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Abstract: Feature selection plays an important role in improving the performance of classifica-
tion or reducing the dimensionality of high-dimensional datasets, such as high-throughput ge-
nomics/proteomics data in bioinformatics. As a popular approach with computational efficiency and
scalability, information theory has been widely incorporated into feature selection. In this study, we
propose a unique weight-based feature selection (WBFS) algorithm that assesses selected features and
candidate features to identify the key protein biomarkers for classifying lung cancer subtypes from
The Cancer Proteome Atlas (TCPA) database and we further explored the survival analysis between
selected biomarkers and subtypes of lung cancer. Results show good performance of the combination
of our WBFS method and Bayesian network for mining potential biomarkers. These candidate
signatures have valuable biological significance in tumor classification and patient survival analysis.
Taken together, this study proposes the WBFS method that helps to explore candidate biomarkers
from biomedical datasets and provides useful information for tumor diagnosis or therapy strategies.

Keywords: feature selection; information theory; The Cancer Proteome Atlas (TCPA); The Cancer
Genome Atlas (TCGA); lung cancer; Bayesian network; biomarkers

1. Introduction

Lung cancer is one of the deadliest cancers in the world, and lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) are the most common subtypes, which
have drastically different biological signatures [1]. The precise biomarkers to be imple-
mented in clinical settings remain ambiguous, and accurate classification of lung cancers
into clinically significant subtypes is of utmost importance in making therapeutic decisions;
this gap demands immediate attention.

The Cancer Proteome Atlas (TCPA) database [2] is a large-scale proteomic database
that contains molecular and clinical data from over 11,000 patient samples across 32 dif-
ferent cancer types. The Cancer Genome Atlas (TCGA) database [3,4] is a comprehensive
genomic database that also contains the clinical information of patients. Both TCPA and
TCGA databases are publicly available and have been widely used by researchers around
the world. They provide valuable resources for cancer research, enabling researchers to
investigate the molecular mechanisms underlying cancer and identify new targets for
therapeutic intervention. However, discovering key biomarkers for lung cancer from the
extensive datasets in these databases is a difficult task in biomedical research [5].

Feature selection is an important task in machine learning and data analysis, where
the goal is to identify a subset of relevant features from a large set of potential predictors [6].
One approach to feature selection is based on information theory; such an approach involves
quantifying the amount of information that a feature provides about the outcome variable
of interest. This approach is especially useful in situations where the number of potential
predictors is large and the relationship between the predictors and the outcome variable
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is complex. Information-theoretic feature selection methods are based on measures such
as entropy, mutual information, and conditional mutual information. These measures are
used to assess the relevance of a feature to the outcome variable, as well as the redundancy
between features. The goal is to select a subset of features that maximizes the amount of
relevant information while minimizing the amount of redundant information.

One application of information-theoretic feature selection is in the field of biomarker
discovery, where the goal is to identify a set of molecular features (such as genes or proteins)
that are associated with a particular disease or condition [7]. By using information-theoretic
methods to select key biomarkers, researchers can gain insights into the underlying biologi-
cal mechanisms of the disease, as well as develop diagnostic and therapeutic tools. In the
past two decades, many studies on filter feature selection algorithms based on information
theory have been reported due to their robustness and computational efficiency [8]. The
pioneering work of Battiti employed the mutual information (MI) criterion to evaluate a
set of candidate features, and his research proved that mutual information is suitable for
assessing arbitrary dependencies between random variables [8,9]. To date, most feature
selection methods based on information theory obtain the optimal feature subset by maxi-
mizing correlation and minimizing redundancy, such as Mutual Information Maximisation
(MIM) [10], Mutual Information Based Feature Selection (MIFS) [9], Mutual Information
Feature Selector under Uniform Information Distribution (MIFS-U) [11], Max-Relevance
and Min-Redundancy (mRMR) [12], Conditional Informative Feature Extraction (CIFE) [13],
and Conditional Redundancy (CONDRED) [14]. Most existing feature selection strategies
aim to maximize the classification performance only by considering the relevance between
features and classes and redundancy between pairs of features without assessing interac-
tions and complementarity; consequently, some features with discriminative ability may
be mistakenly removed. The concept of interaction has been widely explored in different
scenarios [15]. For example, exploring the interaction information of microarray gene
expression data is beneficial for discovering cancer biomarkers and identifying cancer
subtype classifications [16].

This study involved an extensive examination of a lung cancer protein expression
dataset sourced from the TCPA database, in conjunction with phenotype and survival
information from the TCGA database. Firstly, it aimed to provide an overview of the
functional proteomic heterogeneity of LUAD and LUSC tumor samples. Secondly, a
unique filter weight-based feature selection (WBFS) method that assesses selected features
and candidate features was used to identify candidate protein biomarkers that exhibited
superior performance in classifying the two major lung cancer subtypes. Additionally,
Bayesian etworks (BNs) were utilized to identify the direct impact factors that had causal
relationships with the classification of the two subtypes. Finally, the potential clinical
implications of the candidate protein biomarkers for prognosis were evaluated.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

We extracted the lung cancer subset from the original dataset (TCGA-PANCAN32-
L4.zip belongs to the level 4 data set, and the batch effect has been processed in the past) in
TCPA (https://tcpaportal.org/tcpa, accessed on 11 January 2023), resulting in 687 tumor
cases comprising 362 LUAD samples and 325 LUSC samples, with 258 proteins. The
proteins that contained missing values (“NA”) in over 50% of the samples were removed,
and the “NA” values for six proteins were replaced by their average values. This led to the
creation of a proteome profiling dataset consisting of 687 tumor samples and 217 proteins.
We also downloaded relevant clinical information, including survival information and
phenotype information, for these 687 tumor samples from the TCGA data (11 January 2023).

