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Abstract: In the scenario of device-free localization under multiple effects, the accuracy of localization
based on compressed sensing theory is severely affected. Most existing localization techniques
directly ignore multiple path effects. However, it is not practical to ignore the multiple path effect due
to its high signal strength, which can provide localization information. In this paper, we formulate
the sensing matrix optimization problem in compressed sensing for device-free localization scenarios
based on multiple reflections. To solve this problem, we model it as a constrained combinatorial
optimization problem and propose a hybrid meta-heuristic algorithm. First, smart reflection surfaces
and virtual node models are used to construct the desired communication links. Second, we iteratively
improve the properties of the measurement matrix by using K-means clustering to obtain reasonable
thresholds, and use a meta-heuristic algorithm to optimize the sensing matrix. Finally, the simulation
results show that the proposed method efficiently optimizes the sensing matrix and achieves fast and
high-precision localization while conserving communication resources.

Keywords: device-free localization multiple effects; compressed sensing theory; meta-heuristic algorithm

1. Introduction

Individual positioning systems have become increasingly superior and are used in
many fields such as intelligent transportation, national defense business, power dispatching,
disaster relief and mitigation, and emergency search and rescue [1,2]. The more well-known
BeiDou Navigation Satellite System and mobile cellular network-based localization system
not only meet the current needs of human daily life, but also make full preparation for
further reform of the localization system.

However, it is worth noting that the above two traditional positioning methods are no
longer applicable when the target we want to locate is not able to carry a satellite signal
receiving device, or when the target itself does not want to be monitored and located
by satellite [3]. From the perspective of intelligent rail transportation, on the one hand,
signal sensing and device-free positioning are the fundamental means to ensure the rapid
development of intelligent transportation; on the other hand, from the perspective of
security monitoring [4], it is a serious challenge for the intelligent rail transportation field
to quickly determine emergency situations and respond to potential threats.

In addition, in the case of the GPS signal being relatively inferior and the satellite
signal insufficient, the problem of the positioning and management of track line patrol
personnel, as well as the safety monitoring of operators in the tunnel, should be given
sufficient attention. Therefore, it is insufficient to rely solely on the locating system of the
train itself to ensure the safe operation of urban tracks [5]. There should be additional
device-free positioning technology to achieve all-round safety monitoring of the track,
including the track line, stopping stations, and all objects in the tunnel. Take the train entry
station in urban rail transit as an example, as shown in Figure 1.
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Figure 1. Photograph of the train entry station. 

When the train enters the station and stops, it is necessary to accurately locate each 
object in the station. In the face of such a complex scenario, academicians have proposed 
a device-free localization method that does not rely on the target to transmit wireless in-
formation. 

Existing device-free locating technology uses two kinds of information: one is the 
received signal strength (RSS) [6], and the other is the channel state information (CSI) [7]. 
However, most wireless sensor devices can not directly use the fine-grained CSI. In this 
case, compared with the CSI, the information RSS carries by the wireless sensor is easy to 
obtain and the subsequent processing is relatively simple. Therefore, a device-free locat-
ing technique based on RSS is the preferred solution to the device-free localization (DFL) 
problem. 

The efficient use of multiple path reflection signals in device-free localization is a 
highly trending research topic. The existing device-free localization algorithms to solve 
the multiple path reflection localization problem can be divided into the following four 
categories: 
(1) geometry-based device-free localization technology [8], 
(2) fingerprint-based device-free localization technology [9], 
(3) wireless laminar imaging-based device-free localization technology [10], 
(4) compressed sensing-based device-free localization technology [11]. 

Among them, the geometric method has low positioning precision, the fingerprint 
method is time consuming, and the wireless laminar imaging method has high hardware 
requirements. Moreover, compressed sensing technology emerges to provide a new idea 
to realize multi-target DFL. In the general localization scenario, the reflected signal, as the 
second intensities of the propagating signal, contains extremely abundant localization in-
formation, but it is not considered in the previous modeling and calculation of com-
pressed sensing. In order to be able to effectively use multiple path signals, we construct 
a virtual node model in the compressed sensing theoretical system, use the received signal 
strength of the virtual sensor under the multiple path effect, and increase the communi-
cation without an additional hardware resource link. 

Compressed sensing (CS) techniques enable the sensing of high-dimensional signals 
in uncorrelated observations in low-dimensional space through the effective use of signal 
sparsity. The target position vector is sparse in multi-target device-free localization; thus, 
only a small amount of measurement information needs to be collected through uncorre-
lated observations to reconstruct the target position vector with a very high probability. It 
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Figure 1. Photograph of the train entry station.

When the train enters the station and stops, it is necessary to accurately locate
each object in the station. In the face of such a complex scenario, academicians have
proposed a device-free localization method that does not rely on the target to transmit
wireless information.

Existing device-free locating technology uses two kinds of information: one is the
received signal strength (RSS) [6], and the other is the channel state information (CSI) [7].
However, most wireless sensor devices can not directly use the fine-grained CSI. In this
case, compared with the CSI, the information RSS carries by the wireless sensor is easy
to obtain and the subsequent processing is relatively simple. Therefore, a device-free
locating technique based on RSS is the preferred solution to the device-free localization
(DFL) problem.

