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Abstract: Machine learning algorithms are frequently used for classification problems on tabular
datasets. In order to make informed decisions about model selection and design, it is crucial to gain
meaningful insights into the complexity of these datasets. Feature-based complexity measures are
a set of complexity measures that evaluates how useful features are at discriminating instances of
different classes. This paper, however, shows that existing feature-based measures are inadequate in
accurately measuring the complexity of various synthetic classification datasets, particularly those
with multiple classes. This paper proposes a new feature-based complexity measure called the F5
measure, which evaluates the discriminative power of features for each class by identifying long
sequences of uninterrupted instances of the same class. It is shown that the F5 measure better
represents the feature complexity of a dataset.

Keywords: multinomial classification datasets; classification problem complexity; feature-based
complexity measures; synthetic datasets

1. Introduction

Analyzing large datasets is crucial for deriving meaningful and actionable insights
that go beyond simple correlations. With the advent of big data, datasets can contain
millions of examples (rows) and features (columns) [1,2]. Data complexity analysis uses
a broad category of measures that offer such insights. For example, the complexity of
optimization problems can be quantified using landscape analysis which includes fitness
landscape analysis (FLA) [3] and exploratory landscape analysis (ELA) [4]. Topological data
analysis (TDA) measures the topological features in data, and the relationships between
them, to assess complexity [5,6]. Complexity measures for regression problems include
feature correlation measures, linearity measures, smoothness measures, and geometrical,
topology, and density measures [7]. Lastly, complexity measures for classification problems
focus on the geometrical complexity of the class boundary [8]. Complexity measures for
classification problems include feature-based measures, linearity measures, neighborhood
measures, network measures, dimensionality measures, and class imbalance measures [9].
Applications of these measures include data analysis, data pre-processing, understand-
ing algorithm performance, meta-learning or automated machine learning, and selecting
benchmarks that cover a variety of complexity characteristics [7,9–14].

This paper is concerned with feature-based complexity measures for classification
problems. A classification problem is a type of supervised learning where the goal is to take
advantage of geometric shapes in the data to separate instances of different classes. Feature-
based complexity measures quantify the discriminative power of the descriptive features in
a dataset—that is, how useful the features are in separating instances of different classes [9].
Classification datasets with highly discriminative features are considered simple, while
datasets with features that exhibit little to no discriminative power are considered complex.
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It is worth noting that various statistical approaches, including chi-squared statistics,
ANOVA F-value, mutual information, lasso regression, two-sample t-test, Kruskal–Wallis
test, Kolmogorov–Smirnov test, and more, are commonly used to estimate feature infor-
mative power and selection. These approaches have a different objective compared to
feature-based complexity measures, which is to quantify feature informative power for
feature selection, while feature-based complexity measures focus on estimating the com-
plexity of the dataset. Despite this distinction, there is a similarity between these two types
of approaches, making it worthwhile to explore the possibility of using these statistical
measures as complexity measures, similar to how feature-based complexity measures have
been utilized for feature selection.

Unfortunately, existing feature-based complexity measures are not designed to handle
multinomial classification problems; they are designed for binary classification problems.
These measures typically use the minimum and maximum feature values of each class to
determine the overlapping region of the classes. The instances outside of this region are
seen as instances that can be easily discriminated by the features. However, the use of
the minimum and maximum values of each class for each feature presents two problems.
Firstly, there is sensitivity to noise, as a single noisy instance could result in an overestima-
tion of complexity. Secondly, the use of minimum and maximum values cannot estimate the
complexity of real-world classification problems, such as cases where the instances of one
class lie between those of another class. To handle multinomial classification problems, ex-
isting measures require decomposing the classification problem into multiple sub-problems
using the one-versus-one (OVO) strategy. The average of these sub-problems is then taken
as the complexity value. However, the use of OVO is computationally inefficient, and
as shown in this paper, the use OVO does not properly capture the complexity of the
classification problem.

This paper proposes the F5 measure, which is a new feature-based complexity measure
that is designed to effectively handle multinomial classification problems. The measure
determines the most discriminative feature by identifying the longest sequence of unin-
terrupted instances for each class for each feature. These sequences are considered to be
discriminated by their respective features. The feature that discriminates the most instances
is selected, and its sequences are removed from the dataset. The measure then proceeds
to consider the remaining features. This process continues until either there are no more
features to consider, or there are no more instances to be removed. The number of instances
remaining in the dataset after this process relative to the original number of instances in
the dataset is interpreted as the complexity of the dataset. It is shown that the proposed
measure better represents intuitions about feature complexity. This work is useful as it
can enhance the application of complexity measures in various domains, including those
mentioned earlier.