2.2. Proteome Profiling Analysis

T-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear technique that
is particularly useful for visualizing high-dimensional data in low-dimensional space [17].

https://tcpaportal.org/tcpa
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Principal Component Analysis (PCA) is a linear method that aims to reduce the number of
features in a dataset while retaining the maximum amount of information. It can be used
to capture the most important patterns in the data and visualization of the classification
performance. Unlike PCA, t-SNE is not a linear method and instead tries to preserve the
local structure of the data in the low-dimensional space.

We utilized t-SNE and PCA techniques based on the “Rtsne” [18] and “FactoMineR” [19]
packages to visualize the differences between the original proteins and the selected pro-
teomic biomarkers.

2.3. Using WBFS to Obtain Candidate Protein Biomarkers

High-dimensional datasets have stimulated the development of feature selection
techniques. In this section, some basics of information theory are outlined, and then a new
feature selection algorithm based on information theory is proposed.

Mutual information is the overlapping information of two entropies and is commonly
utilized to analyze the correlation and statistical dependency between two random vari-
ables. It has been employed in various feature selection algorithms for obtaining the
redundancy between the input features X and the classifications Y as well as the correlation
between any pair of features.

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x) is the probability when X = x, and p(x, y) is the joint probability when
X = x, Y = y.

Conditional mutual information is the mutual information of X and Y given the third
variable Z and can be computed by:

I(X; Y|Z) = ∑
z∈Z

p(zk) ∑
x∈X

∑
y∈Y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) (2)

where p(x|z) is the conditional probability of X = x when Z = z is known, and p(x, y|z) is
the conditional probability of X = x, Y = y when Z = z is known.

As an extension of mutual information, 3-way interaction information denotes the
information shared by three random variables X, Y, Z and can be determined using condi-
tional information and mutual information:

I(X; Y; Z) = I(X, Y; Z)− I(X; Z)− I(Y; Z) (3)

Interaction information can be positive, zero, or negative; it is positive when the
two variables of X, Y together provide information that cannot be provided by any one
of them individually. Therefore, I(X; Z) < I(X; Z|Y) is always true when X, Y have an
interaction relationship.

Table 1 summarizes all symbols used for the WBFS formula derivation.

Table 1. The symbols used in feature selection method.

Symbols Description Symbols Description

D Dataset n The sample size of D
F Original feature set m The feature size of F
C Class labels |S| The feature size of S
S The selected feature subset K The size of F′

F′ Optimal feature subset f j Feature number j
fi Feature number i F/S The candidate feature set
fk The candidate feature J( fk) The objective function
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For a dataset D that has m features F = { f1, f2, . . . , fm} and n samples, the aim of
a feature selection method is to find an optimal feature subset F′ = { f1, f2, . . . , fk} that
can maximize the objective function J( fk) and yield the same or a better classification
accuracy than the original feature set as much as possible, where k ≤ m and F′ ⊆ F.
The concepts of relevance, redundancy, complementarity, and interaction are critical for a
feature selection approach. The relevance between feature and class can be expressed using
the mutual information of I( fi; C); fi is called a stronger correlated feature than f j when
I( fi; C) > I( f j; C). In addition, the mutual information I( fi; f j) between pairs of features
is called redundancy. Considering correlation alone is definitely not sufficient because
redundant features may reduce the classification performance and increase computational
complexity; therefore, the redundancy should be eliminated while a new candidate feature
fk is selected into S from the candidate feature set F/S. However, there is still a flaw in
the objective function J( fk) based only on relevance and redundancy due to the absence of
supplementary information when a new candidate feature fk is introduced into S.

We used the following equation as the objective function to screen the candidate
features individually:

J( fk) = argmax∑ fk∈F−S, f j∈Sω ∗ I( fk; C| f j) (4)

Specifically, instead of using equal weight to define the influence of selected features
on candidate features, a dynamic parameter ω is considered to evaluate the differences of
the selected features and updated when a new feature fk is introduced into S.

For two interaction features, fk and f j, I( f j; C) < I( f j; C| fk) will be true if their
interaction information is positive. In other words, the addition of feature fk will produce a
positive influence in predicting C for f j. Hence, we can use I( fk; C| f j)− I( fk; C) to measure
the weight ω, which can be expressed as follows:

ω = 1 +
2(I( f j; C| fk)− I( f j; C))

H( f j) + H(C)
(5)

Theorem 1. 0 ≤ ω < 2.