The efficient use of multiple path reflection signals in device-free localization is
a highly trending research topic. The existing device-free localization algorithms to
solve the multiple path reflection localization problem can be divided into the following
four categories:

(1) geometry-based device-free localization technology [8],
(2) fingerprint-based device-free localization technology [9],
(3) wireless laminar imaging-based device-free localization technology [10],
(4) compressed sensing-based device-free localization technology [11].

Among them, the geometric method has low positioning precision, the fingerprint
method is time consuming, and the wireless laminar imaging method has high hardware
requirements. Moreover, compressed sensing technology emerges to provide a new idea
to realize multi-target DFL. In the general localization scenario, the reflected signal, as
the second intensities of the propagating signal, contains extremely abundant localization
information, but it is not considered in the previous modeling and calculation of compressed
sensing. In order to be able to effectively use multiple path signals, we construct a virtual
node model in the compressed sensing theoretical system, use the received signal strength
of the virtual sensor under the multiple path effect, and increase the communication
without an additional hardware resource link.

Compressed sensing (CS) techniques enable the sensing of high-dimensional signals
in uncorrelated observations in low-dimensional space through the effective use of signal
sparsity. The target position vector is sparse in multi-target device-free localization; thus,
only a small amount of measurement information needs to be collected through uncorre-
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lated observations to reconstruct the target position vector with a very high probability. It is
worth noting that the construction of the sensing matrix, an important step in compressed
sensing, is inextricably linked to the accuracy of sparse recovery, and academicians have
proposed many optimization methods to improve the sensing matrix. Donoho in [12]
states that the sensing matrix should satisfy the condition that a certain degree of linear
independence is maintained between all ranks. In CS theory, the general criteria used to
evaluate perceptual matrices are finite isometry and mutual coherence, and in general,
mutual coherence is easier to judge.

In order to ensure the linear independence between rows and columns as much as pos-
sible, scholars have proposed many optimization methods to improve the sensing matrix.
However, the measurement matrix used in the device-free localization technology based on
CS theory is a constrained binary sparse matrix determined by the sensor position [13], so
in this case, it is impossible to optimize the sensing matrix. Therefore, most methods focus
on improving the performance of the sensing matrix by multiplying the sensing matrix by a
transformation matrix generated based on different principles. However, when considering
noisy scenes, the method of multiplying by the change matrix will lead to a decrease in the
signal-to-noise ratio, which affects the positioning accuracy. In the device-free localization
scenario with virtual sensor nodes, the design of the sensing matrix includes the signals
of both real sensors and virtual sensors. At the same time, the signal propagation model
is used in the localization scene, so it is difficult to simply optimize the sensing matrix
because the virtual sensors are involved in the construction and the geometric topology
formed by the grid points of the localization area division.

Therefore, this paper proposes a hybrid meta-heuristic algorithm to optimize the
sensing matrix, which optimizes the measurement matrix composed of a constrained binary
sparse matrix through an iterative method, and establishes the model of combinatorial
optimization. At the same time, in order to better describe the performance of the optimized
sensing matrix, the mutual coherence of t% described in [14] is used as the description
feature. Here, t refers to the concept of mutual coherence proposed by reference [14], which
is explained as follows. The mutual coherence provides a measure of the worst similarity
between the dictionary columns, a value that exposes the dictionary’s vulnerability; as such,
two closely related columns may confuse any pursuit technique. In order to deduce the
threshold t, the optimal threshold is selected using the clustering method. In addition, the
hybrid meta-heuristic algorithm is used to solve the combinatorial optimization problem
established above so as to realize the optimization of the sensing matrix.

The main contributions made in this paper are as follows:

(a) In order to improve the performance of the device-free localization algorithm under
multiple path effects, the optimization problem of the sensing matrix based on com-
pressive sensing theory is studied. In the device-free localization scenario constructed
with real and virtual sensors, the measurement matrix is still guaranteed to optimize
the sensing matrix iteratively under the constraint of a binary sparse matrix, and the
signal-to-noise ratio of the RSSI is guaranteed not to decrease.

(b) The characteristics of the sensing matrix are analyzed based on virtual sensors and
real sensors in the device-free localization scene under the multiple path effect, and
the t% is used as the evaluation criterion of the mutual coherence feature. To judge
the merits of each measurement matrix and determine the optimal threshold t, the
diagonal elements of the Gram matrix are classified using a clustering algorithm, and
the optimal threshold is obtained based on the results of different clusters. Based on
the obtained optimal index, M-HTLS (Meta-Heuristic Tabu Local Search) is proposed
to solve the constructed combinatorial optimization problem.

(c) A large number of simulation results show that CS localization methods using differ-
ent recovery algorithms can optimize the sensing matrix using M-HTLS, and under
the same conditions, compared with traditional optimization methods, the localization
error is much smaller.
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The remaining part of the paper is organized as follows: Section 2 presents the existing
methods for sensing matrix optimization and existing technological advances in device-free
localization. In Section 3, a device-free localization system model based on the virtual
sensor model is constructed from the solution of the inverse ray-tracing algorithm and a
combinatorial optimization problem for the sensing matrix is formulated. Section 4 leads
to the M-HTLS-based sensing matrix optimization method. In Section 5, the superiority
of the proposed method is validated by extensive simulation results in MATLAB and
specific correlation performance analysis. Section 6 concludes the paper with a vision for
future work.

