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Abstract: As the Internet-of-Things is deployed widely, many time-series data are generated ev-
eryday. Thus, classifying time-series automatically has become important. Compression-based
pattern recognition has attracted attention, because it can analyze various data universally with few
model parameters. RPCD (Recurrent Plots Compression Distance) is known as a compression-based
time-series classification method. First, RPCD transforms time-series data into an image called
“Recurrent Plots (RP)”. Then, the distance between two time-series data is determined as the dis-
similarity between their RPs. Here, the dissimilarity between two images is computed from the file
size, when an MPEG-1 encoder compresses the video, which serializes the two images in order. In
this paper, by analyzing the RPCD, we give an important insight that the quality parameter for the
MPEG-1 encoding that controls the resolution of compressed videos influences the classification
performance very much. We also show that the optimal parameter value depends extremely on
the dataset to be classified: Interestingly, the optimal value for one dataset can make the RPCD fall
behind a naive random classifier for another dataset. Supported by these insights, we propose an
improved version of RPCD named qRPCD, which searches the optimal parameter value by means
of cross-validation. Experimentally, qRPCD works superiorly to the original RPCD by about 4% in
terms of classification accuracy.

Keywords: time series classification; compression-based pattern recognition; data compression;
MPEG-1; recurrence plots

1. Introduction

As theInternet-of-Things (IoT) prevails, a lot of time-series data are emitted from
sensors in daily life. Thus, classifying time-series data automatically has become an
important topic. While Deep Neural Networks (DNNs) achieve high classification accuracy,
they must usually learn an enormous amount of training data over a long time period.
Furthermore, DNNs tend to be task-specific, so that they must be trained newly to be
applied to another classification task.

By contrast, compression-based pattern recognition involves very few parameters.
Thus, it is often regarded as a universal method that can analyze various kinds of data such
as time series, genome, and music at low cost. Typically, this approach obtains the similarity
between two objects x and y from the file size after compressing the concatenation of x and y.
NCD (Normalized Compression Distance) [1] is the most well-known compression distance
between two objects. Although lossless compression algorithms like LZW and bzip2 are
utilized in most compression distances, they favor one-dimensional strings and are not
suitable for handling images that have a two-dimensional structure. So, this restriction
forces us to convert an image into a string by some means [2].

To escape from this constraint, Campana et al. [3] devised a CK-1 distance (Campana–
Keogh distance) between two images x and y founded upon a lossy compression method
MPEG [4]. It first makes a two-frame video that combines x with y then compresses the
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video with the MPEG-1 encoder. The CK-1 distance is obtained from the file size of the
compressed video.

Silva et al. [5] applied the CK-1 distance to time-series classification, which is called
the Recurrence Plots Compression Distance (RPCD). Here, time-series data are represented
as an image called Recurrence Plots (RP). The RPCD defines the distance between two
time-series data as the CK-1 distance between their RPs. The greatest merit of RPCD is the
ease of deployment: It is claimed in [5] that non-experts in pattern recognition can easily
compute the RPCD, only if they have an MPEG-1 encoder publicly available.

We believe that the compression distance like RPCD will continue to be important
in the future, because it allows us to analyze data with only a few model parameters.
For instance, it is very laborious to model unknown time-series data emitted from new
sensors with many parameters. However, the inventor of RPCD does not describe how to
operate the MPEG-1 encoding in detail. Thus, in order to raise the classification accuracy
of the RPCD, we first access the feature of RPCD by implementing it by ourselves with
FFmpeg [6]. As a result, we acquire an important insight that the quality parameter
for the MPEG-1 encoding which adjusts the resolution of compressed videos affects the
classification accuracy very much. Significantly, the optimal parameter value changes
drastically per dataset, such that the optimal value for some dataset can make the RPCD
inferior to a naive random classifier for another dataset. Since our analysis did not presume
time-series data, our insights will be valid also for the CK-1 distance that is more primitive
than the RPCD and that has many applications such as the concept drift detection [7].

The above result also indicates that there exists no parameter value that universally
handles any dataset well. Following this observation, we propose an improved version of
RPCD named qRPCD that decides the optimal parameter value by learning the training
data with cross validation. Experimentally, qRPCD outperformed two previous compres-
sion distances based on the RP including the original RPCD by about 4% in terms of
classification accuracy.

This paper is organized as follows. Section 2 reviews the MPEG-1 encoding, the RPCD
and the previous time-series classification methods that rely on RPs. Section 3 analyzes the
RPCD and studies how the quality parameter for MPEG-1 affects the classification accuracy.
Section 4 describes our proposed method qRPCD. Section 5 reports the experimental
comparison with two previous recurrence plots compression distances. Section 6 concludes
this paper.

2. Literature Review: MPEG-1 and Recurrence Plots Compression Distance (RPCD)

This section first explains the MPEG-1 encoding briefly, just enough to understand the
behavior of the RPCD [5]. Section 2.3 mentions the Cross Recurrence Plots Compression
Distance (CRPCD) [8], which is an extension of RPCD. Section 2.4 summarizes previous
time-series classification methods that count on the RPs.

