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Abstract: The long-term behavior of the weak solution of a fractional delayed reaction–diffusion
equation with a generalized Caputo derivative is investigated. By using the classic Galerkin approxi-
mation method and comparison principal, the existence and uniqueness of the solution is proved in
the sense of weak solution. In addition, the global attracting set of the considered system is obtained,
with the help of the Sobolev embedding theorem and Halanay inequality.
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1. Introduction

In the present paper, we focus on the asymptotical behavior of the following fractional
reaction–diffusion equation with variable delays in a bounded domain Ω:

Dα
t u− ν∆u = f (u) + g(t, ut), in (0, T)×Ω; (1)

u = 0, on (0, T)× ∂Ω; (2)

u(θ, x) = φ(θ, x), θ ∈ [−h, 0], x ∈ Ω, (3)

where Dα
t is the generalized Caputo derivative (see [1] for generalized fractional derivative,

and [2,3] for the classical fractional derivative) with order α ∈ (0, 1), ut(θ) := u(t + θ),
θ ∈ [−h, 0], h > 0 is a constant, Ω ⊂ Rn is a bounded open set with smooth boundary
condition ∂Ω, ν is a positive constant, u is the unknown function, function φ defined on
[−h, 0] is the initial value, the external forcing term f is non-delayed, and the external
forcing term g possesses some hereditary property.

Hereditary characteristics appear in many disciplines, such as chemistry, economics,
biosciences, and physiology; they also relate to many realistic problems: for instance, the
feedback control problem; matching market with imperfect information; immune systems;
and soft matter with viscoelasticity [4,5]. This property, which sometimes is called after-
effect, can appear as a variable delay or as a distributed delay, including bounded and
unbounded delay, etc. On the other hand, using fractional calculus to model the hereditary
effect is another common skill, which has been extensively applied in many sciences [2,3,6].
It is well-known that the early definition of fractional order calculus was introduced by
L’Hospital in the late 17th century, and has become famous in practical applications only
within the last few decades. As shown in [2], there are several ways to define a fractional
derivative, and probably the most frequently used are the so-called Riemann–Liouville
derivative and the Caputo derivative [3]. The Caputo derivative was defined in [7], to
describe the memory effect for unelastic materials.

The authors of [1] raised a generalized definition of Caputo derivatives from t = 0 of
order α ∈ (0, 1), with the help of a convolution group, and built a convenient framework
for investigating time-fractional differential equations with boundary and initial values.
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There are many results for non-local reaction–diffusion equations, which are often
used to model anomalous diffusion (such as sub-diffusion or super-diffusion) in fractal
media: for example, [5,8]. In [9,10], time-fractional advection–reaction–diffusion equa-
tions were studied; Ref. [11] discussed the analytical solution for time–space fractional
reaction–diffusion equations; Ref. [12] applied a fractional reaction–diffusion system to
image denoising; while [13,14] investigated the numerical methods for equations with
fractional derivatives. Furthermore, Ref. [15–18] studied predator–prey-like problems,
by applying a spatial Caputo operator, and, in [19], the authors studied the numerical
simulation of chaotic evolution with a time-fractional generalized Caputo derivative. Nev-
ertheless, most of the available works, including those mentioned above, mainly focus
on non-delay cases, and concern the well-posedness of a solution/mild solution or the
regularity. There are few works on the asymptotical behavior of solutions, and even fewer
works about time-fractional reaction–diffusion equations with delay, nor about the exis-
tence of, or the long-term behavior of, weak solutions. Generally, for fractional partial
differential equations, this discussion is still limited, due to the lack of effective tools, even
though [20,21] have studied fractional partial differential equations in some special cases.