Proof of Theorem 1. For feature fk, f j and class C, we have:{
0 ≤ I( f j; C) ≤ H( f j)
0 ≤ I( f j; C) ≤ H(C)

⇒ 0 ≤ 2I( f j; C) ≤ H( f j) + H(C){
0 ≤ I( f j; C| fk) ≤ H( f j)
0 ≤ I( f j; C| fk) ≤ H(C)

⇒ 0 ≤ 2I( f j; C| fk) ≤ H( f j) + H(C)

Then, 0 ≤ 2I( f j ;C)
H( f j)+H(C) ≤ 1

0 ≤ 2I( f j ;C| fk)

H( f j)+H(C) ≤ 1
⇒ −1 ≤

2(I( f j; C| fk)− I( f j; C))
H( f j) + H(C)

≤ 1

Hence,

0 ≤ ω = 1 +
2(I( f j; C| fk)− I( f j; C))

H( f j) + H(C)
≤ 2

�

Based on Equations (4) and (5), the final objective function of WBFS is shown as:

JWBFS( fk) = argmax∑ fk∈F−S, f j∈S(1 +
2(I( f j; C| fk)− I( f j; C))

H( f j) + H(C)
) ∗ I( fk; C| f j) (6)
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Our proposed method of WBFS consists of two components: ω and I( fk; C| f j). The
first component considers not only the importance of features in S but also the influence
of candidate feature fk ∈ F/S on the relevance between S and C. The strong positive
interaction of features fk ∈ F/S and f j ∈ S, the larger this value. The second component,
I( fk; C| f j), is conditional mutual information, which fully covers the relevance between
candidate feature fk and class C based on the selected feature f j ∈ S. Algorithm 1 presents
the pseudocode of the WBFS algorithm:

Algorithm 1 Weight-based feature selection (WBFS)

Input : F, S, C, K (K ≤ |F|)
Output : F′

Initialization : S← ∅, F′ ← ∅;
for i = 0; i < |F|; i ++do

MIi ← I( fi; C);
end for
S← f ′ which I( f ′; C) = max(MI);
|S| ← 1;
while |S| < K do

for k = 0; k < |F\S|; k ++do

JWBFS( fk) = argmax ∑
fk∈F−S, f j∈S

(
1 +

2∗(I( f j ;C| fk)−I( f j ;C))
H( f j)+H(C)

)
∗ I( fk; C| f j);

S← fk ;
end for

end while
F′ ← S;
Return F′;

In Algorithm 1, H( f j) and H(C) represent the entropy of the feature f j and the cate-
gorical variable C, respectively.

When we need to select the top K features from the original feature set F, the steps of
the WBFS algorithm are as follows:

First, we obtain the mutual information between each feature in F and class C. Second,
the feature f ′, which has the largest relevance among the features, is added into S. Third,
for the candidate feature set F/S, Equation (6) is utilized to obtain the feature fk and add it
to the selected feature set S. When the number of features in S is equal to K, S is the optimal
feature set F′.

The time consumption largely depends on the computation times of mutual infor-
mation or conditional mutual information for information theory-based feature selection
methods. For a dataset D with m samples and n features, the time complexity is O(m)
when mutual information or conditional mutual information is calculated. When a new
feature is introduced into the selected feature set, mutual information or conditional mutual
information among all features must be calculated; the time complexity is O(mn) for one
iteration. Therefore, for WBFS, the final time complexity is O(kmn) if the top k features are
chosen from the original features. The MIFS [9], mRMR [12], CIFE [13] and CONDRED [14]
methods have the same time complexity as WBFS; and the time complexity of MIM [10] is
O(mn) because only the relevance between features and classes is considered.

2.4. Using Bayesian Networks to Discover Causalities

Causal discovery aims to find causal relations by analyzing observational data [20].
As a widely used graphical model in bioinformatics and employed for related aspects of
classification and prediction, the Bayesian network (BN) provides a convenient and coherent
way to represent uncertainty from a perspective of probability [21]. BN models can estimate
the joint probability distribution P over a vector of random variables X = (X1, . . . , Xn), and
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the joint probability distribution factorized as a product of several conditional distributions
denotes the dependency or independency structure by a directed acyclic graph (DAG):

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|Pa(XG
i )) (7)

where P(X1, . . . , Xn) is the joint probability, Pa(XG
i ) are the parent nodes of Xi and P(Xi|Pa(XG

i ))
is the conditional probability of Xi when the parent nodes of Xi are known. Tsamardinos
et al. were the first to establish the connection between local causal discovery and feature
selection [22]. Yu et al. developed a unified view of causal and non-causal feature selection
methods based on the BN perspective, and their experimental results show that non-
causal feature selection is more suitable for high-dimensional data, especially for gene
sequencing data [23]. Therefore, the combination of non-causal feature selection and BN
local causal discovery is a promising strategy for identifying key signatures of a target in a
high-dimensional dataset. The regulatory network composed of the selected biomarkers
defines the regulatory interactions among regulators and their potential targets and can
be used for inference and prediction. We constructed a regulatory network using BN to
explore the causality interaction between any two of the selected proteins using WBFS
based on the Causal Learner toolbox, which is available on GitHub (https://github.com/z-
dragonl/Causal-Learner, accessed on 11 January 2023) [24].

2.5. Receiver Operating Characteristic (ROC) and Survival Analysis

The candidate protein biomarkers obtained with WBFS were analyzed for ROC and
survival curves in order to evaluate the potential applications of these candidate signa-
tures as possible markers for lung cancer diagnosis and prognosis. Medcalc statistical
software [25] was used to analyze the candidate proteins for distinguishing LUAD and
LUSC samples, and the sensitivity, specificity, and area under the curve (AUC) values
were obtained. A multiple regression model to evaluate the combination classification
performance of specific set biomarkers was also assessed, and it can be expressed as follows:

multiple regression =
1

1 + e
−(constant+

n
∑

i=1
coe f f icienti∗expressioni)

(8)

In the above Equation (8), the constant represents the value that would be predicted
for the dependent variable if all the independent variables were simultaneously equal
to zero, the coe f f icienti is the slope of the linear relationship of the i-th protein, and the
expressioni is the expression value of the i-th protein.