2.1. Mpeg-1

MPEG-1 is a video compression technique standardized as ISO/IEC 11172. The
two key components in MPEG-1 are (1) the intra-frame compression and (2) the motion
compensated inter-frame prediction. Whereas the former completes within a single frame,
the latter involves multiple frames. Hereafter, we abbreviate the motion compensated
inter-frame prediction simply as the inter-frame prediction. The inter-frame prediction
compresses a target frame by predicting its pixel values from those in its neighbor frames.
MPEG-1 categorizes every frame into one of the three types: I picture, P picture, and B
picture. An I picture (Intra-coded picture) is compressed by the intra-frame compression
completely without the inter-frame prediction. Therefore, I pictures are decoded without
referring to other frames. Next, the pixel values in a P picture (Predicted picture) are
predicted from some preceding frame that is either an I picture or a P picture. A B picture (Bi-
directional predicted picture) may utilize not only a preceding frame, but also a succeeding
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frame for the inter-frame prediction. Since the RPCD creates two-frame videos, the B
picture never appears in the RPCD.

After converting the pixel colors from RGB to YCbCr, MPEG-1 divides a video frame
into macroblocks that are subframes of 16 × 16 size. A macroblock stores a 16 × 16 matrix
for the Y value and two sub-sampled 8 × 8 matrices responsible for the Cb and Cr values.
More precisely, it consists of four blocks for the Y value, one block for the Cb value and
one block for the Cr value, where a block is expressed as an 8 × 8 matrix. MPEG-1 treats
a macroblock as a unit to be compressed. MPEG-1 alters how to compress a macroblock
according to the type of frame: In an I picture, every macroblock is compressed by the
intra-frame compression. On the other hand, macroblocks in a P picture are mostly to be
compressed by the inter-frame prediction.

2.1.1. Intra-Frame Compression

In the beginning, the intra-frame compression rewrites any 8× 8 block in a macroblock
from the spatial domain to the frequency domain by the Discrete Cosine Transform (DCT)
as shown in Equation (1). For 0 ≤ u, v ≤ 7, F(u, v) is called a DCT coefficient. Especially,
F(0, 0) represents the average intensity and is called the DC coefficient. The remaining
63 coefficients are termed AC coefficients. One AC coefficient represents the strength of one
frequency component. As u and v become larger, F(u, v) corresponds to a higher frequency
component. That is, low-frequency components are stored in the top-left area of the block,
while high-frequency components are saved in the bottom-right area.

F(u, v) =
1
4

C(u)C(v)
7

∑
i=0

7

∑
j=0

cos
(

2i + 1
16

uπ

)
cos
(

2j + 1
16

vπ

)

C(u), C(v) =

{
1√
2

(u, v = 0)

1 (u, v 6= 0)

(1)

MPEG-1 assumes that the low-frequency components preserve the important se-
mantics and the high-frequency components hold minute information only that may be
noise occasionally. Hence, MPEG-1 realizes high-quality compression by discarding the
high-frequency components in F by means of quantization. The quantization proceeds by
dividing each AC coefficient F(u, v) by the intra quantization matrix QMintra in Figure 1 in
an element-wise manner. The quantization modifies F(u, v) to F′(u, v) as in Equation (2).

F′(u, v) = round
(

1
2qs
× F(u, v)

QMintra(u, v)

)
. (2)

Note that, thanks to QMintra, high-frequency components are quantized to 0 with a high
probability, because QMintra divides them by large arithmetic values. In Equation (2), qs
symbolizes a quantization scale parameter. The range of qs consists of integers between
1 and 31. qs controls the extent of video compression. As qs increases, more frequency
components reduce to 0 and the frame will be compressed more aggressively.

Figure 1. Intra Quantization Matrix QMintra.

Let F′ be a new block that quantizes F with QMintra. In F′, many elements are likely
to grow 0 around the bottom-right corner. Hence, MPEG-1 scans F′ in the zig-zag order
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in Figure 2 to generate a sequence of figures that are efficiently compressible. Finally, it
encodes the figure sequence with the Variable Length Coding (VLC).

Figure 2. Zig-zag scanning.

2.1.2. Inter-Frame Prediction

Usually, two consecutive frames in a video are quite similar. Therefore, on the condi-
tion that the first frame has been already stored, it may be possible to reduce the file size
more by remembering the difference between the two frames only than by keeping the
whole second frame. The inter-frame prediction embodies this idea.

Suppose that the first frame f1 is an I picture and the second frame f2 is a P picture.
The inter-frame prediction compresses a macroblock mb in f2 by searching the most similar
macroblock mb′ in f1, where the similarity is determined from the Y (luminance) blocks
only. In case mb′ is too dissimilar to mb, MPEG-1 compresses mb with the intra-frame
compression. Otherwise, it records the spatial displacement between mb and mb′ as a
motion vector and their difference in contents as the prediction error. The prediction error
is determined individually for the 6 blocks (4 Y blocks, 1 Cr block and 1 Cb block) in a
macroblock. For a block, an 8 × 8 matrix expresses the prediction error. Thus, the inter-
frame prediction compresses the prediction error by applying the DCT and the quantization
in the same way as the intra-frame compression.

However, the quantization matrix is quite different. See QMinter in Figure 3. After
applying the DCT to the prediction error, all the 64 DCT coefficients that cover all the
frequency components usually become small. Therefore, QMinter divides every frequency
component evenly without bias. After the quantization, as mb and mb′ become more similar,
more frequency components reduce to 0 and mb will be compressed more compactly.