A common technique for investigating the long-term quality of weak solutions of
traditional nonlinear partial differential equations is to obtain some estimates of the en-
ergy equation, and then to employ classical compactness theorems, i.e., the Arzelà–Ascoli
theorem, the Aubin–Lions lemma, etc. Unfortunately, this method appears to be invalid,
because of the appearance of a delay term, and the lack of a fundamental compactness
theorem for the corresponding fractional case. However, by using generalized Halanay
inequalities, the authors of [22] discussed the dissipativity of Volterra functional differ-
ential equations, while the authors of [23] generalized the Henry–Gronwall-type integral
inequalities with delay, and applied them to fractional delay differential equations.

Motivated by [22,23], we investigated the dynamics of fractional Navier–Stokes equa-
tions without delay in our former work [24], in which we obtained the existence and
uniqueness of weak solutions of the system, but could not establish the existence of a global
attracting set: indeed, it was complicated even to prove the existence of a weak solution in
delay cases, let alone the existence of a global attracting set. To obtain the existence of a
global attracting set for a fractional dynamics system, we study, in the present work, the
limited behavior of generalized Caputo reaction–diffusion equations with variable delays.
The structure of this article is arranged as follows. The next Section will recollect some
definitions about fractional calculus and lemmas, which will be needed later in the study.
Section 3 focuses on the well-posedness of (1)–(3): namely, the existence and uniqueness of
solutions in the weak sense, by Galerkin approximation. The existence of a global attracting
set is shown in Section 4.

2. Preliminaries

In this section, we recall some concepts of generalized fractional calculus for functions
valued in normed vector spaces, as introduced in [1,25]. Then, for the sake of the com-
pleteness of the work, and to make the paper easier to read, we recollect some notations
and abstract spaces. In addition, an example of delay, some lemmas, and propositions that
will be used in our later discussion are also provided in this section. We begin with the
definition of a fractional integral; readers are referred to [1–3] for more details. Note that c
and C are positive constants, which may vary in different lines.

Definition 1 ([3]). The Riemann–Liouville fractional integral of order α ∈ (0, 1) for a locally
integrable function u : R+ → R is defined as

[Iαu](t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, t > 0,

where Γ(α) =
∫ ∞

0 xα−1e−xdx.
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Definition 2 ([1]). Suppose X is a Banach space, and u ∈ L1
loc((0, T); X) is a locally integrable

function; if there is u0 ∈ X satisfying

lim
t→0+

1
t

∫ t

0
‖u(s)− u0‖Xds = 0,

then we say u0 is the right limit of function u at t = 0, denoted as u(0+) = u0. By using the same
approach, we define u(T−) to be the left limit of u at t = T, i.e., u(T−) ∈ X satisfying

lim
t→T−

1
T − t

∫ t

0
‖u(s)− uT‖Xds = 0.

In fact, the fractional integral defined in Definition 1 can be characterized by the

convolution between gα(t) = H(t)tα−1

Γ(α) , which is called the kernel, and H(t)u(t) on R,
in which

H(t) =

{
1, t ≥ 0,
0, t < 0

is the standard Heaviside step function (see [26] for more information). It is not hard to
check that the integral operators Iα satisfy the semigroup property; moreover, each Iα is
also a continuous linear transformation from Banach space L1(0, T) to L1(0, T). Motivated
by these two facts about Iα, Li and Liu [1] proposed a generalized Caputo derivative,
which is consistent with various definitions in the mentioned literature, while revealing the
underlying group structure. This group property makes many properties of this generalized
Caputo derivative natural.

Before introducing this generalized Caputo derivative, we need to use the below
distributions {gα} as the convolution kernels for α ∈ (−1, 1):

gα(t) :=


H(t)tα−1

Γ(α) , α > 0,

δ(t), α = 0,
D(H(t)tα)

Γ(1+α)
, α ∈ (−1, 0),

where δ is the usual Dirac distribution, and D means the distributional derivatives. Then,
the fractional integral operator Iα can be expressed as

[Iαu](t) := gα ∗ (H(t)u(t)).

Given f , g ∈ L1
loc(0, T), the convolution between f and g as

f (t) ∗ g(t) =
∫ t

0
f (s)g(t− s)ds, t ∈ (0, T).