2. Related Work

Many experts have put forward the improvement or design method of the sensing
matrix, because the sensing matrix is obtained by the product of the measurement matrix
and the sparse dictionary, and the sparse dictionary is determined by the sensing signal
to be recovered; thus, experts are focused on the design of the measurement matrix to
optimize the sensing matrix. The design of the measurement matrix can be generally
divided into two approaches. The first approach is to find a suitable random measurement
matrix such as a Gaussian, Hadamard, or Bernoulli matrix as the measurement matrix. The
elements of matrices of this type are distributed independently and randomly, and require
considerable storage space. Due to its intrinsically unstructured nature, the computation is
complicated and the hardware requirements are too high for practical applications. The
second approach, in contrast to random matrices, involves deterministic matrices, where
the elements of the matrix are designed by the researcher and are therefore deterministic.
In recent years, many approaches have been proposed by academicians on how to design
deterministic measurement matrices.

In [15], specific codes and optimal codebooks are used to generate a deterministic CS
matrix. In [16], the determined measurement matrix is constructed through Bose balanced
incomplete blocks, while improving the flexibility of the embedding operation. Refer-
ence [17] applies a sparse fast Fourier transform in the determined measurement matrix. In
addition, ref. [18] also propose a deterministic construction method of bipolar measurement
matrix based on the binary sequence family. At the same time, many works optimize the
sensing matrix by improving its performance. In [19], singular value decomposition is used
to improve the sensing matrix, which ensures the sparsity of the original signal and the
restricted isometry property (RIP) of the new sensing matrix, but the computational cost is
large. The researchers in [20] optimize the sensing matrix by multiplying the orthogonal
form of the sensing matrix with its pseudo-inverse. The optimization method adopted
in [21] is based on equiangular noncoherent cell norm compact frame sensing matrices,
and a random matrix is used as the initial preconditioning matrix. An optimal Frobinius
norm compact frame is obtained as the optimal sensing matrix by iteratively relaxing the
Gram matrix and employing matrix algebra decomposition. Essentially, they optimize by
multiplying the sensing matrix by a transformation matrix generated based on different
principles. However, the effectiveness of these methods may decrease when measurement
noise is taken into account, as the SNR decreases when multiplied with the transformation
matrix, resulting in a higher probability of misestimation.

3. System Model and Problem Formulation

In this paper, the virtual sensor node model is designed using the localization signal
reflected from the intelligent reflective surface mentioned in [22], as shown in Figure 2. We
can take advantage of the intelligent reflective surface that can independently control the
incident signal amplitude to reduce the loss of the RSS value and provide a guarantee for
the accuracy of localization. With the virtual sensor node model, the reflected signals of a
large number of multiple path components are modeled as signals from a mirror sensor
behind the reflecting surface, such that the physical and virtual sensors are placed inside
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the rectangle formed by the intelligent reflecting surface. The deployment pattern of the
alternating arrangements of real and virtual sensors can be specified as follows:

rv(rx) =
[ra(rx)− sk]

Pk
(1)

where Pk is the symmetric orthogonal matrix, which can be expressed as
Pk = E− 2Wn(kx)Wn(kx)T , and sk denotes the offset, which can be expressed as

sk = 2 ‖ rv(rx) − kx ‖. rt represents the real sensor in the virtual sensor node model.
ra indicates the mirror sensor of the real sensor to the IRS. However, Wn(kx), k = 1, 2, 3, 4 is
the normal vector of the reflecting surface IRS, which can be represented by homogeneous
coordinates (Ax, Bx), so the normal vector can be expressed as follows:

Wn(kx) = (A2
x + B2

x)
− 1

2 (Ax, Bx)
T (2)
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According to the solution of the reverse ray-tracing algorithm [23], if the original total
number of links is L, through the virtual sensor model, L + V links will be obtained, where
V is the link obtained from the virtual sensor obtained by reverse ray tracing. It can be seen
that the communication links are increased without increasing the hardware consumption.

3.1. System Model

There are K targets randomly distributed in a designed rectangular localization region
consisting of intelligent reflecting surfaces. To estimate their positions, sensor nodes capable
of collecting relevant RSS information should be deployed around a rectangular localization
region consisting of smart reflecting surfaces. Figure 3 shows how this structure is deployed.
In this paper, we construct the signal reflected by an intelligent reflecting surface as the
signal emitted from a mirror sensor behind the intelligent reflecting surface. A virtual
sensor node is called when the signals sent by several mirror sensors converge at a position
between two real sensors. The received signal strength information of the real and virtual
sensors acting on the communication link is used to calculate the difference of the received
signal strengths using this localization information. In order to better cover the positioning
area, it is assumed that the number of these real sensors and virtual sensors deployed
uniformly on the boundary of the positioning area is 2M, and every two sensors (one
sending and one receiving) form a communication link, so there are M communication
links. We store the initial received signal strength value of M communication links (the
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signal strength value when there is no occlusion is taken as the initial value) in the vector
y0, and then the difference in the received signal strength y can be calculated as:

y = yk − y0 (3)

where yk is the received signal strength value when there is a target to be located in M
communication links with occlusion.
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3.2. Problem Formulation