The rest of the paper is organized as follows: Formal definitions for existing feature-
base complexity measures are given in Section 2. Section 3 proposes a new feature-based
complexity measure. Section 4 details the experiments used to demonstrate the difference
between the proposed measure and existing measures and presents the results. Section 5
concludes the paper.

2. Feature Complexity

A tabular classification problem is defined by the data in a dataset where the objective
is to correctly predict the class of each instance, assuming that each instance has only
has a single class. Formally, a dataset, T, contains n instances in which each instance
(xj, yj) is described by m descriptive features and a target feature in yj ∈ {1, . . . , nc} that
corresponds to its class. Feature-based complexity measures estimate how informative
the m features are in discriminating among instances of different class labels [13]: that is
to say, how useful the features are in separating the nc classes. The more instances that
can be separated, the simpler the problem. Sections 2.1–2.5 describe existing feature-based
complexity measures, namely F1, F1v, F2, F3 and F4, respectively. Note that lower values
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returned by the measures indicate the presence of one or more features that exhibit a
large amount of discriminative power. Larger values, on the other hand, indicate that the
descriptive features are discriminatively weak and, thus, are more complex.

2.1. Maximum Fisher’s Discriminant Ratio

Ho and Basu proposed the maximum Fisher’s discriminant ratio measure (F1) to
capture the complexity of a dataset [8]. They argued that multi-dimensional classification
problems are easy so long as there exists one discriminating feature. The F1 measure
returns the Fisher statistics of the feature with the largest contribution to class discrimina-
tion [14]. In other words, the F1 measure identifies the feature with the largest discrimi-
native power [8]. This paper takes the inverse of the original F1 formulation, so that the
measure returns low values for simple classification problems and larger values for more
complex classification problems [9]. The inverse of the F1 measure is

F1 =
1

1 + maxm
i=1r fi

, (1)

where r fi
is a discriminant ratio for each feature fi. The discriminant ratio is calculated as

r fi
=

∑nc
k=1 nck (µ

fi
ck − µ fi )2

∑nc
k=1 ∑

nck
l=1(xj

l,i − µ
fi
ck )

2
, (2)

where nck is the number of instances in class ck, µ
fi
ck is the mean of feature fi across examples

of class ck, µ fi is the mean of the fi values across all the classes, and xj
l,i denotes the

individual value of the feature fi for an example from class ck [8,11]. The computational
cost of the F1 measure is O(m · n), and it returns values in (0, 1] [9]. A hyperplane can be
drawn perpendicular to this feature’s axis to separate the classes. Lorena et al. noted that if
the required hyperplane is oblique to the feature axes, F1 may not be able to capture the
simplicity of the classification problem [9].

2.2. Directional-Vector Maximum Fisher’s Discriminant Ratio

Orriols-Puig et al. proposed the directional-vector maximum Fisher’s discriminant
ratio (F1v) as a complement to the F1 measure [15]. This measure searches for a vector
which can separate instances after the instances have been projected into the vector [9,15].

The directional Fisher criterion [16] is defined as

dF =
dtBd
dtWd

, (3)

where
d = W−1(µc1 − µc2), (4)

B = (µc1 − µc2)(µc1 − µc2)
t, (5)

and
W = pc1 Σc1 + pc2 Σc2 . (6)

Vector d is the directional vector onto which data is projected in order to maximize class
separation, B is the between class scatter matrix, W is the within-class scatter matrix, µck is
the centroid (mean vector) of class ck, W−1 is the pseudo-inverse of W, pck is the proportion
of examples in class ck, and Σck is the scatter matrix of class ck.

Formally, the F1v measure is

F1v =
1

1 + dF
(7)
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F1v was implemented for two-class classification problems and has a computational cost of
O(m · n + m3). The measure can be extended to classification problems with more than two
classes (referred to as multinomial classification problems) by decomposing the problem
into sub-problems using a OVO strategy [9]. However, F1v for multinomial classification
problems is computationally expensive with a cost of O(m · n · nc + m3 · n2

c )—assuming
that each class has the same number of instances [9]. As for the F1 measure, F1v values are
bounded in (0,1].