For survival analysis, Kaplan–Meier survival curves were explored and visualized
(using α = 0.05 as the test level) using the Survminer toolkit [26] in R based on age, gender,
and the tumor, node, metastasis (TNM) stage (clinical information was collected in the
TCGA dataset), as well as the expression pattern of candidate proteins in LUAD and
LUSC subjects.

3. Results
3.1. The Distributions Overview of the LUAD and LUSC Tumor Samples

The t-stochastic neighbor embedding (t-SNE) algorithm and principal component anal-
ysis (PCA), using the “Rtsne” and “FactoMineR” packages, respectively, were employed
to display the difference between the original proteins and the 10 proteomic biomarkers.
Overviews of the original lung cancer dataset based on t-SNE and PCA are shown in Fig-
ure 1A,C, respectively. t-SNE and PCA were also performed based on the subset containing
10 signatures. As shown in Figure 1B, the samples using 10 protein signatures clustered
significantly better than the 258 original proteins. From Figure 1C,D, we also observed that
the PCA scores for Dim1 significantly increased from 14.4% to 36.4%.

https://github.com/z-dragonl/Causal-Learner
https://github.com/z-dragonl/Causal-Learner
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Figure 1. Overview of the proteome profiling across lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC) samples. The subgraphs (A,B) are the results performing t-SNE; the
subgraphs (C,D) are the results performing PCA; (A) t-SNE and (C) PCA showed the clusters of
samples based on whole proteome profiling; (B) t-SNE and (D) PCA showed the clusters of samples
based on the top 10 selected protein profiling.

3.2. Using WBFS Method Identifying Protein Signatures for Classifying the Two Cancer Subtypes
3.2.1. Evaluate WBFS Classification Performance Based on UCI Datasets

To evaluate the classification performance of the WBFS algorithm and the advantage
in terms of prediction accuracy compared with other feature selection algorithms, 12 high-
dimensional datasets with different numbers of features, samples, and classification labels
from the UCI repository (https://archive.ics.uci.edu/mL/datasets.php, accessed on 11
January 2023) and additional studies were employed (https://github.com/jundongl/scikit-
feature, accessed on 11 January 2023). We discretize continuous datasets using an equal-
width strategy into five bins. Additionally, we introduced the ratio concept to evaluate the
classification difficulty for each dataset, with a smaller value indicating a more challenging
feature selection. For dataset D, N is the number of samples, m is the median arity of
the features, and c is the number of classes. The ratio can be calculated by N/(mc). All
12 datasets are described in Table 2.

https://archive.ics.uci.edu/mL/datasets.php
https://github.com/jundongl/scikit-feature
https://github.com/jundongl/scikit-feature
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Table 2. Description of 12 datasets for experiment.

Dataset Name. Dataset Source # Instances # Features # Classes Ratio

Lung https://github.com/jundongl/scikit-feature
(accessed on 11 January 2023) 73 325 7 4

Colon https://github.com/jundongl/scikit-feature
(accessed on 11 January 2023) 62 2000 2 10

Isolet https://github.com/jundongl/scikit-feature
(accessed on 11 January 2023) 1560 617 26 12

Sonar
https://archive.ics.uci.edu/dataset/151/connectionist+

bench+sonar+mines+vs+rocks
(accessed on 11 January 2023)

208 60 2 20

Ionosphere https://archive.ics.uci.edu/dataset/52/ionosphere
(accessed on 11 January 2023) 351 34 2 35

Breast https://archive.ics.uci.edu/dataset/17/breast+cancer+
wisconsin+diagnostic (accessed on 11 January 2023) 569 30 2 57

Landsat https://archive.ics.uci.edu/dataset/146/statlog+landsat+
satellite (accessed on 11 January 2023) 6435 36 6 215

Madelon https://github.com/jundongl/scikit-feature
(accessed on 11 January 2023) 2600 500 2 260

Splice
https://archive.ics.uci.edu/dataset/69/molecular+

biology+splice+junction+gene+sequences
(accessed on 11 January 2023)

3175 60 3 265

Waveform
https://archive.ics.uci.edu/dataset/108/waveform+

database+generator+version+2
(accessed on 11 January 2023)

5000 40 3 333

Krvskp https://archive.ics.uci.edu/mL/datasets/Chess+(King-
Rook+vs.+King-Pawn) (accessed on 11 January 2023) 3196 36 2 533

Musk https://archive.ics.uci.edu/dataset/75/musk+version+2
(accessed on 11 January 2023) 6598 166 2 660

The experiment was performed using MATLAB 2020 based on Windows 10 with a
1.6 GHz Intel Core CPU and 8 GB memory. Three types of classifiers, k-nearest neighbors
(KNN) [27], naïve Bayes classifier (NBC) [28], and the Library for Support Vector Machines
(LibSVM) [29], were used to test the prediction performance using selected features in the
experiment. Ten-fold cross-validation was employed, in which each of these datasets was
randomly partitioned into a training dataset (90%) and a testing dataset (10%) and fed to
every feature selection algorithm 10 times. Five well-known feature selection algorithms
were selected to be compared with the proposed WBFS method, including CONDRED [14],
MIM [10], mRMR [12], DISR [30], and CIFE [13]. A t-test was used to determine the
significant differences between two groups of classification accuracies, and a Win/Tie/Loss
(W/T/L) paradigm was adopted for describing performance: Win means WBFS shows
better than other baseline methods, Tie means that there is no statistically significant
difference with other methods and other cases are classified as Loss. Specifically, the
‘*’ symbols and ‘v’ identify statistically significant (at the 0.1 level) wins or losses over
the proposed WBFS method. The average accuracies, standard deviation, and W/T/L
information of 12 datasets based on three classifiers are shown in Tables 3–5. The number
of selected features for all methods was fixed at 15 and k = 5 for the KNN classifier.