Figure 3. Inter-frame Quantization Matrix QMinter.

2.2. Recurrence Plots Compression Distance (RPCD)

Let us explain the Recurrence Plots Compression Distance (RPCD). We start by ex-
plaining the recurrence plots and the CK-1 distance in Sections 2.2.1 and 2.2.2, both of
which play important roles in the RPCD.
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2.2.1. Recurrence Plots

Let x be a time-series data. We denote the length of x by N. Usually, a time-series data
contains various recurrent patterns, e.g., seasonality and duly recurrence. Recurrence Plots
(RP) [9] is an image that visualizes the recurrent patterns in x.

The concept behind RP is very simple. Equation (3) defines the RP for x. Here, ~x(i)
presents the i-th sub-sequences of x whose length equals m. ~x(i) is represented as an
m-dimensional vector.

RPi,j = Θ(ε− ||~x(i)−~x(j)||), ~x(·) ∈ Rm, 1 ≤ i, j ≤ N (3)

In Equation (3), ε is a threshold for closeness and Θ(·) is the step function. In short,
the pixel RPi,j becomes black if ~x(i) and ~x(j) are similar and ||~x(i)−~x(j)|| ≤ ε. Otherwise,
it becomes white. In this way, the original RP is a binary image.

The RPCD (Recurrence Plots Compression Distance) draws the RP as a grayscale
image rather than a binary image by removing the step function and ε in order to leave
richer information there. That is, RPi,j = ||~x(i)− ~x(j)||. To fit into the grayscale image,
RPi,j must be mapped to the range [0, 255]. In the sub-sequence, m is always set to 1. As
an example, Figure 4 contrasts the grayscale RP with the binary RP for the sine wave.
Evidently, the grayscale RP holds more minute information than the binary one.

Figure 4. Recurrence plots for sine wave: left: binary image, right: grayscale image.

2.2.2. Ck-1 Distance (Campana-Keogh Distance)

Campana et al. [3] devised the CK-1 distance, which measures the distance between
two images x and y supported by a lossy video compression like MPEG-1. The CK-1
distance between x and y is defined as Equation (4).

CK1(x, y) =
C(x|y) + C(y|x)
C(x|x) + C(y|y) − 1. (4)

C(x|y) signifies the size of a two-frame video compressed by MPEG-1 in which y becomes
the first frame and x occupies the second frame. In the MPEG-1 encoding, y becomes
an I picture and x becomes a P picture. The CK-1 distance satisfies the symmetry, i.e.,
CK1(x, y) = CK1(y, x). If x = y, CK1(x, x) = C(x|x)+C(x|x)

C(x|x)+C(x|x) − 1 = 1− 1 = 0. Next, consider
the case when x is very dissimilar to y. Let C(x) be the file size when x is compressed by
the intra-frame compression. It this case, it holds that C(x|y) ≈ C(x) + C(y), because most
macroblocks in the second frame x are to be compressed by the intra-frame compression,
if x is quite dissimilar to y. In the same way, it also holds C(y|x) ≈ C(x) + C(y). Therefore,
CK1(x, y) ≈ 1, because C(x|y)+C(y|x)

C(x|x)+C(y|y) ≈
C(x)+C(y)+C(y)+C(x)

C(x|x)+C(y|y) − 1 ≈ 2(C(x)+C(y))
C(x)+C(y) − 1 = 2−

1 = 1. Thus, 0 ≤ CK1(x, y) ≤ 1.
If we hope to apply conventional compression distances except the CK-1, such as NCD,

we must convert an image into one dimensional sequence, while sacrificing the spatial
two-dimensional information in the image. Therefore, the CK-1 distance is innovative in
that it can compare images without discarding spatial information.

2.2.3. Calculation of RPCD

RPCD calculates the distance between two time-series data A and B in the next way.
First, it generates two grayscale recurrence plots RA and RB (i.e., grayscale images) for A
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and B. Then, the RPCD between A and B is determined as the CK-1 distance between RA
and RB. Many distance-based classifiers including the k-NN (k nearest neighbor) can be
combined with the RPCD to classify time-series data.

The greatest advantage of RPCD is the ease of implementation. Users have only to
prepare an MPEG-1 encoder publicly available, e.g., FFmpeg. Because the RPCD is only
interested in the file size of compressed videos, the users may simply run the MPEG-1 encoder
without hacking the video encoding algorithm to obtain the RPCD between A and B.

2.3. Cross Recurrence Plots Compression Distance (CRPCD)

Michael et al. [8] proposed the Cross Recurrence Plots Compression Distance (CRPCD)
that extends RPCD. CRPCD uses the Cross Recurrence Plots (CR) [10] instead of the
Recurrence Plots (RP). Whereas the RP draws the self-correlation inside a single time-series
data, the CR exhibits the cross-correlation between two time-series data x and y.

Let CRx,y be the grayscale Cross Recurrence Plots between x and y. The pixel value
CRx,y(i, j) is determined as

CRx,y(i, j) = ||~x(i)−~y(j)||, ~x(·),~y(·) ∈ Rm,

{
1 ≤ i ≤ N
1 ≤ j ≤ N

(5)

Here, ~x(i) and ~y(j) are the m-dimensional vectors that correspond to the i-th sub-sequence
of x and the j-th sub-sequence of y. The CR can identify the co-occurring pattern between
x and y: If CRx,y(i, j) takes a very low value, it means that x and y share a co-occurring
pattern that starts at the location i in x and at the location j in y.