2.3. Volume of Overlapping Region

F2 measures the volume of the overlapping region for two-class classification problems.
An overlapping region is a region in the dataset that contains instances of different classes.
The F2 measure computes, for each feature, the ratio of the width of the overlapping region
of the classes to the width of the feature [15]. The width of the feature is the difference
between the maximum and minimum values of that feature. The measure then computes
the product of these ratios. Formally, the F2 measure is

F2 =
m

∏
i=1

overlap{ fi}
range{ fi}

=
m

∏
i=1

max{0, min max{ fi}}
max max{ fi} −min min{ fi}

, (8)

where

min max( fi) = min(max( f c1
i ), max( f c2

i )),

max min( fi) = max(min( f c1
i ), min( f c2

i )),

max max( fi) = max(max( f c1
i ), max( f c2

i )),

min min( fi) = min(min( f c1
i ), min( f c2

i )),

(9)

and max( f ck
i ) and min( f ck

i ) are the maximum and minimum values of each feature in a
class ck ∈ {1, 2}, respectively.

F2 returns values in [0,1] and has a computational cost of O(m · n). For multinomial
classification problems, the measure can also be extended using OVO, in which case the
computational cost is O(m · n · nc).

F2 can identify only one overlapping region per feature. Alternatively, F2 can be
thought of as only being able to identify two hyperplanes that separate classes per feature,
since it computes one overlapping region and considers the instances on either side of that
region. Hu et al. noted that the F2 measure does not capture the simplicity of a linear oblique
border since the measure assumes that the class boundaries are perpendicular to the features
axes [17]. Lorena et al. noted that F2 values can become very small when the product
is calculated over a large number of features [9]. Thus, a complex classification problem
with many descriptive features may produce a low F2 value, giving the impression that
the problem is simple. Lastly, a single noisy class instance could result in an overlapping
region that is wider than necessary [9].

2.4. Maximum Individual Feature Efficiency

The maximum individual feature efficiency (F3) measure returns the ratio of the
feature that can discriminate the largest number of instances relative to the total number of
instances in the dataset [15]. This ratio, no( fi), is calculated using

no( fi) =
n

∑
j=1

I
((

xj,i > max min( fi)
)
∧
(
xj,i < min max( fi)

))
, (10)
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where I is an indicator function that returns 1 if its argument is true, otherwise 0, max min( fi)
and min max( fi) are as defined in Equation (9), and ∧ is the logical and operator. The F3
measure is then defined as

F3 = min
i=1,...,m

no( fi)

n
. (11)

As for the F2 measure, F3 has a computational cost of O(m · n · nc), and it returns values
in [0,1]. F3 also uses the minimum and maximum values of a feature for different classes in
its calculation of complexity and therefore suffers from the same problems, namely only
being able to identify one overlapping region per feature, unable to identify orthogonal
hyperplanes that separate classes, and sensitivity to noise.

2.5. Collective Feature Efficiency

The F4 measure is similar to F3 but considers the collective discriminative power of all
the features [15]. F4 selects the most discriminative feature according to the F3 ratio of each
feature. Then, all the instances that are discriminated by this feature are removed from the
dataset. The next most discriminative feature, with respect to the remaining instances, is
then selected, and the instances that are discriminated are removed. This function, defined
below, is repeated until all of the instances are discriminated or all the features have been
analyzed:

fmin(Tr) = { fi| min
i=1,...,m

(no( fi))}Tr , (12)

where no( fi) is computed according to Equation (10); Tr is the dataset at round r, and it is
defined as

T0 = T

Tr = Tr−1 − {xj|
(

xj,i < max min( fmin(Tr−1))
)
∨
(
xj,i < min max( fmin(Tr−1))

)
},

(13)

where T0 is the initial dataset, max min( fi) and min max( fi) are as defined in Equation (9),
and ∨ is the logical OR operator.

Formally, F4 is defined as

F4 =
no( fmin(Tr))

n
, (14)

where no( fmin(Tr)) measures the number of instances in the overlapping region of feature
fmin.

The F4 measure returns values in [0,1], which can be interpreted as the proportion of
instances that could be discriminated by drawing hyperplanes perpendicular to the feature
axes. The computational cost of F4 is O(m2 · n · nc). However, since F4 uses the F3 measure,
F4 suffers from the same problems.