In Tables 3–5 bold values indicate the largest value among the six feature selection
methods. WBFS obtains the best average classification accuracies of 84.48%, 73.15%, and
83.01% and occupies first place on five datasets (Lung, Krvskp, Madelon, Musk, and
Waveform), six datasets (Breast, Colon, Ionosphere, Krvskp, Sonar, Waveform), and six
datasets (Breast, Krvskp, Madelon, Musk, Sonar, Waveform) based on the three classifiers
KNN, NB and LibSVM, respectively. For the other methods of CONDRED [14], MIM [10],
mRMR [12], DISR [30], and CIFE [13], the numbers of cases for which they achieve the
highest classification accuracy are 1, 2, 2, 1, 1 with KNN; 1, 1, 0, 1, 3 with NBC; and 1, 1, 2, 1,
1 with LibSVM, respectively.

https://github.com/jundongl/scikit-feature
https://github.com/jundongl/scikit-feature
https://github.com/jundongl/scikit-feature
https://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks
https://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks
https://archive.ics.uci.edu/dataset/52/ionosphere
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
https://github.com/jundongl/scikit-feature
https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences
https://archive.ics.uci.edu/dataset/69/molecular+biology+splice+junction+gene+sequences
https://archive.ics.uci.edu/dataset/108/waveform+database+generator+version+2
https://archive.ics.uci.edu/dataset/108/waveform+database+generator+version+2
https://archive.ics.uci.edu/mL/datasets/Chess+(King-Rook+vs.+King-Pawn
https://archive.ics.uci.edu/mL/datasets/Chess+(King-Rook+vs.+King-Pawn
https://archive.ics.uci.edu/dataset/75/musk+version+2
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Table 3. Accuracy (%) of selected features using the k-nearest neighbors (KNN) algorithm.

No. Dataset CONDRED MIM mRMR DISR CIFE WBFS

1 Lung 46.43 ± 16.94 * 77.68 ± 18.08 * 85.71 ± 15.06 86.07 ± 14.72 61.25 ± 16.79 * 88.93 ± 8.94
2 Breast 93.32 ± 3.07 * 95.61 ± 2.77 95.08 ± 1.61 93.33 ± 3.94 * 92.79 ± 2.67 * 95.43 ± 2.06
3 Colon 83.81 ± 13.65 87.14 ± 13.05 90.24 ± 11.53 v 83.81 ± 13.65 87.14 ± 6.85 85.48 ± 12.27
4 Ionosphere 85.46 ± 5.14 86.32 ± 4.24 85.44 ± 4.97 86.32 ± 5.02 v 85.17 ± 6.17 84.60 ± 5.11
5 Isolet 20.06 ± 2.74 * 29.74 ± 3.50 * 65.06 ± 4.29 v 57.69 ± 3.32 * 50.90 ± 4.00 * 59.94 ± 3.45
6 Krvskp 88.95 ± 1.69 * 96.25 ± 0.94 94.15 ± 1.26 * 93.37 ± 1.04 * 94.4 ± 1.27 * 96.25 ± 0.94
7 Landsat 84.51 ± 1.54 83.03 ± 1.12 * 84.79 ± 1.10 84.16 ± 1.64 85.30 ± 1.16 84.48 ± 1.76
8 Madelon 76.38 ± 2.43 * 76.85 ± 2.18 * 57.5 ± 3.82 * 81.42 ± 1.78 * 81.65 ± 3.07 82.92 ± 1.84
9 Musk 50.85 ± 2.18 * 87.06 ± 1.00 * 83.13 ± 0.95 * 69.25 ± 1.82 * 76.66 ± 1.82 * 91.66 ± 1.37
10 Sonar 75.45 ± 9.19 83.17 ± 10.51 78.33 ± 8.59 83.64 ± 9.12 80.24 ± 8.99 81.17 ± 10.29
11 Splice 82.87 ± 1.78 82.43 ± 2.02 82.43 ± 2.02 82.43 ± 2.02 79.97 ± 2.47 * 82.43 ± 2.02
12 Waveform 80.52 ± 1.44 80.52 ± 1.44 80.52 ± 1.44 80.52 ± 1.44 69.94 ± 2.02 * 80.52 ± 1.44

Average 72.38 80.48 81.87 81.83 78.78 84.48
W/T/L 6/6/0 5/7/0 3/7/2 5/6/1 7/5/0

The ‘*’ symbols and ‘v’ identify statistically significant (at the 0.1 level) wins or losses over the proposed
WBFS method.

Table 4. Accuracy (%) of selected features using the naïve Bayes classifier (NBC) algorithm.