For a pair of x and y, four Cross Recurrent Plots CRx,x, CRx,y CRy,x and CRy,y are
possible, though CRx,x (CRy,y) is equivalent to the recurrence plots Rx (Ry, respectively).
Figure 5 shows these four Cross Recurrent Plots between a certain pair of time-series data.
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Figure 5. Cross Recurrence Plots between two time-series data x and y.

The CRPCD evaluates the distance between x and y by examining all four images
CRx,x, CRx,y CRy,x and CRy,y. The CRPCD aims to enrich the recurrence plots distance
with the information on co-occurring patterns. For this purpose, it introduces the CK-2
distance that modifies the CK-1 distance so that all four images may be taken into account.
Equation (6) defines the CK-2 distance. Because this formula requires eight two-frame
videos, the CK-2 distance spends twice as long time as the CK-1 distance.

CK2(x, y) =
C(CRx,x|CRx,y) + C(CRx,y|CRx,x) + C(CRy,y|CRy,x) + C(CRy,x|CRy,y)

C(CRx,x|CRx,x) + C(CRx,y|CRx,y) + C(CRy,x|CRy,x) + C(CRy,y|CRy,y)
− 1. (6)

2.4. Time Series Classification

We review previous works on time-series classification, focusing mainly on the meth-
ods based on the RP. As for the recent trends of recurrence plots, refer to the comprehensive
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survey paper [11]. The algorithms to classify time-series data are roughly categorized into
two types: (1) classical methods and (2) methods supported by Deep Neural Networks.

The classical methods are divided into two types: (A) distance-based methods and (B)
feature-based methods. The distance-based method measures the distance between time-
series data to judge whether they enter the same class. Dynamic Time Warping [12] and its
extensions [13,14] are representative distance measures for time-series data. Of course, the
compression distance is a kind of distance-based method. The feature-based method
extracts a group of features from given time-series data. The so-called BoF (Bag-of-
Features) belongs to it. Bag of temporal-SIFT-Words [15] adapts the SIFT descriptor to one-
dimensional time series and extracts local features densely. Bag of Recurrence-Patterns [16]
relies on the RP. By representing time-series data as an image, the SIFT descriptor for images
can be migrated to handle time-series data almost as it is. COTE [17,18] is an ensemble
method, which integrates 35 classifiers.

Along with the success of CNN (Convolutional Neural Network) in image recogni-
tion/classification tasks, the RP has attracted much attention, because we may borrow the
strength of the CNN in classifying time-series data, after they are converted to RP images.
Hatami et al. [19] attempted to classify the RP images on the CNN architecture early on.
Nakano et al. [20] paid attention to the symmetric nature of RP and embedded different
information to the half of RPs. Zhang et al. [21] proposed multi-scale signed recurrence
plots that retain upward/downward trends and the scale of images. The approach to
combine the RP with the CNN is actively applied to medical diagnoses such as Alzheimer’s
disease analysis [22] and the detection of Arrhythmia from a given ECG data [23].

3. Analysis of RPCD

Although RPCD classifies time-series data quite accurately, its implementation details
are omitted in [5]. For instance, we can neither know which MPEG-1 encoder to use nor
the settings for the MPEG-1 encoding. Hence, we implemented RPCD by ourselves and
investigated its characteristics. As an MPEG-1 video encoder, we select the most famous
free universal media converter FFmpeg Version 3.4 [6]. This section explains the interesting
insights acquired through our analysis. Although this paper treats only time-series data,
our analysis in this section does not explicitly presume time-series data. Therefore, our
insights will also be valid for the CK-1 distance that is more primitive than the RPCD.
Because the CK-1 distance has been used to detect concept drifts recently [7], the scope of
our insights is not limited to time-series classification.

We would state the next two insights below.

• We must specify the quality parameter explicitly for the FFmpeg encoder. This quality
parameter must be consistent for the whole dataset to be analyzed.

• The optimal quality parameter varies greatly per dataset.

Let us explain the first one. When the FFmpeg encodes a video with MPEG-1, users
may alter the quality parameter by specifying the “q” option. It controls the next two items.

1. The quality scale qs that decides the degree to quantize the DCT coefficients.
2. The range to search motion vectors for the inter-frame prediction. By increasing q,

the search range narrows down and shrinks the norm of motion vectors.

The readers may consider that it is natural to specify the quality parameter q in
the MPEG-1 encoding, as we already mentioned qs in Section 2.1. However, in practice,
standard FFmpeg users rarely specify q. Instead, they specify the target bit rate and expect
FFmpeg to adapt the quality scale to the target bit rate. In this mode, FFmpeg applies
different quality scales to different video frames, so that the file size of the compressed
video is untrustworthy to evaluate the similarity between images objectively. Therefore,
we must fix the quality parameter to some constant in classifying a time-series dataset. We
claim that, if standard users run the FFmpeg in their familiar way, they cannot operate the
RPCD correctly. We believe this is the first trap that they may fall into.
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3.1. Effect of Quality Parameter

Now, we have understood that the quality parameter should be fixed to some constant.
However, to which value should the quality parameter be set for time-series classification?
In fact, RPCD and CRPCD were proposed without referring to the quality parameter. As
far as we know, only Campana et al. [3] who developed the CK-1 distance wrote about the
quality scale. However, they treated natural texture images and only described that they
selected large quantized scales to ignore subtle differences caused by noise. Unfortunately,
this heuristic rule fails for several time-series dataset.