3. Collective Feature Efficiency for Multinomial Classification Problems

This section proposes a new feature-based complexity measure referred to as the F5
measure. The F5 measure is an extension of the F4 measure, which, like its predecessor,
builds upon the F3 measure. However, while the F4 measure relies on the minimum
and maximum values of class instances per feature, the F5 measure identifies the longest
uninterrupted sequence of instances instead. Additionally, the F5 measure takes into
account the discriminative power of each feature separately for each class. These modifica-
tions are made to handle multinomial classification problems without the need for OVO
decomposition.

Section 3.1 introduces the idea of walking along a feature axis used to identify se-
quences of instances of the same class. The process of selecting the most discriminative
feature is explained in Section 3.2. Finally, the F5 measure is proposed in Section 3.3.
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3.1. Identifying Sequences of Instances of the Same Class

To better understand the ability of a dataset to discriminate between instances of
different classes, imagine performing a random walk through the data and recording
the class changes from one instance to the next. Similarly, the F5 measure employs a
walking strategy along each feature axis, identifying the longest uninterrupted sequences
of instances of the same class. Multiple sequences of each class may exist for each feature,
and such sequences can be represented by the corresponding row IDs of the instances or
the feature values at the start and end of the sequence. While traversing along a feature
axis, if an instance shares a value with another instance but belongs to a different class, that
sequence ends, and a new sequence starts. Longer sequences represent non-overlapping
areas of the feature axis where lines may be drawn perpendicular to the feature axis to
separate the classes. Conversely, shorter sequences may represent noise or reflect more
challenging characteristics of the feature axis that are difficult to classify. The lengths of
sequences are weighted by the total number of instances of the same class. It is important
to note that having a longer sequence of instances from one class does not necessarily
imply greater discriminative power, especially when other classes have significantly fewer
samples. To address this issue, the lengths of the sequences are weighted according to their
class distribution.

There is a special case where a feature exhibits discriminatory behavior primarily
toward the ends of its feature axis. For example, a long sequence of instances exists at the
beginning of the feature axis, and a similarly long sequence of the same class appears at
the end of the axis. Between these two sequences are shorter sequences. It is reasonable
to interpret these intermediate sequences as representing overlapping regions of multiple
classes, while the sequences at the beginning and end of the feature axis are discriminated
by the feature. In such a case, these sequences are concatenated and treated as a single
sequence. The pseudocode for identifying these sequences is provided in Algorithm 1.

Algorithm 1: Identifying sequences
Given a tabular dataset T;
Given a feature f from dataset T;
Let S represent an empty list used to store sequences;
Let ω represent a sequence (initialized to an empty list) used to store instances of
the same class;

Sort the instances in T according to feature f ;
for each instance j = 1, . . . , n in T do

Let xj represent instance j;
Let yj represent the target class of instance j;
if yj = yj−1 and xj, f is not shared with an instance of another class then

Append (xj, yj) to ω;
else

Append ω to S;
Set ω to an empty list;

if the first and last sequence contain instances of the same class then
Concatenate the first and last sequences and assign to ω;
Append ω to S;

return S;

3.2. Selecting the Most Discriminative Feature

Algorithm 1 is used to identify sequences for each feature. Only the longest sequence
of each class is considered to be discriminated by its respective feature. This approach
avoids the need for a control parameter to determine the number of sequences to consider,
and thus, it also avoids the need for multiple reruns of the F5 measure with differing
control parameter values. The feature that discriminates the most instances is selected, and
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the instances that it discriminates are removed from the dataset. For example, consider
a dataset with features ‘x’ and ‘y’ and classes 0 and 1. The F5 measure calculates the
longest sequence of instances for class 0 and class 1 separately for features ‘x’ and ‘y’.
Suppose that feature ‘x’ discriminates the greatest number of instances. These instances are
removed from the dataset and the remaining feature, ‘y’, is then taken into consideration
for further analysis.

3.3. F5 Measure

The F5 measure works as follows: The most discriminative feature is selected using the
process defined in Section 3.2. The remaining features and instances are then considered,
and the next most discriminative feature is selected. This process is repeated until there are
no more features to consider or until all instances have been discriminated. Formally, this
function is calculated as

fmax(Tr) = { fi| max
i=1,...,m

(no( fi))}Tr , (15)

where no( fi(Tr)) returns the number of the instances in Tr that can be discriminated by
feature fi. Dataset Tr is the dataset of the r-th round after the instances from r− 1 previous
rounds have been removed; T0 = T. Note that when the relative entropy is calculated,
the number of instances of each class is taken from T0 and not subsequent rounds.