We denote by (·, ·) and | · | the scalar product and norm, respectively, in L2(Ω). The
norm in Lp(Ω) is written as ‖ · ‖Lp(Ω); we also use (·, ·) to denote the duality between Lp(Ω)

and Lq(Ω), where 1
p + 1

q = 1, with 1 ≤ p, q < ∞. In H1
0(Ω), we use as (equivalent) scalar

product ((·, ·)) = (∇·,∇·), with the corresponding norm ‖ · ‖, and the duality between
H1

0(Ω) and its dual H−1(Ω) is written as 〈·, ·〉. We use ‖ · ‖∗ for the norm in H−1(Ω).
In addition, we denote ut as the element of Banach space CH := C([−h, 0]; L2(Ω))

defined by ut(θ) := u(t + θ), θ ∈ [−h, 0]. The norm of Banach space CH is defined as
‖ut‖CH = sup

−h≤θ≤0
|u(t + θ)|.

To this end, the generalized Caputo derivative is given as
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Definition 3 ([1]). Let α ∈ (0, 1). Consider that u ∈ L1
loc(0, T) possesses a right limit u(0+) = u0

at t = 0, in the sense of Definition 2. The left Caputo derivative of u with order α is a distribution
in D′(−∞, T) with support in [0, T), given by

Dα
t u := I−αu− u0g1−α = g−α ∗ [((u− u0)H(t))].

Definition 4 ([25]). Let α ∈ (0, 1). Consider that u ∈ L1
loc(−∞, T) possesses a left limit

u(T−) = uT at t = T, in the sense of Definition 2. The right Caputo derivative of u with or-
der α is a distribution in D′(R) with support in (−∞, T], given by

D̃α
c;Tu := g̃−α ∗ [H(T − t)(u− uT)].

In this work, we investigate problems (1)–(3) in weak topology instead of norm
topology: for this, the definition of the weak generalized Caputo derivative is also needed,
which is defined by Definition 2.4 in [25].

Definition 5 ([25]). Suppose X is a Banach space, and u ∈ L1
loc([0, T); X). Let u0 ∈ X. We define

the weak Caputo derivative of u associated with initial condition u0 to be Dα
t u ∈ D′(R), such that

for any test function v ∈ C∞
c ((−∞, T);R),

〈v, Dα
t u〉 :=

∫ T

−∞
(D̃α

c;Tv)(u− u0)H(t)dt =
∫ T

0
(D̃α

c;Tv)(u− u0)dt.

We also need to make the following assumptions, based on the external term f (u) ∈ C1(R)
and the delay term g(t, ut). There exist positive constants αi, i = 1, 2, 3, 4, β1, β2 and p > 2,
such that

−β1 − α1|s|p ≤ f (s)s ≤ β2 − α2|s|p, ∀s ∈ R; (4)

f ′(s) ≤ α3, ∀s ∈ R; (5)

| f (s)| ≤ α4(1 + |s|p−1), ∀s ∈ R. (6)

For the assumptions based on the delay terms g with g : [0, T] × CH → R, we
may assume:

(g1) ∀ ξ ∈ CH , the mapping [0, T] 3 t 7→ g(t, ξ) ∈ (L2(Ω))2 is measurable;

(g2) g(·, 0) = 0;

(g3) There exists a positive constant Lg , such that ∀ t ∈ [τ, T], ∀ ξ, η ∈ CH ,

|g(t, ξ)− g(t, η)| ≤ Lg‖ξ − η‖CH .

Example 1 (A forcing term with bounded variable delay). Let F : [t0, T]×R2 → R2 be a
measurable function, such that F(t, 0) = 0, ∀t ∈ [t0, T], and suppose that there exists a positive
constant M satisfying

|F(t, u)− F(t, v)|R2 ≤ M|u− v|R2 , for any u, v ∈ R2.

