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Abstract: This work presents an analysis of fractional derivatives and fractal derivatives, discussing
their differences and similarities. The fractal derivative is closely connected to Haussdorff’s concepts
of fractional dimension geometry. The paper distinguishes between the derivative of a function on a
fractal domain and the derivative of a fractal function, where the image is a fractal space. Different
continuous approximations for the fractal derivative are discussed, and it is shown that the q-calculus
derivative is a continuous approximation of the fractal derivative of a fractal function. A similar
version can be obtained for the derivative of a function on a fractal space. Caputo’s derivative is
also proportional to a continuous approximation of the fractal derivative, and the corresponding
approximation of the derivative of a fractional function leads to a Caputo-like derivative. This work
has implications for studies of fractional differential equations, anomalous diffusion, information
and epidemic spread in fractal systems, and fractal geometry.

Keywords: fractal derivatives; fractional derivatives; fractional differential equations; q-calculus;
nonextensive statistics

1. Introduction

Fractional differential equations have been used to describe the behavior of complex
systems. The growing interest in this mathematical tool imposes the necessity of urgent
analysis of its fundamentals. The widespread use of fractional differential equations in
fluid dynamics, finance, and other complex systems has led to the intense investigation
of the properties of fractional derivatives and their geometrical and physical meaning.
Fractional derivatives are often associated with fractal geometry, but the connections be-
tween fractional derivatives and fractal derivatives have not been clarified so far. Fractional
derivatives have been used in many applications [1,2], and advancing our understanding
of their geometrical meaning and their relations with fractals is necessary. The q-calculus
has been frequently applied to describe the statistical properties of fractal systems [3,4].
However, the relationship between q-calculus and fractal derivatives has not been fully
understood yet.

This work reviews the fundamentals of fractal derivatives and establishes their connec-
tions with fractional derivatives and q-calculus. The generalization of standard calculus to
include fractional-order derivatives and integrals is an exciting field of research, and many
works have been conducted in this area. Different proposals for fractional generalization
are available, and applications of fractional derivatives have been used in various fields.
Fractional differential equations are frequently used to describe the behavior of complex
systems. In Refs. [5,6], the authors analyzed different forms of fractional derivatives and
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discussed their properties. Caputo’s derivative is among the most commonly used and is
defined by

Dν
Ch(x) =

1
Γ(1− ν)

∫ x

x−δ
(x− t)−ν dh

dt
dt , (1)

which is a particular case of the Riemann–Liouville fractional derivative [7].
Haussdorff established the fundamental aspects of spaces with fractional dimension,

and an introduction to the subject can be found in [8]. One of the important quantities
associated with fractal spaces is the Haussdorff measure, denoted byHs(F). Its definition
is based on the measureHs

δ(F), and is given by

Hs(F) = lim
δ→0
Hs

δ(F) , (2)

where the measure depends on a δ-cover of the Borel subset F ⊆ Rn. The space F will be
referred to as a fractal space, and its Hausdorff dimension is denoted by α and defined as

α = inf{s ≥ 0 : Hs(F) = 0} = sup{s : Hs(F) = ∞} . (3)

If 0 < α < ∞, the Haussdorff measure of the δα-cover is called the mass distribution,
denoted by γα(F,a,b) [9–11], which will be discussed below. Fractal derivatives and frac-
tional derivatives are not the same concept [12], and the non-locality is a prominent aspect
of the fractal derivative. For a comprehensive review of the subject and its applications, see
Ref. [13]. The Parvate–Gangal derivative is defined for functions on a fractal domain. This
work shows that extending the same concepts to functions with a fractal image can provide
new insights into the role of fractal derivatives in the study of complex systems.

Tsallis statistics was proposed to describe the statistical properties of fractal systems.
It introduces a non-additive entropy that can be used to obtain, through the ordinary
thermodynamics formalism, the non-extensive thermodynamics [14,15]. To deal with
non-additivity, the q-calculus was proposed [16]. One important result of q-calculus is the
q-derivative, which is written as:

d̄ f
dx

= f q−1 d f
dx

. (4)

Notice that, if the function f is a q-exponential, the special derivative above results to be
identical to the standard derivative of a q-exponential function. This derivative can be
straightforwardly related to the conformal derivative [17].