Since the theory of compressed sensing is aimed at discrete signals, we need to mesh
the location region in order to apply the sparse recovery algorithm in compressed sensing
to device-free locations. The localization area is divided into N grids of the same size and
numbered in order, namely, 1, 2, 3, . . . , n, . . . , N. An n-dimensional vector θN×1 is used to
represent the position distribution of K targets (K << N) to be located: if a grid contains
targets, the coordinate position of the center point of the grid in the rectangular coordinate
system is regarded as the target position, the value of the corresponding position in the
θN×1 vector is set to 1, and the other positions without targets are set to 0. The localization
scenario is shown in Figure 3. At this time, using the knowledge of compressed sensing
theory, the signal strength difference vector y can be expressed as follows:

y = Φθ + ε (4)

where ε is the noise vector and θ is an N-dimensional vector. The vector θ is sparse due to
the number of non-zero elements K � N. Therefore, we transform the position estimation
problem into a sparse signal recovery problem, which is to recover a sparse signal θ by
solving a norm l0 minimization problem with a known sensing matrix Φ and vector θ,
as follows:

θ̃ = arg min‖θ‖0 s.t. y = Φθ + ε (5)
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As long as the values of the nonzero elements of θ are estimated, the target position
{pK}K

K=1 is determined.
There are many sparse recovery algorithms based on compressive sensing theory, such

as Basis Pursuit (BP) [24], Orthogonal Matching Pursuit (OMP) [25] and Sparse Bayesian
Learning (SBL) [26]. However, a high degree of coherence between the columns in Φ would
severely confuse any recovery algorithm and lead to poor localization results. We note that
in the multi-target localization scenario based on multi-path effect CS, the columns of the
sensing matrix are highly correlated due to the deployment of virtual and real sensors and
the distribution of target locations to be located. Therefore, the sensing matrix used in this
scenario should be optimized to achieve higher localization accuracy.

In the system of compressed sensing theory, the sensing matrix Φ can be expressed as:

Φ = HΨ (6)

Among them, H is a 0–1 sparse measurement matrix determined by the sensor de-
ployment. Every row of H has only one non-zero element and every column has, at most,
one non-zero element. Ψ is a sparse dictionary whose elements are in the i-th row and the
j-th column can be represented by ς(}i,
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j). Technically, the product of matrix H as well
as Ψ can be regarded as the product by M×∞ and ∞× N. Element Hi,j in H represents
the locations of real and virtual sensors. Consequently, (6) indicates that a subset Φ can
be formed by selecting row M from Ψ. For this purpose, the number of virtual sensor
locations is limited to a finite value N and they are ordered like the grid shown in Figure 3.
The size of the matrix H and the matrix Ψ can be reduced to M× N and N× N. Hence, the
optimal distribution of the non-zero elements of the measurement matrix should be found
to minimize the column similarity in Φ.

4. Sensing Matrix Optimization Method Based on M-HTLS

The stated problem in the previous section is a combinatorial optimization problem.
In this section, we propose a hybrid meta-heuristic algorithm called M-HTLS to solve
this problem.

First, we use t% average mutual coherence as an indication to evaluate the optimality
of different sensing matrices. Then, we use K-means mean clustering to classify the non-
diagonal elements of the Gram matrices to derive a threshold t. Next, M-HTLS is used
to solve the combinatorial optimization problem based on this threshold to optimize the
perceptual matrices. In conclusion, we can improve the accuracy of multi-target localization
based on multiple path effect CS with the optimized sensing matrix. Figure 4 shows the
flow chart of the proposed sensing matrix optimization method in this paper.
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4.1. Quantitative Index

In order to quantify the “qualitative” of the different sensing matrices and thus help in
the recovery of sparse signals, it is necessary to find a suitable metric, a well-known metric
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of mutual coherence µ. Then, for the sensing matrix Φ, the similarity of its column i and
column j can be expressed as follows:

mij =

∣∣dT
i dj
∣∣

‖di‖ · ‖dj‖
(7)

Then, the mutual coherence of the sensing matrix can be expressed as:

µ{Φ} = max
1≤i,j≤N,i 6=j

mij (8)

Equation (8) represents the largest normalized inner product among all inner products
between any two different columns in Φ. With metric µ, we can quantify the matrix with
the strongest column correlation, because in the worst case, metric µ has the strongest
similarity when it contains θ columns. The matrix with the strongest column correlation is
severely confounded in the recovery of sparse signals when the CS recovery algorithm is
used. In this case, a larger µ{Φ} leads to worse sparse recovery results.

The Gram matrix also has the concept of mutual coherence, which can be
expressed as:

G = Φ̃
T

Φ̃ (9)

where Φ̃ is called the effective dictionary and is obtained by normalizing the inner dic-
tionary product of all the column elements of Φ and taking their absolute values. The
non-diagonal element gij in G represents the normalized inner product between the i-th
and j-th columns of Φ and taking its absolute value, the maximum value is exactly equal
to µ{Φ}.