The F5 measure is then defined as

F5 = 1− no( fmax(Tr))

n
, (16)

where n is the total number of instances in T. The computational cost of the F5 measure
is O(m2 · n), which is less than the computational cost of the F4 measure without the
use of OVO. The F5 measure returns values in [0,1). A large F5 value indicates that
a classification problem is complex, since it has descriptive features that discriminate
few instances. Conversely, a small F5 value indicates that a classification problem has
descriptive features that discriminate many instances and is therefore simple.

To demonstrate the F5 measure, consider the synthetic dataset in Figure 1a at T0
that contains two T-shaped data. The F5 measure examines the features and determines
that the y-axis can discriminate the highest number of instances, since it has the longest
uninterrupted sequences. Using these sequence, lines could be drawn perpendicular to
the y-axis (i.e., near the bottom and top of the axis) to separate the instances. The resulting
dataset is illustrated in Figure 1b. The F5 measure looks at the remaining feature, i.e., the
x-axis. The measure finds the longest sequence of each class and removes these instances.
The final dataset is shown in Figure 1c. Thus, the complexity of this dataset is 0, which
makes sense.

(a) T0 (b) T1 (c) T2

Figure 1. Dataset T at each round for the F5 measure.

4. Experiments and Analysis

This section assesses the performance of the proposed F5 measure on synthetic datasets.
These datasets were crafted to contain a variety of features that are indicative of real-world
classification problems. Furthermore, careful consideration was given to ensure that the
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datasets were easily interpretable, thus allowing the reader to form expectations about the
complexity of the datasets. The datasets are grouped in the relevant sections below by
problem type. Results for the proposed F5 measure and existing feature-based complexity
measures are also discussed and presented.

Section 4.1 briefly details the implementation of the measures. Section 4.2 presents
ten two-class classification problems. Each class contains 100 instances, and the classes are
equally distributed unless stated otherwise. The features in each dataset contain continuous
data in [0,1]. Likewise, Section 4.3 presents similar datasets but with three-classes.

4.1. Implementation

The proposed approach (F5) was implemented using Python. The source code and
datasets used have been made available on GitHub (https://github.com/KyleErwin/f5
-measure) (accessed on 22 June 2023). The existing feature-based complexity measures
(F1 to F4 and F1v) were provided by the R package ecol (https://cran.r-project.org/web/
packages/ECoL/index.html) [9] (accessed on 22 June 2023).

4.2. Two-Class Classification Problems

Figure 2 illustrates the ten two-class classification problems used to assess the per-
formance of the feature-based complexity measures. The results are given in Table 1.
Appendix A shows the resulting dataset at each round of the F5 measure for each dataset.

(a) Clusters (b) Clusters (overlap) (c) Oblique

(d) Columns (three) (e) Columns (five) (f) Moons

(g) Circles (h) Random (i) Noise

(j) Imbalanced

Figure 2. Synthetic two-class classification problems where class one is colored orange and class two
is colored blue.

https://github.com/KyleErwin/f5-measure
https://github.com/KyleErwin/f5-measure
https://cran.r-project.org/web/packages/ECoL/index.html
https://cran.r-project.org/web/packages/ECoL/index.html
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Table 1. Feature-based complexity results for each synthetic two-class classification problem.

Dataset F1 F1v F2 F3 F4 F5

Clusters 0.06083 0.00646 0.0 0.0 0.0 0.0
Clusters (overlap) 0.95804 0.41352 0.42286 0.745 0.435 0.42
Oblique 0.99513 0.96112 0.97998 0.98 0.975 0.865
Columns (three) 0.9996 0.99677 0.1967 0.5 0.5 0.0
Columns (five) 0.99942 0.99537 0.54475 0.75 0.715 0.455
Moons 0.5366 0.11538 0.13598 0.38 0.195 0.185
Circles 1.0 0.99999 0.65573 0.8 0.61 0.385
Random 0.99969 0.99769 0.96479 0.965 0.945 0.905
Noise 0.99803 0.86552 0.44912 0.6 0.41 0.4
Imbalanced 0.81469 0.34583 0.45127 0.653 0.543 0.153

The clusters dataset, illustrated in Figure 2a, contains two clusters of each class.
The clusters are separated by a wide margin on the y-axis. Intuitively, the dataset exhibits no
complexity because of this margin. All of the feature-based complexity measures returned
values near 0.0 or exactly 0.0. Thus, the measures confirmed this intuition. Figure 2b
illustrates a similar, but more complex, dataset. The dataset contains two more clusters
(of each class) that overlap each other. At most, 50% of the data overlaps. Thus, this
problem is clearly more complex than the previous clustered dataset, and an increase in the
values produced by the complexity measures was expected. Table 1 shows that values for
the measures did increase. However, F1 and F3 overestimated the complexity, returning
approximately 0.96 and 0.75, respectively.