The three different theoretical areas mentioned above have been investigated indepen-
dently, evolving in parallel. Despite their many common aspects, the connections between
them have not been demonstrated so far [18]. This work aims to establish connections
between Caputo’s derivative and the q-calculus with the continuous approximation of
the fractal derivative proposed by Parvate and Gangal. In this work, we assume that the
fractal derivative is correctly calculated by the definitions advanced by Parvate, Gangal,
and coworkers [9–11], and discuss how some relevant forms of fractional derivatives,
as well as the q-deformed derivative, can be obtained as a continuous approximation of the
fractal derivative.

2. Fractal Derivatives

Lemma 1. If x = (x1, · · · , xn) ∈ Rn and f = ( f1(x), · · · , fm(x)) ∈ Rm is an m-dimensional
vector field f : Rn → Rm. Then, m ≤ n.

Proof. Suppose m > n, then ( f1(x), · · · , fn(x)) forms a new set of n independent variables,
which are functions of the n independent variables of x. Then, fn+1(x) is not independent
of the functions in the set.
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Definition 1. A vector field with dimension m = 1 is a function.

Lemma 2. If there is an inverse function f−1( f (x)) = x, then m = n.

Proof. It follows immediately by applying Lemma 1.

Lemma 3. If f is a fractal vector field f : Rn → Rα, with α ∈ R, then α ≤ n.

Proof. It follows immediately by applying Lemma 1.

Definition 2. A fractal vector field with dimension α ≤ 1 is a fractal function.

Definition 3. An α-dimensional function is a fractal vector field if α > 1 or a fractal function if
α ≤ 1.

Definition 4. If γ(F, a, b) is the Haussdorff mass distribution for a cover F, with a, b ∈ F, then
the staircase function, Sα

F,ao
, is defined as

Sα
F,ao

=

{
γ(F,ao,x) for x > ao

γ(F,x,ao) for x < ao
. (5)

Lemma 4. The staircase function is a scalar.

Proof. The staircase function is proportional to the Haussdorff mass function, which is the
volume resulting from the union of the δα(x) ∈ F, so it is a scalar.

Definition 5. If F is a δα-cover and f : F→ R, then the fractal derivative of f (x) is

Dα
F,ao

f (xo) =

F limx→xo
f (x)− f (xo)

Sα
F,ao (x)−Sα

F,ao (xo)
x, xo ∈ F

0 otherwise
. (6)

Theorem 1. There is a fractal derivative of the inverse function, and it is the inverse of the
fractal derivative.

Proof. Consider that x, xo ∈ F. Suppose there exists a function g : R → F such that
g( f (x)) = x. Then,

Dα
F,ao

g( fxo ) = F lim
x→xo

g( fx)− g( fxo )

f (x)− f (xo)

f (x)− f (xo)

Sα
F′ ,ao

(x)− Sα
F′ ,ao

(xo)
= 1 , (7)

where the simplified notation fx = f (x) was adopted. It follows that

F lim
x→xo

g( fx)− g( fxo )

f (x)− f (xo)
= F lim

x→xo

Sα
F′ ,ao

(x)− Sα
F′ ,ao

(xo)

f (x)− f (xo)
. (8)

The fractal derivative of the inverse function can be applied to any fractal function
h: R→ F. The staircase function, in this case, is applied to the fractal image space of the
function h. The function f can be defined arbitrarily, with the constraint that there is an
inverse function f−1. One case of particular interest is the identity function f (x) = x, then
we have

[Dα
F,ϕ]
−1h(xo) = F lim

x→xo

Sα
F,ϕ[h(x)]− Sα

F,ϕ[h(xo)]

x− xo
, (9)
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with ϕ = h(ao).
Observe that in this case, the image space and the domain space of the function h are

the same, i.e., h: F→ F.

Definition 6. The result obtained above can be generalized by defining the fractal derivative of the
inverse function or, equivalently, the inverse of the fractal derivative, as

[Dα
F,ϕ]
−1h( fxo ) =

{
F limx→xo

Sα
F,ϕ [h(x)]−Sα

F,ϕ [h(xo)]

x−xo
x, xo ∈ F .

0 otherwise
(10)

Corollary 1. The derivative of a fractal function is well-defined only if the function is almost always
non-divergent in the interval [a, b] (Following the standard terminology in the field, we say that a
function is almost always non-divergent if the set of points where it is divergent has null Lebesgue
measure).

Proof. According to Definition 4, the staircase function is well-defined only if the mass
distribution function can be defined. The mass distribution is equal to the Haussdorff
measure when the Haussdorff dimension is 0 < α < ∞. This condition is satisfied only if
the function is almost always non-divergent.