Consider a measurable function ρ(·) : [0,+∞)→ [0, h], and define g(t, ξ)(x) = F(t, ξ(−ρ(t))(x))
for each ξ ∈ CH , x ∈ Ω and t ∈ [t0, T]; then, the delayed term g becomes

g(t, ξ) = F(t, ξ(−ρ(t))).
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Henceforth , we take g(t, ut) = g(u(t− τ(t))), where the delay function τ(t) : R → [0, h] is
continuous, and take A = −∆. An equivalent abstract formulation to problems (1)–(3) is

Dα
t u + νAu = f (u) + g(t, ut), ∀t ≥ 0; (7)

u(t) = φ(t), t ∈ [−h, 0]. (8)

As noted above, we study problems (7) and (8) in weak topology, i.e., the asymptotic behavior of
a weak solution will be investigated. The definition of a weak solution to problem (7) and (8) is
defined as

Definition 6 ([25]). Given an initial value φ ∈ C([−h, 0]; L2(Ω)), a function u ∈ C([−h, 0];
L2(Ω)) ∩ Lp(0, T; Lp(Ω)) ∩ L2(0, T; H1

0(Ω)) with u0 = φ is called a weak solution to problem
(7) and (8) in the interval [−h, T], if for any v ∈ H1

0(Ω) ∩ Lp(Ω),

(Dα
t u(t), v) + ν((u(t), v)) = ( f (u), v) + (g(t, ut), v),

where the equation must be understood in the sense of D′(R).

The following auxiliary lemmas will be needed in this work.

Lemma 1 (See [25,27]). For any absolutely continuous function u(t) defined on [0, T], it holds that

u(t)Dα
t u(t) ≥ 1

2
Dα

t u2(t), α ∈ (0, 1).

Proposition 1 (The generalized comparison principle Proposition 3 in [24] ). Assume that
for any absolutely continuous function u(t) defined on [0, T], it holds that

Dα
t u(t) ≤ −au(t) + bu(t− τ(t)) + c, 0 < t < T,

u(t) = ϕ(t), −h ≤ t ≤ 0,

and for absolutely continuous w(t) defined on [0, T], the following fractional dynamical system

Dα
t w(t) = −aw(t) + bw(t− τ(t)) + c, 0 < t < T,

w(t) = ϕ(t), −h ≤ t ≤ 0,

where a, b, c are positive constants. Then, for all t ≥ −h, we have

u(t) ≤ w(t).

Proposition 2 (Theorem 4.2 in [25]). Let T > 0, α ∈ (0, 1) and p ≥ 1. Let M, X, Y be Banach
spaces. M ↪→ X compactly and X ↪→ Y continuously. Assume W ⊂ L1

loc((0, T); M) satisfies:

(i) There exists r1 ∈ [1, ∞) and C > 0, such that for any u ∈W,

sup
t∈(0,T)

Iα(‖u‖r1
M) = sup

t∈(0,T)

1
Γ(α)

∫ t

0
(t− s)α−1‖u‖r1

M(s)ds ≤ C;

(ii) There exists p1 ∈ (p, ∞], and W is bounded in Lp1((0, T); X);
(iii) There exists r2 ∈ [1, ∞) and C > 0, such that for any u ∈W, with right limit u0 at t = 0,

it holds that

‖Dα
t u‖Lr2 ((0,T);Y) ≤ C.

Then, W is relatively compact in Lp((0, T); X).
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Proposition 3 (An improvement in Proposition 3.5 in [25]). Assume that Y is a reflexive space,
α ∈ (0, 1) and T > 0. Suppose un → u in Lp((0, T); Y), p ≥ 1. If there is an assignment of
initial values u0,n for un, such that the weak Caputo derivatives Dα

t un are bounded in Lr((0, T); Y)
(r ∈ [1, ∞)), then

(i) There is a sub-sequence, such that u0,n converges weakly to some value u0 ∈ Y;
(ii) If r > 1, there exists a sub-sequence, such that Dα

t unk converges to v, and u0,nk converges to
u0, in the sense of weak topology, and v is the Caputo derivative of u with initial value u0,
so that

u = u0 +
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds.