The oblique dataset (Figure 2c) contains two oblique hyperplanes that separate the
classes. As mentioned earlier, Lorena et al. noted the limitation of the F1 measure in
capturing the simplicity of a classification problem with an oblique hyperplane [9]. This
limitation extends to other measures except for the F1v measure. However, this paper offers
an alternate perspective, suggesting that identifying an oblique hyperplane is not simple
especially as the number of features in the dataset increases and the dataset cannot easily
be visualized. All measures (including the F1v measure) returned relatively large values—
thus capturing the complexity of the dataset. The F1v measure, specifically designed
to detect oblique hyperplanes, returned a large value due to the presence of multiple
oblique hyperplanes within the dataset and the measure being able to only identify one
oblique hyperplane.

The next two datasets, illustrated in Figure 2d,e, respectively, contain columns that are
separable by lines perpendicular to the x-axis. The columns alternate between instances of
the two classes. The first dataset contains three columns, where one class is enclosed by the
other class. The columns are clearly separable by straight lines; therefore, low complexity
values were expected. The proposed F5 measure was the only measure that returned 0.0.
At the opposite end, F1 and F1v produced values that were closer to 1.0. Likewise, F3 and
F4 both returned 0.5. The F2 measure returned a value of 0.2. The second dataset adds two
more columns (Figure 2e). Although the separability of the additional columns is obvious,
the fact that more hyperplanes are required to separate the instances implies an anticipated
increase in complexity. The F5 measure produces a value of 0.455, which means that 45.5%
of instances are not discriminated by the features as a result of adding two more columns.
The F2 returned a similar value of 0.545, while measures F3 and F4 returned even larger
values of −0.75 and 0.715, respectively. The F1 and F1v measures returned values close to
1.0, suggesting that the classification problem is maximally complex.

Figure 2f,g show datasets with non-linear features. Remember that these measures
quantify the discriminative power of the features rather than the linearity of the classifica-
tion problem. The values returned by measures F1v, F2, F4 and F5 (i.e., between 0.1 and 0.2)
indicate that the moons dataset is slightly complex. Measures F1 and F3 returned approxi-
mately 0.54 and 0.38, respectively, suggesting that the dataset is more than slightly complex.
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The circles dataset is a complex dataset, since the instances of one class are completely
surrounded by the instances of another class. Both F1 and F1v produced a maximum
value of 1.0, indicating that the problem is extremely complex, or in other words that the
features cannot be used to discriminate between the classes. The F5 measure returned 0.385,
while measures F2 and F4 returned values around 0.63, and the F3 measure returned 0.8.
Measures F2, F3, F4 and F5 disagree about how complex the problem is. Lower values such
as those of F2, F4 and F5 make sense, since instances of class two can still be separated by
drawing lines between the margins of the circles. Moreover, once instances of class two
are removed either by drawing lines along the x-axis or y-axis between the margins of the
classes, it allows for instances of class one to be discriminated in the next round—as in the
case of the F4 and F5 measures.

The next dataset, illustrated in Figure 2h, contains random data. Here, the features
have very little or no discriminative power. Thus, the complexity of the dataset is at a
maximum. All measures produced a value of 1.0 or near 1.0. This is good, because it
means that the measures were able to capture complexity when complexity is intuitively
at a maximum. Figure 2i illustrates another random dataset where class one only has
five instances. These five instances might as well be considered noise, since 97.5% of the
data are instances of class two. Intuitively, the complexity of this dataset is low, despite
the noise. The F1 value indicates that the problem is maximally complex. Likewise,
the F1v value suggests that the complexity of the problem is quite high. The F3 measure
returned 0.6, and measures F2, F4 and F5 returned similar values of around 0.40. This
dataset shows that a small amount of noise can affect the values produced by feature-based
complexity measures.

Figure 2j shows an imbalanced dataset where class one has 250 instances and class
two has 50 instances. This dataset showcases the usefulness of using the weighted lengths
of sequences instead of the actual lengths. The measures F1, F1v, F2, F3, and F4 returned
values ranging from 0.34583 to 0.81. However, there is only a small overlap between the
two classes. The proposed F5 measure determines that the y-axis is the axis with the
highest discriminative power since it discriminates 50% of class two despite being able to
discriminate a larger number of class one instances on the x-axis. As a result, the F5 measure
returned a score of 0.153. If the F5 measure did not weight the lengths of sequences by the
class distribution, it would return a value of 0.45, thereby overestimating the complexity of
the dataset.

