NL− 1)c

⌉
.

According to Lemma 2, the MHC Hm(B) (TL, kN, c, T − 1, Hm(B)) of FHS set B is

Hm(B) ≥ T
(kN(T − 1) + kN − c)L
(kN(T − 1) + kN − 1)c

= T
(kNT − c)L
(kNT − 1)c

= T
(NT(u− 1)− c)L
(NT(u− 1)− 1)c

= T
(N(L− T)− c)L
(N(L− T)− 1)c

.

For Td (NL−c)L
(NL−1)c e = dT

(N(L−T)−c)L
(N(L−T)−1)c e, the MHC of B is the value that satisfies the equal

sign of the Peng–Fan–Lee bound. In a word, the LHZ FHS set B is said to be the optimal.
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Example 1. Select an optimal (16, 3, 7, 2) FHS set A = {a0, a1, a2}, where

a0 = {1, 0, 1, 6, 2, 4, 5, 6, 6, 0, 6, 1, 5, 3, 2, 1},
a1 = {2, 3, 6, 4, 2, 2, 0, 2, 5, 4, 1, 3, 5, 5, 0, 5},
a2 = {6, 3, 3, 0, 3, 4, 6, 5, 1, 4, 4, 0, 4, 3, 1, 2}.

One can obtain the shift sequences E = {ej = ej
0, ej

1, ej
2, ej

3}, 0 ≤ j < 3, such that e0 =
{0, 4, 8, 12}, e1 = {15, 3, 7, 11}, e2 = {14, 2, 6, 10}. It follows that

E =

 e0
0 e0

1 e0
2 e0

3
e1

0 e1
1 e1

2 e1
3

e2
0 e2

1 e2
2 e2

3

 =

 0 4 8 12
15 3 7 11
14 2 6 10

.

Construct the LHZ FHS set B = {b0, b1, b2, b3, b4, b5, b6, b7, b8} by the Construction 1,
where

b0 = {1, 2, 6, 5, 0, 4, 0, 3, 1, · · · , 1, 6, 6, 1}, b1 = {1, 6, 6, 1, 1, 2, 6, 5, 0, · · · , 2, 1, 5, 6},
b2 = {2, 1, 5, 6, 1, 6, 6, 1, 1, · · · , 3, 0, 4, 0}, b3 = {2, 2, 5, 5, 3, 2, 4, 5, 6, · · · , 5, 4, 2, 3},
b4 = {5, 4, 2, 3, 2, 2, 5, 5, 3, · · · , 0, 6, 0, 1}, b5 = {0, 6, 0, 1, 5, 4, 2, 3, 2, · · · , 5, 3, 2, 4},
b6 = {6, 3, 1, 4, 3, 4, 4, 3, 3, · · · , 2, 0, 5, 0}, b7 = {2, 0, 5, 0, 6, 3, 1, 4, 3, · · · , 1, 3, 6, 4},
b8 = {1, 3, 6, 4, 2, 0, 5, 0, 6, · · · , 3, 3, 4, 4}.

As shown in Figure 1, the MHC of set B is 8 when the 0 < τ ≤ 3. It can be verified that
Hm(B) = 8 for τ ≤ 3, thus B is an optimal (64, 9, 7, 3, 8) LHZ FHS set.
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Figure 1. MHC of B in Example 1.

Construction 2. Step 1: Select an optimal (L, N, c, Hm(A)) FHS set A with respect to the Peng–
Fan bound.

A =
{

aj =
(

aj
0, aj

1, . . . , aj
L−1

)
| 0 ≤ j < N

}
.

Step 2: Select two integers θ, T and a positive integer w, T ≥ 2. Then, generate a shift sequence
E = {ei | 0 ≤ i < T} as follows,

E = (e0, e1, . . . , eT−1) = (θ, θ + w, . . . , θ + (T − 1)w).
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Step 3: Construct a new set of FHS B =
{

bj =
{

bj(x) | 0 ≤ x < TL
}

, 0 ≤ j < L
}

,

bj = I
(

Lθ(ai), Lθ+w(ai), . . . , Lθ+(T−1)w(ai)
)

Theorem 3. The LHZ FHS set constructed by Construction 2 is an optimal LHZ FHS set if the pa-
rameters meet the following conditions. If w < L+1

2 , T satisfies T
⌈
(NL−c)L
(NL−1)c

⌉
=
⌈

T(N(Tw−1)−c)L
(N(Tw−1)−1)c

⌉
then B (TL, N, c, Tw − 2, THm(A)) is an optimal LHZ FHS set. If w > L+1

2 and T satisfies

T
⌈
(NL−c)L
(NL−1)c

⌉
=
⌈
(NT(L−w)+N−c)TL
(NT(L−w)+N−1)c

⌉
then B (TL, N, c, T(L− w), THm(A)) is an optimal LHZ

FHS set.