From the literature [27], we know that sparse recovery algorithms such as BP and OMP
are able to find an exact solution to Equation (5) if the following inequalities
are satisfied:

‖θ‖0 <
1
2

(
1 +

1
µ{Φ}

)
(10)

Since the metric of mutual coherence in Φ is characterized by the maximum column
similarity above, which reflects the recovery of sparse signals under the most extreme
conditions, it may not be a reasonable measure of the actual “quality” of Φ. If we focus not
only on the maximum value, but also on the average value, then it can more reasonably
reflect the actual performance of sparse recovery of Φ. Therefore, the focus should be on
the average mutual coherence t%, which is defined as follows:

µt%{Φ} =
Σ

1≤i,j≤N,i 6=j

(
gij ∈ Gt

)
·
∣∣gij
∣∣

‖Gt‖0
(11)

where Gt is the set of off-diagonal entries of G. The above equation filters out relatively
small elements of G, and only targets larger elements. µt%{Φ} has a different meaning for
different thresholds, and for t = 100, denotes the average of all off-diagonal elements of G.
As t decreases, µt% gradually rises, and for t = 100

‖G‖0−N , µt% = µ. In the following sections,
we discuss the selection method for the threshold t and the combinatorial optimization
problem below, and adopt the average mutual coherence as the quantitative metric to
optimize the sensing matrix.

The first is the method of choosing the threshold t. In the technique of CS-based
device-free localization with a multiple path effect, we find that the column similarity
features of Φ are as follows: assuming that di is the i-th column in Φ, the closer the columns
are to each other, the higher the similarity, while for those columns that are far apart, the
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similarity is low, where the “distance” between columns is calculated according to the
following equation, such as the “distance” between i and j:

Iij = ‖`i − `j‖2 (12)

where `i and `j both represent the two-dimensional coordinates analytically. Taking `i as
an example, its two-dimensional coordinates can be expressed as follows:

x`i
=

{
mod(i, n),mod(i, n) 6= 0

n,otherwise

y`i
=
⌈

i
n

⌉ (13)

For clearer identification, a color depth map is used to represent the similarity between
column i-th, di, and the other columns in Φ. As shown in Figure 5, which represents the
similarity between column 58-th, d58, and other columns in Φ, we can roughly divide the
colors into three categories: the “high value area” is represented in yellow, the “low value
area” is represented in blue, and the rest is called the “middle area”. Thus, we can also
divide the non-diagonal elements in G into three categories. Among them, the category
with the highest mean value determines the range to be optimized. For this purpose, we
use the K-means clustering algorithm, which is able to obtain optimal clustering results
quickly for one-dimensional data, to classify all non-diagonal elements in G and determine
the threshold value t.
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In order to reflect the real characteristics of the localization scene, Φ is obtained in
a random way, where n = 10, i = 58, M = 30, N = 100 and the target to be located
is randomly distributed in the area, and the real and virtual sensors are arranged at the
boundary. As shown in Figure 5, lighter colors indicate a stronger similarity between
columns, and vice versa. The grid of the circle stay is denoted as d58, and for the other
columns of the grid, the closer the circle is, the stronger the similarity. For example,
the coordinates of triangles and squares are [4, 7] and [7, 5], which represent d47 and d75,
respectively, according to the equation above. The color around the triangles is lighter
than the color surrounding the squares, which means a stronger similarity due to the
shorter distance.

In overview, we can judge that the larger the value of certain non-diagonal elements
in Φ, the more thoroughly the performance of the CS method deteriorates, so we need to
improve all non-diagonal elements in G in a targeted way, and select them by determining
the threshold t. We divide them into W classes, S1, S2, · · · , Sw, respectively, and each
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class has a focal point ow. We use the Euclidean distance as the criterion for assessing the
similarity between the sample points. ow should be equal to the average of all samples in
Sw to minimize the sum of quadratic distances between the focal point and all points in Sw,
using the least squares method and Lagrange’s principle, which can be expressed as:

J(Sw) = Σ
gij∈Sw ,i 6=j

‖gij − ow‖2 (14)

where we define the criteria for clustering functions as:

J =
W
Σ

w=1
Σ

gij∈Sw ,i 6=j
‖gij − ow‖2 (15)

Based on the prior analysis, we set W = 3. First, the W elements are selected from all
non-diagonal terms of G as the initial focus. Second, the remaining samples are assigned
to the categories holding different focuses according to the minimum distance criterion,
and then W clusters are obtained. Next, iteration i updates the cluster mean of each focus
and continuously recalculates the clustering criterion function J. Until the focus and J
remain unchanged, we consider the separation of all sample points complete. Otherwise,
we continue with the second step and iterate to perform the above process. Finally, we
can obtain:

t =
‖Sα‖0
‖G‖0 − N

× 100 (16)

where Sα is the categorical set with the highest mean column correlation.

4.2. Sensing Matrix Optimization Using M-HTLS

As previously mentioned, in order to obtain more accurate localization results, we
need to optimize the sensing matrix to find the minimum value of µ%{Φ}. Considering the
constraints on Φ, we can transform the perceptual matrix optimization problem into an
NP-hard constraint combination optimization problem, as follows:

argHminµt%{HΨ}
s.t.