Experimentally, the effect of the quality parameter changes greatly for different dataset:
For some dataset, small parameters increase the classification error extremely, whereas
large parameters do so for other dataset. Especially, the optimal value for one dataset is
occasionally beaten by a naive random classifier for another dataset: Figure 6 presents the
classification accuracy for the two dataset “Cricket X” and “OliveOil” from the UCR Time
Series Classification Archive [24]. The Cricket X accompanies 12 classes, while the number
of classes equals 4 for the OliveOil. We integrate the RPCD with the Nearest Neighbor
(NN) classifier. We refer to this classifier as the RPCD-NN. We select the quality parameter
from a set of figures {2, 10, 20, 30, 40, 50, 60}.
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Figure 6. Classification accuracy for various q values.

Remarkably, the Cricket X yielded the exact opposite result to the OliveOil. As q
becomes greater, RPCD behaves better for the Cricket X and deteriorates for the OliveOil.
Especially for q = 2, which works best for the OliveOil, the classification accuracy degrades
to 5.64% for the Cricket X. Thus, the RPCD-NN becomes inferior to the random classifier
for 12 classes. Similarly, for q = 60, which works well for the Cricket X, the RPCD-NN only
achieves an accuracy of 26.67% for the OliveOil, that is comparable to the random classifier
for 4 classes whose expected accuracy equals 25%.

Sections 3.2 and 3.3 explain why RPCD behaves quite awfully, unless q is chosen adequately.

3.2. The Case When Small Q Values Trouble RPCD

For the Cricket X, the RPCD-NN operates awfully for q = 2. Our experiments observed
the same phenomenon also for 5 out of the 27 datasets. Table 1 shows the information on
the Cricket X.

Table 1. Cricket X dataset.

# of Test Data # of Training Data Data Length # of Classes

390 390 300 12

When q = 2, the RPCD-NN is defeated even by the random classifier for the Cricket
X. By investigating the reason, we noticed that a few dominant training data become the
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nearest neighbor for many test data. Concretely, only one training data becomes the nearest
neighbor for 192 test data. This result means that the RPCD-NN categorized more than half
of the test data to the same class, which evidently includes many mistakes. Table 2 displays
the top-3 training data that are selected as the nearest neighbor most frequently.

Table 2. Top 3 dominant training data that are most frequently selected as NN (q = 2).

Training Data ID Selected Times C2(y|y)
C(y|y) Rank of C2(y|y)

C(y|y)

135 192 0.2200 1
289 40 0.1986 2
288 37 0.1904 4

Such dominant training data have common features. Let y be a dominant training
data. In most cases, y satisfies Property 1 below. To simplify the exposition, we denote the
RP of y, that is, Ry by the same symbol y in the rest of Section 3.
Property 1:

• The compressed video that concatenates y twice has a rather large file size.
• In the compressed video, the second frame occupies a relatively large volume.

Formally, let y|y present the video that concatenates y twice. C1(y|y) and C2(y|y)
represent the size of the first frame and the second frame in y|y after the compression.
Obviously, C(y|y) = C1(y|y) + C2(y|y). As the first frame becomes an I picture and the
second frame becomes a P picture in the MPEG-1 encoding, the intra-frame compression
decides C1(y|y), while C2(y|y) is related to the inter-frame prediction. Now, we may
rewrite Property 1 as Property 2.
Property 2:

• C(y|y) is rather large and the ratio C2(y|y)
C(y|y) is also large.

In Table 2, the third column shows C2(y|y)
C(y|y) and the fourth column displays the rank

of C2(y|y)
C(y|y) in the 390 training data. Thus, Table 2 tells that, for q = 2, the top-3 dominant

training data are ranked first, second and fourth regarding the size of C2(y|y)
C(y|y) .

Why does C2(y|y)
C(y|y) become large for some training data only? This phenomenon is

attributed to the lossy compression in MPEG-1. Because the first and second frames are
the same in the video y|y, one may think reasonably that C2(y|y) ≈ 0, after the inter-frame
prediction compresses the second frame. However, this is wrong. Actually, the inter-frame
prediction compares the second frame y with the quantized first frame, say y′, compressed
by the intra-frame compression. Thus, when y′ is well-compressed, the difference y− y′

between y and y′ enlarges. Because y− y′ cannot be compressed enough for a small q value,
C2(y|y)
C(y|y) grows large.

On the other hand, when q is bigger such as q = 20, the intra-frame compression
makes y− y′ bigger by compressing the first frame more aggressively as compared with the
case q = 2. Nonetheless, C2(y|y)

C(y|y) lessens, because the inter-frame prediction quantizes y− y′

more intensely. As a result, dominant training data vanish for q = 20. Table 3 displays the
top-3 training data that are selected as the nearest neighbor most frequently for q = 20:
Even the top-1 training data are selected as the nearest neighbor at most 9 times. You can
also see that the magnitude of C2(y|y)

C(y|y) has become moderate. For q = 20, the RPCD-NN
improves the classification accuracy to 72.82% by excluding the dominant training data.
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Table 3. Top 3 training data that are most frequently selected as NN (q = 20).