No. Dataset CONDRED MIM mRMR DISR CIFE WBFS

1 Lung 51.96 ± 24.43 58.75 ± 24.69 61.61 ± 23.35 61.61 ± 23.35 60.18 ± 22.59 60.18 ± 22.11
2 Breast 89.99 ± 3.60 * 92.79 ± 3.14 93.32 ± 2.84 62.74 ± 6.29 * 92.79 ± 2.26 93.32 ± 2.96
3 Colon 80.48 ± 10.75 * 88.57 ± 13.65 88.57 ± 13.65 88.57 ± 13.65 69.05 ± 18.58 * 88.81 ± 11.06
4 Ionosphere 72.66 ± 9.70 * 64.10 ± 6.04 * 64.10 ± 6.04 * 64.10 ± 6.04 * 80.35 ± 10.45 * 84.62 ± 7.75
5 Isolet 22.24 ± 3.96 * 24.17 ± 2.99 * 26.92 ± 4.46 * 16.79 ± 2.80 * 55.83 ± 3.29 v 43.08 ± 4.35
6 Krvskp 52.22 ± 1.88 52.22 ± 1.88 52.22 ± 1.88 52.22 ± 1.88 52.22 ± 1.88 52.22 ± 1.88
7 Landsat 75.46 ± 1.71 * 72.82 ± 1.76 * 76.53 ± 1.85 76.64 ± 1.52 77.62 ± 2.16 v 76.38 ± 1.94
8 Madelon 59.58 ± 3.10 59.62 ± 2.36 v 58.96 ± 2.31 59.19 ± 2.52 59.15 ± 3.65 59.12 ± 2.15
9 Musk 73.78 ± 1.49 * 77.39 ± 1.79 * 61.56 ± 1.60 * 82.69 ± 0.96 v 88.88 ± 0.93 v 78.87 ± 1.35

10 Sonar 64.79 ± 13.19 * 70.12 ± 15.74 66.74 ± 16.06 68.67 ± 15.47 * 71.57 ± 9.61 73.48 ± 16.34
11 Splice 88.69 ± 8.38 88.62 ± 8.37 88.62 ± 8.37 88.62 ± 8.37 87.74 ± 7.96 * 88.62 ± 8.37
12 Waveform 79.08 ± 1.26 79.08 ± 1.26 79.08 ± 1.26 79.08 ± 1.26 77.34 ± 0.91 * 79.08 ± 1.26

Average 67.58 69.02 68.19 66.74 72.73 73.15
W/T/L 7/5/0 4/7/1 3/9/0 4/7/1 4/5/3

The ‘*’ symbols and ‘v’ identify statistically significant (at the 0.1 level) wins or losses over the proposed
WBFS method.

Table 5. Accuracy (%) of selected features using the Library for Support Vector Machines
(LibSVM) algorithm.

No. Dataset CONDRED MIM mRMR DISR CIFE WBFS

1 Lung 43.75 ± 24.12 46.25 ± 24.69 * 41.25 ± 27.36 46.25 ± 24.69 v 28.93 ± 23.28 * 42.5 ± 24.09
2 Breast 93.32 ± 2.60 * 94.38 ± 2.72 95.25 ± 1.90 92.97 ± 2.35 * 92.79 ± 3.25 * 95.42 ± 2.40
3 Colon 62.86 ± 22.14 69.29 ± 19.97 v 64.52 ± 23.07 64.52 ± 23.07 64.52 ± 23.07 64.52 ± 23.07
4 Ionosphere 83.47 ± 6.99 * 88.60 ± 4.48 89.16 ± 4.24 v 88.90 ± 4.72 * 87.46 ± 4.71 87.18 ± 5.25
5 Isolet 28.33 ± 2.36 * 33.78 ± 4.34 * 68.21 ± 2.92 v 61.15 ± 1.87 * 61.79 ± 2.59 * 64.68 ± 3.46
6 Krvskp 75.28 ± 2.55 * 77.63 ± 2.10 72.37 ± 2.39 * 72.03 ± 2.38 * 72.59 ± 2.03 * 77.63 ± 2.10
7 Landsat 82.77 ± 1.40 80.57 ± 1.56 * 82.78 ± 1.40 82.81 ± 1.62 83.37 ± 1.35 v 82.69 ± 1.50
8 Madelon 65.85 ± 1.41 * 65.62 ± 1.28 * 60.35 ± 1.57 * 67.77 ± 1.94 * 67.81 ± 2.56 * 69.50 ± 2.39
9 Musk 84.59 ± 1.27 * 84.60 ± 1.23 * 84.59 ± 1.27 * 84.59 ± 1.27 * 90.21 ± 0.93 * 91.12 ± 1.10

10 Sonar 64.83 ± 8.47 * 74.00 ± 12.71 * 76.4 ± 13.56 74.95 ± 12.35 75.40 ± 10.31 76.88 ± 11.64
11 Splice 89.39 ± 2.23 89.17 ± 2.07 89.17 ± 2.07 89.17 ± 2.07 87.62 ± 1.78 * 89.17 ± 2.07
12 Waveform 83.62 ± 1.97 83.62 ± 1.97 83.62 ± 1.97 83.62 ± 1.97 77.32 ± 1.10 * 83.62 ± 1.97

Average 72.38 80.48 81.87 81.83 78.78 83.01
W/T/L 7/5/0 6/5/1 3/7/2 6/5/1 8/3/1

The ‘*’ symbols and ‘v’ identify statistically significant (at the 0.1 level) wins or losses over the proposed
WBFS method.
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From the perspective of W/T/L, WBFS obtains the best result in most cases. Ac-
cording to Table 5, WBFS achieves significantly higher classification accuracy than the
CONDRED, MIM, mRMR, DISR, and CIFE methods with case numbers of 7, 6, 3, 6, and 8.
For Tables 3 and 4, the numbers are 6, 5, 3, 5, 7 and 7, 4, 3, 4, 4.