4.3. Three-Class Classification Problems

This section follows the same experimental setup as the previous section, except that
the datasets now contain three classes. Figure 3 visualizes the classification problems.
The results, given in Table 2, are largely the same as in the previous section with a few ex-
ceptions. The resulting dataset at each round of the F5 measure for each three-class dataset
is shown in Appendix B.

Table 2. Feature-based complexity results for each synthetic three-class classification problem.

Dataset F1 F1v F2 F3 F4 F5

Clusters 0.02158 0.00483 0.0 0.0 0.0 0.0
Clusters (overlap) 0.60384 0.20362 0.06118 0.40906 0.39727 0.407
Oblique 0.49138 0.02978 0.18377 0.44333 0.07111 0.865
Columns (three) 0.51683 0.01993 0.0 0.0 0.0 0.0
Columns (five) 0.99918 0.99518 0.29072 0.5 0.5 0.0
Moons 0.33933 0.04677 0.12085 0.28502 0.0 0.0
Circles 1.0 1.0 0.53147 0.76167 0.56 0.65
Random 0.99469 0.97009 0.93678 0.96124 0.93764 0.91
Noise 0.99434 0.82305 0.61968 0.7459 0.65457 0.72
Imbalanced 0.74088 0.04346 0.02574 0.06303 0.01697 0.14



Entropy 2023, 25, 1000 11 of 18

(a) Clusters (b) Clusters (overlap) (c) Oblique

(d) Columns (three) (e) Columns (five) (f) Moons

(g) Circles (h) Random (i) Noise

(j) Imbalanced

Figure 3. Synthetic three-class classification problem where class one is colored orange, class two is
colored blue and class three is colored green.

The F2 measure returned a value near 0.0 for the clusters dataset with overlapping
instances, as visualized in Figure 3b. Such a value would indicate that the problem is easily
solvable, but by inspection, nearly all instances of class three overlap with instances of
class one.

Measures F1, F2 and F3 returned lower values than in the previous experiment for
the oblique classification problem. The difference between this experiment and the last is
that the existing measures make use of the OVO strategy. For example, the F1v and F4
measures return values close to 0, which suggests that the problem is similar in complexity
to the clusters dataset shown in Figure 3g—which is not the case. These measures use the
OVO strategy where the measures return the average complexity value of sub-problems
of the dataset that only contain two classes. The F1v searches can easily identify the
oblique hyperplane in each of these sub-problems. Likewise, the F4 measure determines
that the collective feature efficacy of the sub-problems is very high and returns a low
complexity value overall. This is an example where using the OVO strategy results in a
misrepresentation about the complexity of a dataset. In contrast, the proposed F5 measure
returned a value of 0.865.

All measures returned a value of 0.0 or near 0.0 for the three-columns dataset in
Figure 3d except for the F1 measure. The existing feature-based complexity measures
struggled with the three-class five-column dataset in Figure 3e, despite some measures
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having taken advantage of the OVO strategy. On the other hand, the proposed F5 measure
returned a value of 0.0—which makes sense, since the x-axis is highly discriminatory
amongst the classes.

The classes in the moons classification problem (Figure 3f) can be separated either by
drawing lines perpendicular or orthogonal to the feature axes. The F5 measure (perpendic-
ular lines) returned a value of 0.0, and the F1v measure (orthogonal lines) returned a value
near 0.0. The F4 measure also returned a value of 0.0. The remaining measures returned
low values relative to their results for the moons problem in the previous section.

The three-class circles dataset in Figure 3g adds an additional smaller circle to its
two-class counterpart in Figure 2g. The additional circle makes the problem more complex
and, thus, an increase in complexity values was expected. Both the F1 and F1v measures
returned 1.0, which is similar to the previous experiment. The proposed F5 measure
returned 0.64, which is a 0.51 increase from the previous experiment. The remaining
measures, F2, F3, and F4, returned lower values compared to their values for the two-class
circles problem in the previous experiment. The lower values were a result of the OVO
strategy, where the measures could abuse the margin between the most outer circle and the
most inner circle to discriminate instances. However, this is not how the problem would
be solved in the real world and brings in further doubt about the usefulness of the OVO
strategy.