N
Σ

j=1
hij = 1, i = 1, 2, · · · , M

M
Σ

i=1
hij ∈ {0, 1} , j = 1, 2, · · · , N

(17)

The algorithms used to solve this problem can be divided into exact and approximation
algorithms. Although the exact algorithm can give a globally optimal solution, this comes at
the expense of computational time in the search space. However, approximate algorithms
can give near-optimal solutions in reasonable computational time, and can be further
divided into heuristic and meta-heuristic algorithms. Heuristic algorithms, such as Local
Search (LS), are effective in exploring the neighboring solution space, but are prone to be
locally optimal. Meta-heuristic algorithms can remove local optima and extensively search
for global optima, such as Genetic Algorithm (GA), which combines a better solution with
a higher fitness to obtain an approximate optimal solution. The genetic idea was originally
proposed by Holland under the inspiration of “survival of the fittest” [28]. At each iteration,
individuals with higher fitness have a greater chance of survival than those with lower
fitness, and the loop iteratively screens out individuals with higher fitness to obtain the
final ideal solution. However, GA is not good at finding the optimal solution deep in a
certain region, so we optimize it with a hybrid strategy.

Adopting the idea of hybrid algorithms, where heuristics and genetic algorithms
complement each other, has proven to be a good attempt in recent research. We propose a
hybrid meta-heuristic, M-HTLS, in which the tabu strategy is combined with local search
to enhance the local search capability of GA. Compared with the original LS, Tabu Local
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Search (TLS) can shorten the computation time in the optimization process, so as to save
the computation cost.

M-HTLS starts with a randomly generated population, where each individual repre-
sents a measurement matrix. Since the size of the measurement matrix H is quite large,
for simplicity, the “gene sequence” x ∈ RM saved in each individual is used to represent
each measurement matrix. Each gene sequence contains M distinct integers ranging from
1 to N. If xm = n, then hmn = 1, otherwise hmn = 0. In this way, the various measurement
matrices are compressed into different gene sequences, while the equality constraints can
also be satisfied. Assuming a population size of Np, its gene pool can be represented by

X = {xi}
Np
i=1.

Next, a loop consisting of a fitness function, parent selection, TLS, crossover, and
mutation is iteratively performed to update the population until the end criterion is satisfied.
The top F% individuals are selected based on their fitness and TLS is performed on them.
By “top,” we mean that individuals with higher fitness have a better chance of surviving,
so TLS makes sense. In general, the larger the fitness function, the better the optimization,
but, obviously, the higher the computational cost. In order to achieve equilibrium, F = 10
is set.

From the above, the LS algorithm needs to iteratively search the neighborhood space
for a locally optimal solution until the neighborhood candidates are exhausted. Although
the results must be optimal, the computational cost is also quite expensive; in particular,
the calculation of the fitness function is more complicated, by:

F(x) = 1− µt%{Φ} = 1− µt%{HΨ} (18)

Above all, an M-HTLS algorithm is proposed by analyzing the correlation properties
of the fitness function. In this algorithm, the TLS algorithm can achieve a higher time
efficiency than the original LS algorithm in the optimization process.

The non-diagonal entries gm,n(m 6= n) of Gram matrix G are given by Equation (19).
xj determines the position of the nonzero element in row j of H, which determines that the
row in Ψ will be affected.

gm,n =

M
Σ

i=1,i 6=j
ψxi ,mψxi ,n+ψxj ,mψxj ,n√

M
Σ

i=1,i 6=j
ψ2xi ,mψ2xj ,m

√
M
Σ

i=1,i 6=j
ψ2xi ,nψ2xj ,n

(19)

According to Cauchy’s inequality, gm,n takes its maximum when
ψxj ,m

ψxj ,n
=

ψx1,m
ψx1,n

= · · · =
ψxM ,m
ψxM ,n

, but experiments show that the Gram matrix G is not satisfied when
ψx1,m
ψx1,n

= · · · = ψxM ,m
ψxM ,n

, so the maximum of gm,n should fall in the range of (min{R}, max{R}),

R =
{

ψxi ,m
ψxi ,n

, i = 1, · · · , j− 1, j + 1, · · ·M
}

. When the ratio
ψxj ,m

ψxj ,n
deviates from this range, the

value of gm,n becomes smaller. From this, it can be concluded that the larger the difference
between ψxj and the remaining M− 1 columns, the smaller the sum of the off-diagonal
entries of G, thus reducing µt%{HΨ}more and improving the fitness F(x).

Based on the above conclusions, the tabu list is generated according to the TLS step so
that invalid solutions can be filtered out from the solution neighborhood. In the multiple
reflection device-free localization scenario, the difference between ψxi and ψxj increases
as the distance between the position of the xi sensor and the xj sensor is extended, and
vice versa. With the deployment of the preset real and virtual sensor locations, the closest
to the preset sensor location is xi−1, xi+1, xi−n, xi+n, respectively, so that the tabu table can
be listed as T = {xi − 1, xi + 1, xi − n, xi + n, 1 ≤ i ≤ M}. The motifs are selected from the
population by the fitness of the individuals, which is determined by the fitness function
F(x). Specifically, the survival probability is proportional to the value of F(x). As a result,
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individuals with high survival rates are more likely to be selected as parents. Here, the
threshold t is obtained by the above K-means clustering algorithm. To make the threshold
more representative, t1, t2, · · · , tNp was computed from Φ1, Φ2, · · · , ΦNp and averaged to
obtain the final threshold t.

After selection, the parents are paired randomly with a reproduction probability Pc.
In this process, the parental gene sequences are crossed using a multi-point mechanism.
In a word, this kind of rule is to randomly decide a few gene loci; that is, the selected
gene does not contain the gene sequence of the other side, so as to satisfy the constraint
in Equation (17). Parents then exchange genes at these loci to produce two offspring, and
for those parents who do not pair, the offspring copy their genes directly. The crossover
process enables the characteristics of the parent generation to be passed on to the offspring.