Considering that the above six feature selection algorithms are all based on a feature
ranking strategy, an effective method for further comparing their classification accuracies
is to individually add features for learning. We employed this strategy using a range of
1–30 selected features. Figure 2 shows the comparative results based on six representative
datasets (Lung, Madelon, Sonar, Musk, Krvskp and Waveform). For each subgraph, the x-
axis refers to the first k selected features, and the y-axis represents the average classification
accuracy of three classifiers for the top k selected features. In Figure 2, it is obvious that
the proposed WBFS method shows better average accuracies than the others in most cases
based on the Lung, Madelon, Sonar, and Musk datasets. For instance, WBFS obtains the
highest average classification accuracy of 76.39% with only seven features, while accuracies
of 68.50%, 67.44%, 70.40%, 74.31%, and 64.84% are achieved by MIM, mRMR, DISR, CIFE
and CONDRED, respectively, with the same number of selected features. For Krvskp
and Waveform, the accuracies of each method are comparable because their ratio value is
sufficiently large; WBFS still obtains the best accuracy in most cases.

Figure 2. Average classification accuracy based on three classifiers vs. different number of selected
features for six datasets: (A) Lung, (B) Madelon, (C) Sonar, (D) Musk, (E) Krvskp, (F) Waveform.

In addition, we also compared the classification accuracy of feature selection sub-
sets obtained by the WBFS algorithm and ensemble learning algorithm Random Forest
(RF) based on the Isolet, Sonar, Waveform, Madelon, and Splice datasets, as shown in
Figure S1. The results suggest that both methods have similar classification accuracy on
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low-dimensional datasets such as Waveform, Sonar, and Splice. However, WBFS demon-
strates a clear advantage in classification accuracy on high-dimensional datasets such as
Madelon and Isolet.

All of the above experiments demonstrate that the WBFS technique performs better
than the other methods in terms of classification accuracy, which lays the foundation for its
application in bioinformatics data.

3.2.2. Using WBFS to Obtain the Top 10 Candidate Biomarkers

We discretized the expression data into three bins by utilizing an equal-width strategy
for WBFS according to the three expression states of protein (high expression, normal
expression, and low expression). The top 10 proteins (MIG6, GAPDH, NDRG1_pT346,
BRD4, CD26, TFRC, INPP4B, GSK3ALPHABETA, IGFBP2, and DUSP4) were screened by
applying the WBFS algorithm, and they can be regarded as the candidate biomarkers that
are most closely associated with the classification of lung cancer subtypes.

3.3. Using Bayesian Networks to Discover Causalities

In Figure 3, we can observe that the direct determinants for differentiating the subtypes
of lung cancer include the protein markers MIG6, NDRG1_pT346, BRD4, CD26, INPP4B,
and DUSP4, while the others can be considered as having an indirect impact on the
classification outcome. Therefore, the Bayesian network (BN) provides significant factors
for mechanistic studies at the molecular level.

Figure 3. The Bayesian network (BN) for the top 10 selected signatures and class label based on lung
tumor dataset. These directed arrows represent the causal relationship between every two nodes.
The cyan nodes are the key factors that are critical for subtype classification, and the yellow node
represents the lung subtype classification.
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3.4. ROC and Survival Analysis of the Candidate Protein Signatures

From Figure 4 and Table 6, it is possible to accurately distinguish LUAD and LUSC by
each of the 10 protein biomarkers, as indicated by the AUC, which had a value up to 0.72
(p < 0.001). Multiple regression results of the 10 biomarkers indicated that eight protein
markers, MIG6, GAPDH, NDRG1_pT346, BRD4, CD26, TFRC, INPP4B, and DUSP4, had
significant differentiation abilities in disease classification between the LUSC and LUAD
groups, as shown in Table S1. The detailed results of multiple regression analysis are
shown in Table 6. The combination of the eight features achieved the best classification
performance (AUC = 0.960, p < 0.001).

Figure 4. ROC curves of the 10 selected protein features and the combination test of 8 biomark-
ers. (A) shows the ROC curves of the 6 protein features of BRD4, CD26, DUSP4, GAPDH,
GSK3ALPHABETA and IGFBP2; (B) shows the ROC curves of the 4 protein features of INPP4B,
MIG6, NDRG1_pT346, TFRC and the combination test curve of 8 biomarkers.

Table 6. The Receiver Operating Characteristic (ROC) analysis of 10 selected protein biomarkers and
a combination test of 8 biomarkers.

No. Protein Biomarker AUC Sensitivity Specificity p-Value

1 BRD4 0.749 59.38 82.60 <0.0001
2 CD26 0.824 75.70 75.40 <0.0001
3 DUSP4 0.733 67.40 67.40 <0.0001
4 GAPDH 0.775 73.50 67.70 <0.0001
5 GSK3ALPHABETA 0.765 66.50 75.40 <0.0001
6 IGFBP2 0.722 65.20 71.80 <0.0001
7 INPP4B 0.767 74.20 66.90 <0.0001
8 MIG6 0.833 80.00 72.70 <0.0001
9 NDRG1_pT346 0.729 62.20 76.50 <0.0001

10 TFRC 0.876 81.20 80.90 <0.0001
11 The combination of eight biomarkers 0.960 90.15 92.54 <0.0001

The detailed information of the eight biomarkers in combination test are shown in Table S1.