Proof of Theorem 3. We have

d(e,e)
t,τ2

=

{
et − et+τ2 , 0 ≤ t ≤ T − 1 + τ2

et − et+τ2−T − 1, T − τ2 ≤ t ≤ T − 1
.

From the parameters of the shift sequence set in Construction 2, we have

d(e,e)
t,τ2

=

{
−wτ2, 0 ≤ t ≤ T − 1 + τ2

w(T − τ2)− 1, T − τ2 ≤ t ≤ T − 1
.

Therefore, if w < L+1
2 and τ2 = T − 1, the minimum value of d(e,e)

t,τ2
is w− 1. Then,

Zh = T(w− 1) + τ2 − 1 = Tw− 2.

If w > L+1
2 and τ2 = 1, the minimum value of d(e,e)

t,τ2
is L− w. Then,

Zh = T(L− w).

Furthermore, we have

Hm(A) =
(NL− c)L
(NL− 1)c

.

According to Lemma 2, the MHC Hm(B) of FHS B (TL, N, c, Hm(B)) is
Case 1: when w < L+1

2 ,

Hm(B) ≥
(NZ + N − c)L
(NZ + N − 1)c

=
(N(Tw− 2) + N − c)TL
(N(Tw− 2) + N − 1)c

=
(N(Tw− 1)− c)TL
(N(Tw− 1)− 1)c

.

For

T
⌈
(NL− c)L
(NL− 1)c

⌉
=

⌈
T(N(Tw− 1)− c)L
(N(Tw− 1)− 1)c

⌉
,

the MHC of B is the value that satisfies the equal sign of the Peng–Fan–Lee bound.
Case 2: when w > L+1

2 ,

Hm(B) ≥
(NZ + N − c)TL
(NZ + N − 1)c

=
(NT(L− w) + N − c)TL
(NT(L− w) + N − 1)c

For

T
⌈
(NL− c)L
(NL− 1)c

⌉
=

⌈
T
(NT(L− w) + N − c)L
(NT(L− w) + N − 1)c

⌉
,

the MHC of B is the value that satisfies the equal sign of the Peng–Fan–Lee bound.
Therefore, the LHZ FHS set B is said to be the optimal.
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Example 2. Select an optimal (16, 3, 7, 2) FHS set A = {a0, a1, a2}, where

a0 = {1, 0, 1, 6, 2, 4, 5, 6, 6, 0, 6, 1, 5, 3, 2, 1},
a1 = {2, 3, 6, 4, 2, 2, 0, 2, 5, 4, 1, 3, 5, 5, 0, 5},
a2 = {6, 3, 3, 0, 3, 4, 6, 5, 1, 4, 4, 0, 4, 3, 1, 2}.

We set the parameters θ = 1, w = 2, T = 5. Then, the shift sequence is E = {1, 3, 5, 7, 9}.
Construct the LHZ FHS set B = {b0, b1, b2} where

b0 = {0, 6, 4, 6, 0, 1, 2, 5, 6, 6, 6, 4, 6, 0, · · · , 6, 1, 1, 2, 5, 6}
b1 = {3, 4, 2, 2, 4, 6, 2, 0, 5, 1, 4, 2, 2, 4, · · · , 2, 2, 6, 2, 0, 5}
b2 = {3, 0, 4, 5, 4, 3, 3, 6, 1, 4, 0, 4, 5, 4, · · · , 5, 6, 3, 3, 6, 1}

As shown in Figure 2, the MHC of set B is 10 when the τ ≤ 8. It can be verified that⌈
(NZ+N−c)L
(NZ+N−1)c

⌉
= 10, then B is an optimal (80, 3, 7, 8, 10) LHZ FHS set.
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Figure 2. MHC of B in Example 2.

Example 3. Select an optimal (16, 7, 3, 2) FHS set A = {a0, a1, a2}, such that

a0 = {1, 0, 1, 6, 2, 4, 5, 6, 6, 0, 6, 1, 5, 3, 2, 1},
a1 = {2, 3, 6, 4, 2, 2, 0, 2, 5, 4, 1, 3, 5, 5, 0, 5},
a2 = {6, 3, 3, 0, 3, 4, 6, 5, 1, 4, 4, 0, 4, 3, 1, 2}.