Training Data ID Selected Times C2(y|y)
C(y|y) Rank of C2(y|y)

C(y|y)

146 9 0.0673 23
135 6 0.1064 1
118 6 0.0229 346

Why Property 2 Generates Dominant Training Data?

In the last, we explain the mechanism that a training data y with Property 2 tends to
become the nearest neighbor for many test data. Let x be a test data.

By separating the compressed video into the first frame and the second frame, we may
rewrite CK1(x, y) with Equation (7).

CK1(x, y) =
C(x|y) + C(y|x)
C(x|x) + C(y|y) − 1

=
C1(x|y) + C2(x|y) + C1(y|x) + C2(y|x)

C(x|x) + C(y|y) − 1

=
C1(x|y) + C2(x|y) + C1(y|x) + C2(y|x)

C(x|x) + C(y|y)

−C1(x|x) + C2(x|x) + C1(y|y) + C2(y|y)
C(x|x) + C(y|y) (7)

Here, we have C1(x|y) = C1(y|y), because both of them correspond to the file size of the first
frame y compressed by the intra-frame compression. In the same way, C1(y|x) = C1(x|x).
Therefore, Equation (7) is equivalent to Equation (8) below.

CK1(x, y) =
C2(x|y) + C2(y|x)
C(x|x) + C(y|y) −

C2(x|x) + C2(y|y)
C(x|x) + C(y|y) . (8)

In the next, when the test data are classified with the NN, C(x|x) and C2(x|x) may be re-
garded as a constant α and β, respectively. Thus, Equation (8) is converted into Equation (9).

CK1(x, y) =
C2(x|y) + C2(y|x)

α + C(y|y) − β + C2(y|y)
α + C(y|y) (9)

In Equation (9), the first term contains C2(x|y) and C2(y|x) and surely reflects the
similarity between x and y. On the other hand, the second term has nothing to do with
the similarity between x and y and might disturb the similarity evaluation. Particularly,
if C2(y|y)

C(y|y) is big and C(y|y) is large relative to α, the second term reduces CK1(x, y) unfairly
irrespective of how y is similar to x. In this way, if the training data y satisfy Property 2, y
can become the nearest neighbors for many test data.

3.3. The Case When Large Q Values Trouble RPCD

The RPCD-NN suffers for the OliveOil dataset, when q takes a large value. In a dataset
like OliveOil, different time-series data generate visually similar RPs, even if they belong
to different classes. See Figure 7 as an example. To distinguish these four classes, we have
to detect the slight difference among their RPs. However, when q is large, the quantization
destroys the slight difference and disables fine-grained classification.
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Figure 7. Recurrence plots for different classes in OliveOil.

Formally, suppose that x and y are two time-series data from two different classes.
If their recurrence plots x and y are quite similar and q is large, the inter-frame prediction
quantizes all the 64 DCT coefficients to 0 for the second frame x in the video x|y. Thus,
C2(x|y) ≈ C2(x|x). Similarity, C2(y|x) ≈ C2(y|y). Thus, it holds for any x and y that

CK1(x, y) =
C2(x|y) + C2(y|x)
C(x|x) + C(y|y) −

C2(x|x) + C2(y|y)
C(x|x) + C(y|y) (According to Equation (8))

=
C2(x|y)− C2(x|x) + C2(y|x)− C2(y|y)

C(x|x) + C(y|y) ≈ 0. (10)

Under this environment, the RPCD-NN malfunctions and outputs many classification errors.

4. Proposed Methods

Section 3 tells that the quality parameter q affects the performance of RPCD seriously.
Therefore, we should choose q adaptively to the given dataset. On the other hand, Section 3
also implies that there exists no universal method, because the two datasets revealed the
exact opposite tendency. Thus, we propose to rely on the validation data to learn q that
works reasonably for the dataset at hand. Our method is named qRPCD.

qRPCD classifies every training data with the leave-one-out cross-validation (LOOCV)
and identifies the optimal q value that achieved the highest average classification accuracy,
where the average is taken over all the validation data. To classify a TEST data, qRPCD
specifies the learned optimal q value and executes the RPCD. We remark that we preferred
the LOOCV to the k-fold cross validation, simply because some datasets in the UCR
Time Series Classification Archive prepare a small number of training data. For example,
the SonyAIBORobot Surface dataset in the archive holds only 20 training data. In case the
target dataset has plenty of training data, the k-fold cross validation will be more preferable
to LOOCV. In such a situation, the LOOCV is too heavy to execute, because it must compute
the RPCD n× (n− 1) = n(n− 1) times for every q value, where n represents the number
of training data.

In the cross validation, we search the optimal value in the range 1 ≤ q ≤ 31. However,
in practice, multiple values in the range often attain the same highest accuracy simultane-
ously, especially if the dataset has a few training data. For example, Figure 8 shows the
classification accuracy in the range 1 ≤ q ≤ 31 for the validation data in the beef dataset
that holds only 30 training data. You can see the highest value corresponds to several q
values, that is, q = 3, 9, 19, 20, 22. It is no wonder that there exist multiple peaks in this
graph for the next reasons.