Parent selection and crossover operators pick out good individuals according to the
“survival of the fittest” principle, but this may reduce the diversity of the population,
because most populations will share a similar gene sequence after only a few generations.
This premature convergence will prevent the algorithm from finding the optimal solution.
Thus, a mutation operator is added after the crossover operation to determine the individual
mutation with probability Pm, a small value, here set to 0.01. Individual mutation is carried
out by randomly selecting a gene locus on its sequence, replacing the original integer with
a different integer from 1 to n, and setting the end criterion as the evolutionary iteration
reaches a threshold emax.

In the iterative loop above, the quasi-optimal solution x∗ can be obtained from the
updated population. Until the final stopping criterion is satisfied, the optimized sensing
matrix Φ∗ can be obtained. The parameters in Np, Pc, and Pm should be assigned in advance
in the GA. Algorithm 1 shows the flow of the proposed sensing matrix optimization method.

Algorithm 1. Sensing matrix optimization method

Initialize:
1. Set Np = 100, Q = 10, Pc = 0.8, Pm = 0.01, emax= 300, e = 0;

2. The initial population X = {xi}
Np

i=1 is generated randomly;
3. Solve the calculation Φ1, Φ2, . . . , ΦNp ;
4. Calculate t1, t2, . . . , tNp , and the threshold t is obtained;
5. Repeat;
6. Compute the fitness F(x) of the individuals of the population;
7. The top Q% individuals are selected according to their fitness size for TLS operation;
8. The parent selection operation is performed according to the individual fitness;
9. The parents are paired with the crossover probability Pc, and the multi-point crossover
operation is performed;
10. Variant operation is performed with variant probability Pm;
11. Update the population X, e← e + 1 ;
12. Until e ≥ emax;
13. The individual x∗ with the highest fitness is selected from X and the optimization
measurement matrix H∗ is solved;
14. Optimize the sensing matrix Φ∗ = H∗Ψ.

In the proposed sensing matrix optimization algorithm, the main computational time
cost is used in the optimization process of K-means clustering and hybrid meta-heuristics.
For the K-means procedure, the computational complexity is O

(
WN2T

)
, where T is the

iteration time and N2 is the number of classes of categorical data, here W = 3. Since W is
constant and T � N2, its complexity can be written as O

(
N2). For the GA process, the

computational complexity is O
(

N2 log2 N
)

since the population size and the number of
iterations remain the same. The complexity depends mainly on the fitness function, and
the computational cost is mainly reflected in the heap sorting process. The computational
complexity of LS is O

(
N3 log2 N

)
. In the TLS procedure, on average N − χM neighboring

solutions are omitted compared to LS; hence, the computational complexity of M-HTLS is
O
(
(N − χM)N2 log2 N

)
, where χ is a constant and the range of values is χ ∈ (1, 5).
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5. Numerical Results

In this section, the effectiveness and robustness of the M-HTLS algorithm for CS
sensing matrix optimization in the multi-path reflection device-free localization scenario
will be elaborated through extensive simulation experiments.

5.1. Simulation Setup

The simulation platform used in this paper is MATLAB 2018b. The relevant parameter
settings in the algorithm are listed in Algorithm 1. By default, we set the target area as a
10 m × 10 m area and divide it into N = 100 grid areas with side lengths of 1 m, so the
number of grids on each side is n = 10. The K = 4 localization targets are randomly dis-
tributed within the localization scene region, and M = 30 real and virtual sensor locations
are selected from S = 100 uniformly distributed candidate link locations determined by
the measurement matrix used. In addition, the noise added to the RSS measurements is
modeled as a vector ε following a zero-mean Gaussian distribution N

(
0, σ2), where each

term in ε is kept independent. As for the calculation of SNR, we refer to reference [29,30],
so in the simulations, the SNR is calculated using 10lg

(
‖Φθ‖2

2/Mσ2
)

with a default initial
value of 10 dB. In order to effectively compare optimization methods, we define the average
localization error as the evaluation metric, as follows:

Ave.Err =

K
Σ

k=1
‖tk − t̃k‖2

K
(20)

where tk and t̃k are the true and estimated positions of the k-th targets, respectively. When
computing the Ave.Err, in order to ensure the fairness and rationality of the experiment,
we will find the one-to-one correspondence between the true position and the estimated
position of the target to be located to minimize error. All numerical results shown in the
performance comparison section for the various algorithms of the simulations are averaged
over 500 Monte Carlo simulations.

5.2. Performance Comparison among Different Sensing Matrix Optimization Methods

By the above derivation, it follows that the value of the threshold t is 9.872; hence, the
fitness function in GA can be expressed as 1− µ9.872%{Φ}.

The simulation results in Figure 6 show the performance comparison between M-
HTLS, GA, and M-HLS. Each curve is obtained by averaging the results of 20 experiments,
and the average time over 200 iterations is presented for all algorithms. As the number of
evolving generations increases, the value of µt%{Φ} decreases continuously as the three
algorithms are optimized until the end of the iteration. As shown in Figure 6, GA converges
much slower than M-HLS and M-HTLS. However, M-HLS and M-HTLS achieve better
optimization results at the expense of computational time. Compared to the GA algorithm,
M-HLS improves the performance by 0.023 when the additional time cost increases by
235.2 s. However, the proposed M-HTLS can improve the optimization results by 0.015 at
an additional time cost of 42.2 s. Considering the trade-off between convergence speed and
time cost, we use M-HTLS as the sensing matrix optimization algorithm and evaluate its
performance in the following aspects.