Figure 5 shows the Kaplan–Meier survival curves of the above factors, which demon-
strates that MIG6, TFRC, INPP4B and IGFBP2 factors have a significant impact on the
overall survival rate of LUAD patients (p < 0.05), and the MIG6, TFRC, and INPP4B factors
have a significant negative prognosis correlation (p < 0.05). For LUSC patients, the factors
of MIG6, GAPDH, CD26, and TFRC are all significantly correlated with the overall survival
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rate of patients (p < 0.05), and TFRC was the only factor that has a significant positive
prognosis correlation (p < 0.05).

Figure 5. The Kaplan–Meier curves for lung adenocarcinoma (LUAD) (A–D) and lung squamous
cell carcinoma (LUSC) (E–H). The values of all protein expressions were divided into high and low
groups by cut-off values. The horizontal axis represents the survival time (day), and the vertical axis
represents the overall survival rate.

4. Discussion

Lung cancer is one of the most common malignant tumors worldwide. Accurate
classification of lung cancers into clinically significant subtypes is of utmost importance,
making it critical for clinical and scientific researchers to discover new molecular markers
and potential diagnostic and therapeutic targets [6,31]. Additionally, it is worth noting that
the TCPA platform has already standardized protein expression information, while the
TCGA database catalogs and explores cancer-causing genomic alterations, establishing a
comprehensive “atlas” of cancer genomic signatures. By integrating the information from
TCPA and TCGA, we could identify potential diagnostic and prognostic biomarkers for
lung tumor subtypes to help understand the underlying mechanisms of tumorigenesis and
improve approaches or standards for cancer diagnosis and therapy.

Feature selection is a fundamental technique for achieving efficient data reduction in
high-dimensional datasets, such as those used in biological and text data mining [8,32,33].
This strategy is crucial for identifying accurate models and key factors in classification
or clustering tasks [34,35]. Many studies have focused on developing feature selection
strategies that return an optimal feature subset. Information theory-based approaches, such
as mutual information and its extensions, can efficiently evaluate the relevance, redundancy,
or interaction information [36–38]. However, most proposed approaches concentrate
primarily on relevance or redundancy without considering interaction information. In this
paper, we present a new weight-based feature selection (WBFS) method that considers the
weight between selected features and candidate features based on information theory. Our
proposed algorithm outperforms other methods in terms of classification performance, as
demonstrated through experiments on 12 datasets and three classifiers.

Feature selection methods have an interesting application in biomarker discovery
from high-throughput genomics data, which can guide clinical diagnosis by identifying the
most discriminative biomarkers for a particular problem. In this study, the WBFS method
was applied to real-world lung cancer datasets to obtain key protein biomarkers for the
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classification of lung tumor subtypes. The causalities among the selected biomarkers were
also explored using the Bayesian network (BN) strategy. The study found six promising
protein biomarkers that were directly correlated with the classification of lung cancer
subtypes, including MIG6, NDRG1_pT346, BRD4, CD26, INPP4B, and DUSP4. ROC
analysis and survival curves based on selected proteins were also implemented. The ROC
analysis has shown that 10 protein biomarkers were able to accurately distinguish between
LUAD and LUSC with an AUC value of up to 0.72 and that eight of the protein markers
had significant utility in disease classification. When combined, the eight features produced
an AUC of 0.960, indicating strong classification performance. Survival curves showed that
MIG6, TFRC, INPP4B, and IGFBP2 had a significant impact on the overall survival rate of
LUAD patients, while MIG6, GAPDH, CD26, and TFRC were all significantly correlated
with the overall survival rate of LUSC patients. A study [39] demonstrated that MIG6 is
essential for controlling the regulation of cell signaling in lung cancer cells.

This work involves some limitations that are worth noting. Firstly, our WBFS method
is based on the feature ranking strategy, where the selection of the number of features k is
critical for achieving optimal classification performance and accuracy. Unfortunately, there
is currently no effective strategy for determining the optimal value of k. Moreover, in the
era of big data, it is more important than ever to identify the causal relationships among
large datasets. However, most of the proposed feature selection methods are non-causal,
and thus, it is necessary to establish a connection between non-causal feature selection and
causality inference. In our future work, we plan to focus on two main aspects:

(1) Developing a more efficient feature selection algorithm that can automatically deter-
mine the optimal number of selected features based on the intrinsic dimension of a
high-dimensional dataset.

(2) Investigating the relationship between causal and non-causal feature selection meth-
ods and applying non-causal feature selection methods to the Bayesian network. This
will facilitate Bayesian network structure learning based on high-dimensional data.

5. Conclusions

In this paper, we developed a new weight-based feature selection (WBFS) method
to identify protein biomarkers to distinguish between two different subtypes (LUAD and
LUSC) of lung cancer. Additionally, we further explored the direct influencing factors for
lung cancer subtype classification using Bayesian networks. Six promising protein biomark-
ers (MIG6, NDRG1_pT346, BRD4, CD26, INPP4B, and DUSP4) specifically contributed to
the subtype classification. These biomarkers, along with others, were able to accurately
distinguish between LUAD and LUSC with a high AUC value. The identification and
characterization of these biomarkers hold enormous potential for improving the diagnosis,
treatment, and outcomes of lung cancer patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e25071003/s1, Table S1: Multiple regression results of the selected
features in disease classification, Figure S1: BWFS vs. RF classification accuracy comparison based
on five datasets: (A) Waveform, (B) Splice, (C) Sonar, (D) Madelon, (E) Isolet. The X axis shows
the number of selected features, and the Y axis shows the average classification accuracy of three
classifiers (KNN, NBC and LibSVM).
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