Theorem 2. If the function h(x) is almost always continuous and non-divergent in F, and
h′(x) = [Dα

F,ϕ]
−1h(x), then the Haussdorff dimension of h(x) and h′(x) are the same.

Proof. Let F be the δα-cover of the fractal function h(x), and F′ the δβ-cover of the inverse of
fractal derivative. For any δα[h(x)] ∈ F there is a δβ[h′(x)] ∈ F′, so β ≥ α. For δβ[h′(x)] ∈ F′,
there is a δα[h(x)] ∈ F; therefore, α ≤ β. Hence, α = β.

Definition 7. We will denote the inverse of an α-dimensional fractal function by Dα
F,ϕh(x), and we

will refer to it as a fractal derivative of an α-dimensional fractal function, or simply fractal function,
while the fractal derivative will be called fractal derivative over a fractal space.

Definition 8. The partial derivative of a fractal function is

Dα
F,ϕ|ih( fx) =

F limxi→xo,i

Sα
F,ϕ [h(x)]−Sα

F,ϕ [h(xo)]

xi−xo,i
x, xo ∈ F ,

0 otherwise
(11)

where the index i indicates the component xi of the vector x.

Corollary 2. The dimension of Dα
F,ϕ|i h( fx) is α ≤ 1.

Proof. It follows immediately from Lemma 1 and Theorem 2.

Definition 9. The staircase function differential is defined by

dSα
F,ao

(x) =

{
F limdx→0

[
Sα

F,ao
(x + dx)− Sα

F,ao
(x)
]

if x, x + dx ∈ F
0 otherwise

(12)

Theorem 3. The staircase function differential can be approximated by

dSα
F,ao

(x) =
A(α)

α
dxα , (13)

where
A(α) := 2πα/2/Γ(α/2) . (14)
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Proof. For any volume (δx)n ∈ Rn, its intersection with F has a volume (δx)α. Consider
the volume of an n-dimensional sphere of radius x given by

V(x) =
A(n)

n
xn , (15)

where A(n) = 2πn/2/Γ(n/2) is the surface area term, with Γ(z) being the Euler’s Gamma

Function, and x =
√

x2
1 + · · ·+ x2

n. Then, the volume of a spherical shell of finite width δx
is given by

δV(x) =
A(n)

n
((x + δx)n − xn) . (16)

In the limit δx → dx, where now dx is infinitesimal, it results

dV(x) = A(n)xn−1dx =
A(n)

n
dxn , (17)

where dxn := d(xn).
The intersection of δV(x) with F, which is denoted by δVα(x), is

δVα(x) =
A(α)

α
((x + δx)α − xα) . (18)

In the limit δx → dx, this leads to

δVα(x)→ dVα(x) = A(α)xα−1dx =
A(α)

α
dxα . (19)

On the other hand, dSα
F,ao

(x) is the volume of the intersection between an infinitesimal
volume dV ∈ Rn with F. (The multiplicative coefficient A(α) used here is valid for integer
dimensions. The case of fractional dimensions is more challenging, so this coefficient
needs to be considered with care. In this work, we focus on the shape of the continuous
approximation.)

dSα
F,ao

(x) =
A(α)

α
dxα = A(α)xα−1dx . (20)

Definition 10. The continuous approximation of a fractal function is defined as a set of infinitesimal
elements dx such that Equation (20) is satisfied.

Theorem 4. The continuous approximation of the fractal derivative of a function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh
dx

(x) . (21)

Theorem 5. The continuous approximation of the fractal derivative of a fractal function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh
dx

(x) . (22)

Proof. It follows directly from the definition of the fractal derivative of a function and of
the continuous approximation.

Theorem 6. Consider a fractal function f : Rn → F, where F is a δα-cover, with n− 1 < α < n,
for n > 1. It defines a set of fractal functions { fi(xi)}with dimensions {αi} such that α = α1 + · · ·+ αn.

Proof. Consider the fractal function fk(xk) = f (a, · · · , xk, · · · , z), where a, · · · , z are con-
stants. For any interval I = [xk, xk + δxk], the intersection of I and F is (δxk)

αk , with αk < 1.
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For an αk−1-dimensional function hk−1(x1, · · · , xk−1, k, l, · · · , z) such that for any vol-
ume (δx)k−1, the intersection with F is (δx)αk−1 , the function hk(x1, · · · , xk−1, xk, l, · · · , z)
has dimension (δx)αk−1 δx = (δx)αk , where αk = αk−1 + αk. The theorem is proved
by induction.