Furthermore, if r ≥ 1, then u(0+) = u0 in Y.

Proof. Readers are referred to [24] for the proof.

Lemma 2 (A generalized Halanay inequality, Lemma 4 in [8]). supposes that the continuous
function v(t) is non-negative, and satisfies

Dα
t v(t) ≤ γ + av(t) + b sup

t−τ(t)≤s≤t
v(s), 0 < t < T,

and

v(t) = |ϕ(t)|, −σ ≤ t ≤ 0,

where γ > 0 is a constant, and a + b 6= 0, σ = − inf
t≥0

(t− τ(t)) > 0, and where the delay function

τ(t) ∈ [0, h]. If a + b < 0, then the following estimate,

v(t) ≤ − γ

a + b
+ MEα(λ

∗tα), (9)

holds for all t ≥ τ(t), where M = sup
−h≤t≤0

‖ϕ(t)‖2, and the parameter λ∗ is defined by

λ∗ = sup
t−τ(t)≥0

{λ : λ− a− b
Eα(λ(t− τ(t))α)

Eα(λtα)
= 0},

and it holds that λ∗ ∈ [a + b, 0].
Furthermore, if the delay is bounded, i.e., 0 ≤ τ(t) ≤ τ0 for some positive constant τ0, then

the parameter λ∗ defined by

λ∗ = sup
t−τ(t)≥1

{λ : λ− a− b
Eα(λ(t− τ(t))α)

Eα(λtα)
= 0},

which is strictly negative, i.e., there exist some positive constants ε0 satisfying a + b < −ε0, such
that λ∗ ∈ [a + b,−ε0], and the inequality in (9) holds for all t, such that t ≥ τ(t) + 1.

Proof. The proof is given in our previous work [24].

Lemma 3 (Bellman–Gronwall Lemma [28] p. 252). Let T > 0, g ∈ L1(0, T) and g ≥ 0 a.e.,
C1 > 0, C2 > 0 are constants. If ϕ ∈ L1(0, T), ϕ ≥ 0 a.e., with gϕ ∈ L1(0, T) and

ϕ(t) ≤ C1 + C2

∫ t

0
g(s)ϕ(s)ds, a.e. t ∈ (0, T),



Entropy 2023, 25, 950 7 of 15

then,

ϕ(t) ≤ C1 exp{C2

∫ t

0
g(s)ds}, a.e. t ∈ (0, T).

3. Well-Posedness

In this section, we show the existence and uniqueness of weak solutions to problems
(7) and (8) by Galerkin approximations. Denote

λ1 = inf
v∈V\{0}

‖v‖2

|v|2 > 0.

For the existence of a weak solution, we have the following result:

Theorem 1. Suppose that (4)–(6) and (g1)–(g3) hold true, then for any φ ∈ CH , system (7) and (8)
has a unique weak solution.

Proof. The proof is split into five steps.
Step 1. The Galerkin approximation. From the classical spectral theory of elliptic

operators, we know that the Laplacian operator A = −∆ has a sequence of eigenvalues
{λj}j≥1 with corresponding eigenfunctions {wj}j≥1 ⊂ V, which form a Hilbert basis of
H, and are dense on V. Consider the linear subspace Vm = span{w1, w2, · · · , wm} and the
projector Pm : H → Vm given by Pmu = ∑m

j=1(u, wj)wj, and define u(m)(t) = ∑m
j=1 γm,j(t)wj,

where the superscript m will be used instead of (m), for short, as no confusion is possible
with powers of u, and where the coefficients γm,j(t) are required, to satisfy the initial
value problem:

(Dα
t um(t), wj) + ν((um(t), wj)) = ( f (u), wj) + (g(t, um

t ), wj), 1 ≤ j ≤ m,

um(θ) = Pmφ(θ), θ ∈ [−h, 0]. (10)

It is obvious that the above system is fractional order differential equations with bounded
delay, which fulfills the conditions for the existence and uniqueness of a local solution
(readers are referred to Theorem 3.1 in [29] for details); therefore, we obtain (10) having a
unique local solution defined in [0, tm), with 0 ≤ tm ≤ T. Next, we find a priori estimates,
and ensure that the solutions um exist on [0, T]. We assume that M = sup

−h≤t≤0
|φ(t)|2.