We set the parameters θ = 1, w = 14, T = 4, the shift sequence is E = {1, 15, 13, 11}.
Construct the LHZ FHS set B = {b0, b1, b2} where

b0 = {0, 1, 3, 1, 1, 1, 2, 5, 6, 0, 1, 3, 2, 1, 1, · · · , 1, 0, 1, 2, 5, 6},
b1 = {3, 5, 5, 3, 6, 2, 0, 5, 4, 3, 5, 5, 2, 6, 2, · · · , 3, 4, 2, 0, 5, 1},
b2 = {3, 2, 3, 0, 3, 6, 1, 4, 0, 3, 2, 3, 3, 3, 6, · · · , 0, 4, 6, 1, 4, 4}.

As shown in Figure 3, the MHC of set B is 8 when the time delay τ ≤ 8. It can be verified
that

⌈
(NZ+N−c)L
(NZ+N−1)c

⌉
= 8, then B is an optimal (64, 3, 7, 8, 8) LHZ FHS set.
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Figure 3. MHC of B in Example 3.

Construction 3. Step 1: Select an optimal (L, N, c, Hm(A)) FHS set A that satisfies the Peng–
Fan bound, A =

{
ai =

(
ai

0, ai
i, . . . , ai

L−1
)
, 0 ≤ i < N

}
.

Step 2: Let T, u, k be three positive integers. w, θ are two integers, T > 2, w > 1 and w = θ + uT.
The shift sequence is E =

{
ej

i | 0 ≤ i < T, 0 ≤ j < k
}

. We have

ej =
(

ej
0, ej

1, . . . , ej
T−1

)
= (θ + jw, θ + u + jw, . . . , θ + (T − 1)u + jw).

Step 3: Construct LHZ FHS set B = {bp | 0 ≤ p < kN}, p = ik + j(0 ≤ i < N, 0 ≤ j < k),
where for each 0 ≤ p < kN,

bp = I
(

Lθ+jw(ai), Lθ+u+jw(ai), . . . , Lθ+(T−1)u+jw(ai)
)

.

Theorem 4. The LHZ FHS setB constructed by Construction 3 is an optimalB (TL, kN, c, 2T − 2,
THm(A)) LHZ FHS set if parameter meets k(2T − 1) ≤ L, u(kT − 1) = L − 1 and
Td (NL−c)L

(NL−1)c e =
⌈

T (kN(2T−1)−c)L
(kN(2T−1)−1)c

⌉
.

Proof of Theorem 4. The shift sequence set is represented by a kT matrix,

E =


e0

0 e0
1 . . . e0

T−1
e1

0 e1
1 . . . e1

T−1
. . . . . . . . . . . .

ek−1
0 ek−1

1 . . . ek−1
T−1



=


θ θ + u . . . θ + (T − 1)u

θ + w θ + u + w . . . θ + (T − 1)u + w
. . . . . . . . . . . .

θ + (k− 1)w θ + u + (k− 1)w . . . θ + (T − 1)u + (k− 1)w


The ej can be written as{

ej
i = ej−s

i+s − s(u− w),

ej
i = ej±1

i ± w,
0 < i + s, j− s < T (7)

From (7), we have
ej

i = ej−s
i+s − s(u− w) = ej±1

i ± w. (8)
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From (8), we have
ej−s

i+s = ej±1
i ± w + s(u− w). (9)

For u(kT − 1) = L− 1, then θ − (θ + (T − 1)u + (k− 1)w) (mod L) =1. From (8) and (9), ±w
(mod L) ≥ 1, sw− su (mod L) ≥ 1 for T > 2 and w = θ + uT. Thus,

min
ej1 ,ej2∈E

{
min

0<i<T

{
dej1 ,ej2

t,τ2

}}
= 1.

At this time, the delay time τ2 is T − 1, then

Zh =
{

Td(e
j1 ,ej2 )

t,τ + τ2

}
− 1 = 2T − 2.

Besides, we have

Hm(A) =
(NL− c)L
(NL− 1)c

,

According to Lemma 2, the MHC Hm(B) (TL, kN, c, Hm(B), 2T − 2) of LHZ FHS set B is

Hm(B) ≥
(kN(2T − 2) + kN − c)TL
(kN(2T − 2) + kN − 1)c

= T
(kN(2T − 1)− c)L
(kN(2T − 1)− 1)c

.

For

T
⌈
(NL− c)L
(NL− 1)c

⌉
=

⌈
T
(kN(2T − 1)− c)L
(kN(2T − 1)− 1)c

⌉
,

the MHC of B is the value that satisfies the equal sign of Peng-Fan-Lee bound. All in all, the LHZ
FHS set B is said to be the optimal.