Definition 11. Consider a fractal function h with dimension α < 1. The gradient of a fractal
function is defined as

Dα
F,ϕh(xo) =

(
Dα1
F,ϕ|1 h(xo), · · · , Dαn

F,ϕ|n h(xo)
)

, (23)

where α = α1 + · · ·+ αn.

Definition 12. For α > 1, the partial fractal derivative of the function is

Dα
F,ϕ|ih(xo) =

(
Dα1
F,ϕ|i h(xo), · · · , Dαn

F,ϕ|i h(xo)
)

, (24)

where α = α1 + · · ·+ αn.

Theorem 7. For a finite δ, the derivative of a fractal function in the interval [x− δ, x] is

Dα
[δ],ϕh(x) =

A(α)

α

∫ x

x−δ
hα−1(t)

dh
dt

dt . (25)

Proof. The derivative in the interval [x− δ, x] is

Dα
[δ],ϕh(x) =

∫ x

x−δ
Dα
F,ϕh(t)dt . (26)

Using Definition 10, the theorem is proved.

Theorem 8. For a finite δ, the derivative of function in the interval [x− δ, x] in a fractal space is

Dα
[δ],ah(x) =

A(α)

α

∫ x

x−δ
[h(x)− h(t)]α−1 dh

dt
dt . (27)

Proof. The proof is performed by applying the continuous approximation in Equation (20)
to the derivative on fractal space in Definition 5.

Observe that the α-dimensional sphere needs not to be centered at ϕ for the fractal
derivative of a fractal function, or at a for the derivative on a fractal space. The point x,
where the derivative is calculated, can be set as the center of the sphere.

Definition 13. The continuous approximation of the derivative of a function on a fractal space,
based on α-dimensional sphere centered at x is indicated by Dα

F,xh(x).

Theorem 9. The continuous approximation of the derivative of a function on a fractal space,
Dα
F,xh(x) in the interval [x− δ,x], for finite δ, is given by

Dα
F,xh(x) =

A(α)

α

∫ x

x−δ
(x− t)1−α dh

dt
dt , (28)

which is proportional to Caputo’s derivative.
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Proof. The local continuous approximation, considering that the radius of the spherical
shell is x− t, is determined from Theorem 5 as

Dα
F,xh(t) = A(α)(x− t)1−α dh

dx
(t) . (29)

Using Definition 13, one has

Dα
Fh(x) =

∫ x

x−δ
Dα
F,xh(t)dt , (30)

leading to the proof of the Theorem.

Definition 14. The continuous approximation of the derivative of a fractal function based on
α-dimensional sphere centered at x is indicated by Dα

Fh(x).

Theorem 10. The continuous approximation of the derivative of a fractal function, Dα
F,ϕx

h(x) in
the interval [x− δ, x], for finite δ, is given by

Dα
F,ϕx

h(x) =
A(α)

α

∫ x

x−δ
(ϕx − h(t))α−1 dh

dt
dt , (31)

for t such that h(t) < ϕx = h(x).

Proof. The proof follows the same lines of the proof for Theorem 9.

Corollary 3. The continuous approximation in Definition 10 is proportional to the limit of the
continuous approximation in the range [x− δ, x] for δ→ 0 of Caputo’s derivative.

3. Discussion and Conclusions

The fractal derivative proposed by Parvate and Gangal, presented in Definition 5, is
the closest concept to the Hausdorff concept of fractional dimension spaces. Therefore,
it is considered as the starting point for the analysis of fractal derivatives and fractional
derivatives here.

The existence of the inverse of the Parvate–Gangal derivative is a natural consequence,
i.e., a derivative of a function with a fractal image space that is defined on a domain space,
which may or may not be fractal. This is proven in Theorem 1.

This work demonstrates that fractal functions with arbitrary dimension α, such as a
fractal vector field with fractal dimension α > 1, can be defined. However, the cases of
most interest are those with α ≤ 1, as they are physically relevant for the present work.

The derivative of a fractal function on a fractal space allows for a continuous approxi-
mation, as demonstrated in Theorem 4. Additionally, a similar continuous approximation
can be obtained for the derivative of a function in a fractal space, as shown in Theorem 5.
This approximation is identical to the special derivative used in Ref. [19] to derive the Plastino–
Plastino Equation, which is a generalization of the Fokker–Planck Equation for systems
with non-local correlations.