As shown in Figure 7, the optimization effect of the proposed M-HTLS on the sensing
matrix can be seen. The green and red bars represent the distribution before and after
optimizing the off-diagonal entries of G, respectively. It is clear that before the optimization,
the off-diagonal terms occupy a high fraction of the population, while after the optimization,
most of the off-diagonal terms in G are optimized to the low-value region. Thus, it is known
that the similarity of the sensing matrix Φ is reduced and, hence, the localization accuracy
is improved.
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Figure 7. Comparison of the off-diagonal entries of the sensing matrix before and after
M-HTLS optimization.

The results are shown in Figure 8, which clearly shows the optimization effect of the
proposed M-HTLS on three CS theory-based sparse recovery methods, namely, BP, OMP,
and SBL, in different SNR environments. It can be seen that the error rates of the three
recovery methods decrease as the SNR value increases from 10 to 40, which is in agreement
with the actual situation. In the initial case, when the SNR value is 10, the average error
values of the three sparse recovery algorithms are higher for the random sensing matrix
than for the optimized sensing matrix. Using OMP as an example, the average error value
before optimization is 2.09, while the average error value after optimization is drastically
reduced to only 1.16, resulting in a 44.7% reduction in the error rate. When the SNR value
is increased to 40, the channel environment is theoretically more ideal and the average error
of the unoptimized sensing matrix is still higher than that of the optimized sensing matrix.
Using BP as an example, the average error before optimization is 0.62 and the average error
after optimization is 0.12, resulting in an error rate reduction of 80.7 percent. It can be
seen that the proposed algorithm can show excellent performance for different SNRs and
various sparse recovery methods
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Figure 8. Optimization effect of M-HTLS on BP, OMP, and SBL sparse recovery methods under
different SNRs.

This is shown in Figure 9, which clearly shows the optimization effect of the pro-
posed M-HTLS on the three sparse recovery methods based on CS theory, namely, BP,
OMP, and SBL, for different numbers of targets to be located. It can be seen that the aver-
age localization error value rises when the number of targets to be located increases from
1 to 7, which is in line with reality. At the beginning of the iteration, when the number of
targets to be located is one, the localization difficulty is low and the localization error of each
recovery method is small. Using the OMP method as an example, when the target to be lo-
cated is 1, the average localization error without optimization is 0.77 and after optimization is
0.55, resulting in a 28.2% reduction in the error rate. When the number of targets to be located
is seven, the average localization error without optimization is 1.43 and after optimization is
1.08, resulting in a 24.7% reduction in the error rate. The BP and SBL methods can also reduce
the average error, which can show the superiority of the proposed optimization algorithm.
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As shown in Figure 10, the optimization effect of the proposed M-HTLS on the three
CS theory-based sparse recovery methods, BP, OMP, and SBL, with different numbers
of sensing matrices is represented. It is common knowledge that the larger the number
of optimized sensing matrices, the smaller the average localization error value should
be, leading to improved localization accuracy. The simulation results show that this
is in agreement with the expected situation. In the initial case, where the number of
sensing matrices is set to 15, the mean localization error values of the three sparse recovery
methods after optimization are smaller than those before optimization. When the number
of optimized sensing matrices reaches 45, the average localization error is greatly reduced
and the average error value of each method after optimization is smaller than before
optimization. Using OMP as an example, when the number of optimized sensing matrices
is 15 in the initial stage, the average error of the non-optimized case is 1.93, while the
average error value of the optimized case is reduced to 1.51 and the error rate is reduced by
21.7 percent. When the number of optimized sensing matrices is increased to 45, the average
error of the unoptimized sensing matrix is 0.88 and the average error of the optimized
sensing matrix is 0.70, resulting in a 20.7% reduction in the error rate. Similarly, the BP
and SBL methods can also reduce the average error as the number of optimized sensing
matrices increases. It can be seen that the proposed method can reduce the average error
value and improve the localization accuracy.
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6. Conclusions and Future Work

In this paper, we investigate the CS sensing matrix optimization problem in a device-
free localization scenario based on multiple reflections. To solve this problem, we model it
as a constrained combinatorial optimization problem and propose a hybrid meta-heuristic
algorithm M-HTLS. In doing so, we iteratively improve the properties of the measurement
matrix while keeping it as a constrained binary sparse matrix. The average mutual co-
herence of t% is used as an optimization metric to evaluate the quality of each sensing
matrix. Moreover, the K-means clustering algorithm determines an appropriate threshold
t, based on the characteristics of the sensing matrix in this scenario. In this paper, we
show that M-HTLS avoids generating additional transformation matrices, which does not
lead to the degradation of the signal-to-noise ratio compared to the conventional CS-based
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localization methods. Therefore, the proposed method has better performance in improving
the localization accuracy.

In future work, we can consider whether the exact relation between the threshold t
and CS theory can be derived by a rigorous theoretical analysis and formulation so that
the optimal threshold can be obtained, which can enable the optimal performance of the
sensing matrix in CS theory.
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