For the random dataset in Figure 3h, the measures returned values near 1.0 or 1.0,
which is expected. The imbalanced random dataset (Figure 3i) contains five instances
of class one, five instances of class three, and all remaining instances are of class two.
The F1 measure returned a value near 1.0, indicating that the dataset is as complex as the
previous dataset, which is not the case. The values obtained from measures F2, F3, F4,
and F5 are similar to each other and indicate a decrease in complexity compared to the
previous dataset.

The imbalanced dataset in Figure 3j has 250 instances of class one, 25 instances of class
two, and 25 instances of class three. Similar to the two-class imbalanced dataset, the F5
measure selects the y-axis as the most discriminative feature since it discriminates 100%
of class two. However, unlike the two-class imbalanced dataset, the measures F1v, F2,
F3, and F4 returned values near 0.0 due to the use of the OVO strategy. The F5 measure
returned 0.14.

5. Conclusions

Meaningful insights into data help researchers to understand the problem being
solved. Without such insights, time and effort are wasted. Complexity measures are
tools designed for deriving such insights into data. This paper focused on feature-based
complexity measures, which assess the discriminative power of descriptive features to
separate instances of different classes within a dataset. The findings of this research
indicate that current feature-based complexity measures generally do not perform well
when applied to multinomial classification problems.

This paper proposed a new feature-based complexity measure, the F5 measure. This
measure identifies uninterrupted sequences of instances belonging to the same class for
each feature. The sequences correspond to instances that are discriminated by the features.
The feature that discriminates the highest number of instances is identified as the most
discriminant feature. Instances discriminated by this feature are removed and the feature is
no longer considered. This process repeats until all instances have been removed or there are
no more features to consider. The complexity score is the proportion of instances remaining
in the dataset relative to the total number of instances in the dataset. The proposed measure
is shown to accurately capture the feature complexity on a variety of synthetic datasets
better than existing measures—especially multinomial datasets.

The work in this paper can be continued in the following ways (but it is not limited to
them): Feature-based complexity measures have previously been used as feature selection
tools, since the measures identify the most discriminative features in a dataset. Thus,
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an idea for future work is to investigate the performance of the F5 measure as a means
of feature selection and to compare it with other feature-based complexity measures and
existing feature-selection strategies. Similarly, exploring the use of commonly employed
statistics used for feature selection (such as chi-squared statistics, ANOVA F-value, mutual
information, lasso regression, two-sample t-test, Kruskal–Wallis test, Kolmogorov–Smirnov
test and more) as complexity measures would provide valuable insights and an alternative
perspective on feature-based complexity. Another idea for future work is to use the F5
measure as a meta-characteristic in automated machine learning and to investigate whether
it leads to better performance. Additionally, the introduction of a hyperparameter to set a
minimum sequence length would allow researchers to systematically explore the impact of
different minimum lengths on the complexity measure, providing lower and upper bounds
for dataset complexity. The number of removals required in the F5 measure grows as the
number of classes increases, which may become costly or lead to an inaccurate assessment
of complexity. To address the issue, the same feature could be selected multiple times
in proportion to the number of classes. Future work should also include comparisons
with performance measures obtained from machine learning algorithms on synthetic and
real-world datasets to gain a better understanding of the relationship between complexity
and predictive performance.
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Appendix A.2. Clusters (Overlap)

(a) T0 (b) T1 (c) T2

Appendix A.3. Oblique

(a) T0 (b) T1 (c) T2

Appendix A.4. Columns (Three)

(a) T0 (b) T1 (c) T2

Appendix A.5. Columns (Five)

(a) T0 (b) T1 (c) T2

Appendix A.6. Moons
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Appendix A.7. Circles

(a) T0 (b) T1 (c) T2

Appendix A.8. Random

(a) T0 (b) T1 (c) T2

Appendix A.9. Noise

(a) T0 (b) T1 (c) T2

Appendix A.10. Imbalanced

(a) T0 (b) T1 (c) T2

Appendix B. Plots of the F5 Measure for the Three-Class Classification Problems

Appendix B.1. Clusters
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Appendix B.2. Clusters (Overlap)
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Appendix B.3. Oblique

(a) T0 (b) T1 (c) T2
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Appendix B.5. Columns (Five)
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Appendix B.6. Moons
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Appendix B.7. Circles
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Appendix B.8. Random
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Appendix B.9. Noise
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Appendix B.10. Imbalanced
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