To illustrate the behavior of the continuous approximation, we utilize the well-known
Cantor Set, which has a dimension α = 0.631. We aim to demonstrate how the continuous
approximation aligns with the mass distribution, Sα

F,0(x). To achieve this, we numerically
calculate the mass distribution for this fractal set up to level 4. In other words, the smallest
component of the fractal has a linear length of l = 3−4. We employ a δ-cover with δ = 0.01
to calculate the mass distribution.

Next, we fit a power-law function, y(x) = axb. According to the theoretical findings
presented in this work, the exponent b should closely approximate the fractal dimension α
of the Cantor Set. The obtained results are displayed in Figure 1, revealing that the best fit
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corresponds to b = 0.636, which is in close proximity to the expected value. This outcome
effectively illustrates the application of the continuous approximation and provides insight
into substituting the mass distribution by the continuous approximation. It should be noted
that there are numerous other methods available for creating a continuous approximation
of the fractal measure, and each of these approaches will result in different fractional deriva-
tives. Investigating the coherence and convenience of different forms of approximation
to the staircase function is an interesting line of research that is beyond the scope of this
present study.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
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s /
 C

on
tin

uo
us

Mass Distribution of Cantor Set vs. Continuous Approximation
Mass Distribution
Curve:  0.144x0.636

Figure 1. Plots of the mass distribution (blue line) for the Cantor Set at the 4th iteration, calculated
with a δ-cover with δ = 0.01, compared with the continuous approximation (orange line) represented
by a function y(x) = axb fitted to the mass distribution. The best-fit results in b = 0.636, in agreement
with the Cantor Set dimension α = 0.631.

The continuous approximation derivative is expressed in terms of the standard deriva-
tive operator and can be associated with the q-deformed calculus [16]. Unlike the fractal
derivative, the continuous approximation is a local derivative, and the non-linear be-
havior of the continuous approximation is a remnant of the non-local properties of the
fractal derivative.

Non-locality can be explicitly introduced into the continuous approximation by con-
sidering finite δ-covers. In the non-local continuous approximation, the derivative is
obtained by integrating the local continuous derivative over a finite range δ. This non-
local continuous approximation is presented in Theorem 9, and it is precisely the Caputo
fractional derivative.

The derivative of a function in a fractal space and the derivative of a fractal function
lead to different continuous approximations. The former can be associated with the Caputo
fractional derivative, as shown in Theorem 9, while the latter leads to a Caputo-like
derivative, as demonstrated in Theorem 10. Similar derivatives to Caputo’s derivative can
also be found in [20].

The results of the present work evidence the relations between the fractal derivative
and some of the most used fractional derivatives. Comparing the result of Theorem 5 with
Equation (4), it is clear that the local continuous approximation of the derivative of a fractal
function is equal to the q-derivative. Thus, for the first time, the q-calculus derivative is
shown to be a continuous approximation to the fractal derivative.

A consequence of the relationship between the q-derivative and the local continuous
approximation of the derivative of a fractal function (Theorem 5), and of the connection
between the derivative of a fractal function and the Caputo-like fractional derivative
(Theorem 10) is that the q-derivative and the Caputo-like derivative are connected through
a dislocation of the center of the α-dimensional sphere around which the non-local con-
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tinuous approximation is calculated. Hereby, one can conclude that different forms of
fractional derivatives can be obtained from the Parvate–Gangal fractal derivative by con-
sidering the different possibilities of continuous approximation and non-locality of the
fractional derivative.

Other fractal derivatives can be explored along the same lines as performed here.
The Riemann–Liouville derivative bears a close relationship with Caputo’s deriva-
tive [21] and it is interesting to observe the similarities between the fractal derivative
proposed in Refs. [22,23] and the continuous approximations studied in the present work.
The fractional derivative used in Ref. [24] is equal to the local continuous approximation of
the fractal derivative of a function in a fractal space obtained in the present work. Ref. [25]
studied this fractional derivative and its relationship with the q-derivative. Establishing a
clear connection between the Parvate–Gangal fractal derivative and Caputo’s fractional
derivative, this work opens the possibility for a deeper understanding of the use of frac-
tional differential equations, which is so common in many different areas. In this respect, let
us remark that fractal and fractional differential equations have been used in applications
as dynamic of the system in porous or heterogeneous media [26–28], diffusive flow [29–33],
solitons [34], control of complex systems [35], epidemic process [36], polymer plasma [37]
and many others. The consequences of the present study for these physical systems de-
serve further investigation in the future. The consequences of the present study for these
physical systems deserve further investigation in the future. Its implication on the study
and applications of fractal functions [38] deserves further investigation.
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