• The minimum resolution of accuracy is 1
30 = 3.3% at the best, when the number of

training data is as small as 30.
• Different class pairs may have a different optimal resolution, i.e., video quality to

distinguish them.

Which one of the q values should we select? Considering that the results with the
small-size validation data are unlikely to be solid enough, we desire to choose the least
risky value. As for the beef dataset, we regard q = 9 as more risky than q = 20, because the
classification accuracy drops abruptly just by changing q slightly. In order to seek a stable q
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value, we assume that a field of classification accuracy form in the range [1, 31] and apply
the smoothing filter in Equation (11) to the field three times.

y(q) =
1
4
{x(q− 1) + 2x(q) + x(q + 1)} (11)

In Equation (11), x(q) and y(q) present the classification accuracy for q before and after
applying the smoothing filter, respectively. Finally, we choose the q value whose smoothed
classification accuracy grows the highest. Figure 9 draws the smoothed classification
accuracy for the beef dataset. Now, we can choose the unique best value as q = 20.

Figure 8. Accuracy for validation data for Beef dataset.

Figure 9. Smoothed accuracy for validation data for Beef dataset.

5. Results

We conduct experiments on time-series classification. First, we compare qRPCD with
two previous compression distance RPCD and CRPCD based on RPs. Recall that every
compression distance is combined with the NN classifier. We also compare qRPCD with the
Bag-of-Recurrent-Patterns (BoRP) [16] that is more recent than RPCD and CRPCD. BoRP is
the latest feature-based method that exploits the RP.

The experiments involve 27 dataset from the UCR Time Series Classification Archive.
For these dataset, the training data and the test data are officially partitioned. These dataset
are categorized into the next five types: (1) Image. Many datasets of this type represent
the outline of objects as time-series data. (2) Sensor. (3) Motion that expresses a trajectory
of human motion as a time-series data. (4) Spectro that collects spectral analysis data for
foods. (5) ECG (Electrocardiogram). Table 4 shows the types of the 27 datasets.

5.1. Comparison with Previous Recurrence-Plots Compression Distances

Table 5 compares qRPCD with RPCD and CRPCD in terms of classification accuracy.
For RPCD and CRPCD, we cite their accuracy rates from their original papers, that is,
ref. [5] for RPCD and [8] for CRPCD. As for our qRPCD, we also list the learned q value in
the second rightmost column. For each dataset, the most accurate compression distance is
marked by writing its accuracy rate in bold fonts.
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qRPCD outperforms the original RPCD by about 4% and the CRPCD by about 5% on
average. It achieves the highest accuracy including ties for 20 out of the 27 datasets. From
this result, we conclude that learning the optimal quality parameter with the validation
data is quite effective to enhance the RPCD.

However, qRPCD is defeated by the original RPCD for the two dataset “DiatomSiz-
eReduction” and “Lightning7”. We infer the reason as follows: These two dataset prepare a
small number of training data, so that the cross validation fails to identify the adequate
q value. In fact, the number of training data is only 16 for DiatomSizeReduction and 70
for Lightning7.

Table 4. 5 types of dataset.

Image Sensor Motion Spectro ECG

50words ItalyPowerDemand Cricket X Beef CinC ECG torso
Adiac Lightning2 Cricket Y Coffee ECG200
DiatomSize Lightning7 Cricket Z OliveOil ECGFiveDays
FISH SonyAIBORobot Gun Point
FaceFour SonyAIBORobotII Haptics
MedicalImages InlineSkate
OSULeaf
SwedishLeaf
Symbols
WordsSynonyms

Table 5. Comparison of qRPCD with RPCD and CRPCD.

Dataset RPCD CRPCD qRPCD q for qRPCD CDM

50words 77.36 78.46 78.68 12 N/A
Adiac 61.64 61.38 71.36 4 25.58
Beef 63.33 46.67 63.33 20 40.00
CinC ECG torso 97.90 93.19 97.97 10 47.17
Coffee 100.0 85.71 100.0 1 85.71
Cricket X 70.77 75.64 74.87 29 23.08
Cricket Y 73.85 82.56 75.13 19 23.08
Cricket Z 70.77 77.69 74.62 22 21.28
DiatomSizeReduction 96.41 96.08 94.12 1 76.14
ECG200 86.00 88.00 89.00 24 73
ECGFiveDays 86.41 80.48 94.08 1 64.58
FISH 87.43 76.00 95.43 3 41.71
FaceFour 94.32 95.45 95.45 12 56.82
Gun Point 100.0 98.67 100.0 1 79.33
Haptics 38.64 41.23 44.48 24 29.22
InlineSkate 32.00 35.45 43.63 8 21.09
ItalyPowerDemand 84.26 83.77 94.85 11 72.11
Lightning2 75.41 81.97 75.41 27 67.21
Lightning7 64.38 69.86 58.90 31 28.77
MedicalImages 71.05 71.97 71.58 21 46.32
OSULeaf 64.46 65.29 83.06 1 42.56
OliveOil 83.33 73.33 90.00 1 73.33
SonyAIBORobotSurface 79.70 79.70 85.69 19 59.57
SonyAIBORobotSurfaceII 84.26 84.47 86.15 19 56.98
SwedishLeaf 90.24 88.80 91.36 15 34.72
Symbols 90.45 90.05 97.49 24 71.06
WordsSynonyms 72.41 73.35 76.49 18 23.51