Example 4. Select an optimal (16, 3, 7, 2) FHS set A = {a0, a1, a2}, where

a0 = {1, 0, 1, 6, 2, 4, 5, 6, 6, 0, 6, 1, 5, 3, 2, 1},
a1 = {2, 3, 6, 4, 2, 2, 0, 2, 5, 4, 1, 3, 5, 5, 0, 5},
a2 = {6, 3, 3, 0, 3, 4, 6, 5, 1, 4, 4, 0, 4, 3, 1, 2}.

We set the parameters θ = 0, T = 3, k = 2, w = 9, u = 3, the shift sequences e0 = {0, 3, 6},
e1 = {9, 12, 15}. It follows that

E =

(
e0

0 e0
1 e0

2
e1

0 e1
1 e1

2

)
=

(
0 3 6
9 12 15

)
.

We construct the LHZ FHS set B = {b0, b1, b2, b3, b4, b5} where

b0 = {1, 6, 5, 0, 2, 6, 1, 4, 6, 6, 5, 0, · · · , 2, 0, 2, 1, 1, 4},
b1 = {0, 5, 1, 6, 3, 1, 1, 2, 0, 5, 1, 1, · · · , 6, 6, 3, 6, 1, 2},
b2 = {2, 4, 0, 3, 2, 2, 6, 2, 5, 4, 0, 4, · · · , 0, 3, 2, 5, 6, 2},
b3 = {4, 5, 5, 1, 5, 2, 3, 0, 3, 5, 5, 6, · · · , 2, 1, 5, 5, 3, 0},
b4 = {6, 0, 6, 3, 3, 5, 3, 4, 1, 0, 6, 4, · · · , 1, 3, 3, 2, 3, 4},
b5 = {4, 4, 2, 4, 3, 6, 0, 1, 3, 4, 2, 3, · · · , 5, 4, 3, 1, 0, 1}.

As shown in Figure 4, the MHC of set B is 6 when the τ ≤ 4. It can be verified that⌈
(NZ+N−c)L
(NZ+N−1)c

⌉
= 6, then B is an optimal (48, 6, 7, 4, 6) LHZ FHS set.
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Figure 4. MHC of B in Example 4.

5. Conclusions

In this paper, we propose three new methods for the construction of the optimal LHZ
FHS set and prove some sufficient conditions that they need to satisfy. As a comparison,
we list the parameters of the existing optimal LHZ FHS sets and the optimal LHZ FHS
sets constructed in this paper in Table 1. As a result, our constructed sequences are more
flexible and can be used to eliminate MI in QS FHMA systems. Future work can explore the
application of FHSs in more scenarios, such as image processing, data encryption, mobile
communication, security and privacy. Overall, exploring the application of FHSs in various
scenarios can lead to new innovations and improvements in different areas of wireless
communication.

Table 1. Comparison of parameters for LHZ FHS sets with optimal Hamming correlation.

Parameters (L, N, c, Zh, Hm(Q)) Constraints Ref.

(s(qn − 1), M, q, w− 1,
s(qn−1 − 1))

qn − 1 = wm, gcd(s, qn − 1) = 1. [6]

(s(pn − 1), e, e + 1, w− 1, s f )
gcd(s, pn − 1) = 1, w =

pn−1
m , m|(pn − 1),

1 ≤ m < f , e + 1 > s f ,
s f e2m < ( f e2 −m)(e + 1− s f ).

[13]

(sN, mM, v, w− 1, sλ)
m = d N

w e, gcd(s, N) = 1, s = aw + 1,
a ≥ 1, s < mN.

[9]

(MN, m, v, wM− 1, Mλ) m = d N
w e. [8]

(MN, m, v, M− 2, Mλ) m = d N
w e, w > 2M. [16]

(TL, kN, c, T − 1, THm(A)) uT = L, k = u− 1, T
⌈
(NL−c)L
(NL−1)c

⌉
=
⌈

T (N(L−T)−c)L
(N(L−T)−1)c

⌉
Construction 1

(TL, N, c, Tw− 2, THm(A)) w < L+1
2 , T

⌈
(NL−c)L
(NL−1)c

⌉
=
⌈

T(N(Tw−1)−c)L
(N(Tw−1)−1)c

⌉
Construction 2

(TL, N, c, T(L− w), THm(A)) w > L+1
2 , T

⌈
(NL−c)L
(NL−1)c

⌉
=
⌈
(NT(L−w)+N−c)TL
(NT(L−w)+N−1)c

⌉
Construction 2

(TL, kN, c, 2T − 2, THm(A))
k(2T − 1) ≤ L , u(kT − 1) = L− 1 ,
T
⌈
(NL−c)L
(NL−1)c

⌉
=
⌈

T (kN(2T−1)−c)L
(kN(2T−1)−1)c

⌉ Construction 3
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MHC maximum Hamming correlation
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QS-FHMA quasi-synchronous frequency-hopping multiple access
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