Best 4/27 7/27 20/27 0/26
Average 77.66 76.86 81.60 49.38

All of the qRPCD, RPCD and CRPCD express a one-dimensional time-series data
with a two-dimensional image, i.e., RP. To access the effectiveness of this strategy, we
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compare them with a compression distance that directly compresses the one-dimensional
series of data. Here we cite the results in [25] that adopted the CDM [26] (Compression-
Distance Measure). For two time-series data, x and y, CDM(x, y) is defined as C(y|x)

C(x)+C(y) .
The rightmost column in Table 5 summarizes the classification accuracy for the CDM. It
shows that the CDM is by far worse than the RP-based methods. It is convincing that
the CDM operates poorly: The one-dimensional data compression in CDM only concerns
co-occurring words, in other words, co-occurring local features. By contrast, by comparing
every pair of time instances at the beginning, the RP additionally extracts other wide-area
features spreading over long time periods.

5.2. Comparison with Bag-of-Recurrence Patterns (BoRP)

Table 6 compares the classification accuracy of qRPCD with that of BoRP. Again, the
accuracy rate for BoRP is cited from the original paper [16]. qRPCD outperforms BoRP
by about 2.1% on average. It achieves the highest accuracy including ties for 16 out of the
27 dataset. This result is interpreted as follows: Learning the quality parameter raises the
RPCD to a level that surpasses the best classical method based on RPs.

Table 6. Comparison with BoRP.

Dataset BoRP qRPCD

50words 62.9 78.7
Adiac 77.0 71.4
Beef 73.4 63.3
CinC ECG torso 74.5 98.0
Coffee 100.0 100.0
Cricket X 100.0 74.9
Cricket Y 72.6 75.1
Cricket Z 76.3 74.6
DiatomSizeReduction 90.2 94.1
ECG200 89.2 89.0
ECGFiveDays 83.1 94.1
FISH 97.2 95.4
FaceFour 91.0 95.5
Gun Point 100.0 100.0
Haptics 53.8 44.5
InlineSkate 38.6 43.6
ItalyPowerDemand 94.2 94.9
Lightning2 79.7 75.4
Lightning7 74.5 58.9
MedicalImages 65.2 71.6
OSULeaf 91.9 83.1
OliveOil 79.2 90.0
SonyAIBORobotSurface 84.0 85.7
SonyAIBORobotSurfaceII 73.8 86.2
SwedishLeaf 93.2 91.4
Symbols 95.2 97.5
WordsSynonyms 36.3 76.5

Best 13/27 16/27
Average 79.5 81.6

Furthermore, qRPCD works comparably to RP1+ResNet [20]. RP1+ResNet is a CNN-
based method developed in 2019. According to [20], its average accuracy for the 27 dataset
equals 78.8%, which is smaller than qRPCD. This result is astonishing, since qRPCD needs
only one parameter, i.e., much fewer parameters to learn than the CNN.
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6. Conclusions

This paper studies the RPCD (Recurrence Plots Compression Distance), which mea-
sures the similarity between two time-series data by relying on the MPEG-1 video com-
pression. RPCD has a significant advantage that any user can utilize it easily, once they
prepare a publicly available MPEG-1 encoder. However, its implementation details have
not been disclosed so far, such as which MPEG-1 encoder to use or how to operate the
MPEG-1 encoder.

To investigate the characteristics of RPCD, we first implement the RPCD by using the
most well-known free MPEG-1 encoder FFmpeg. This paper states the important insights
acquired through our analysis as follows. Since our analysis did not presume time-series
data explicitly, our insights will hold true also for the more general CK-1 distance.

• We must give a quality parameter q manually to the FFMPEG encoder and this
parameter value must be fixed for the whole dataset to be analyzed. Because normal
users of FFmpeg specify some bit rate and expect the encoder to change the quality
parameter dynamically to the bit rate, users who try RPCD for the first time will have
trouble without specifying the quality parameter.

• q strongly impacts the classification accuracy of the RPCD-NN. The optimal q value
differs extremely per dataset. For instance, as q becomes larger, the classification accu-
racy increases for some dataset and decreases for another dataset. The performance
degradation for inadequate q values is caused by the lossy compression in MPEG-1.

Based on the second insight, we propose an extension of RPCD named qRPCD that
learns a reasonable q value by means of the leave-one-out cross-validation. qRPCD searches
a q value that achieves the highest classification accuracy for the validation data in the
range 1 ≤ q ≤ 31. To cope with the complex situations in which multiple q values become
the most accurate at the same time, we assume that a field of classification accuracy forms
in the range 1 ≤ q ≤ 31 and apply some smoothing filter to the classification accuracy.

Experimentally, qRPCD achieved a higher average classification accuracy than the
original RPCD by 4% and than CRPCD by 5% for the 27 dataset from the UCR time-series
classification archive. qRPCD is sometimes inferior to the original RPCD, if the dataset
arranges only a few training data. Therefore, one future work of this research is to estimate
the optimal q value more precisely in such cases. Another interesting research direction
is to examine if the compression-based pattern recognition founded upon LOSSLESS
compression methods such as bzip2 and LZW benefits by learning a key parameter in the
same way as qRPCD.
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