Step 2. A priori estimates. Taking the inner product of (10) with γm,j(t), j = 1, . . . , m,
summing up, and applying Lemma 1, Cauchy–Schwartz inequality and Young’s inequality,
we obtain

1
2

Dα
t |um(t)|2 + ν‖um(t)‖2 + α2‖u‖

p
p ≤ β2|Ω|+ |g(t, um

t )||um(t)|

≤ β2|Ω|+ Lg‖um
t ‖2

CH
.

Hence,

Dα
t |um(t)|2 + λ1ν|um(t)|2 + ν‖∇um(t)‖2 + 2α2‖um‖p

p ≤ 2β2|Ω|+ 2Lg‖um
t ‖2

CH
. (11)

Multiplying (11) by Iα, and allowing p = 1 + α, q = 1 + 1
α , we find
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|um(t)|2 + ν

Γ(α)

∫ t

0
(t− s)α−1(λ1|um(s)|2 + ‖∇um(s)‖2)ds +

2α2

Γ(α)

∫ t

0
(t− s)α−1‖um(s)‖p

pds

≤ |um(0)|2 + 2β2|Ω|
Γ(α + 1)

tα +
2Lg

Γ(α)

∫ t

0
(t− s)α−1‖um

s ‖2
CH

ds

≤ |um(0)|2 + 2β2|Ω|
Γ(α + 1)

tα +
2Lg

Γ(α)

(∫ t

0
(t− s)p(α−1)epsds

) 1
p
(∫ t

0
e−qs‖um

s ‖
2q
CH

ds
)1/q

≤ |um(0)|2 + 2β2|Ω|
Γ(α + 1)

tα +
2LgΓ(α2)

Γ(α)
(1 + α)−

α2
1+α et

(∫ t

0
e−qs‖um

s ‖
2q
CH

ds
)1/q

,

denoted by A(t) = |um(0)|2 + 2β2|Ω|
Γ(α+1) tα, B(t) = 2LgΓ(α2)

Γ(α) (1 + α)−
α2

1+α et. Then, we have

‖um
t ‖2

CH
≤ A(t) + B(t)

(∫ t

0
‖um

s ‖2qds
)1/q

.

Therefore,

‖um
t ‖

2q
CH
≤ 2q A(t) + 2qBq(t)

(∫ t

0
‖um

s ‖
2q
CH

ds
)

.

Using the Gronwall Lemma, we obtain

‖um
t ‖2

CH
≤ c(A(t) + B(t)

∫ t

0
A(s)exp(c

∫ t

s
B(r)drds)), for all t ∈ [0, T] and θ ∈ [−h, 0].

Thus, we establish that for any T > 0, ‖um
t ‖CH is bounded, which implies that the

local solution um(t; φ) is in fact a global one. We can also assert that there exists a positive
constant C, depending on ν, Lg, and f , and on T and M > 0, such that

‖um
t ‖2

CH
≤ C(T, M) ∀t ∈ [0, T], ‖φ‖CH ≤ M, ∀m ≥ 1,

which also means that {um} is bounded in L∞(−h, T; H).
Through the above uniform estimates and (11), we find that

ν
∫ t

0
(t− s)α−1‖um(s)‖2ds ≤ |um(0)|2 +

∫ t

0
(t− s)α−1

(
1
ν
‖ f (s)‖2

∗ + 2LgC(T, M)

)
ds.

We can conclude the existence of another constant (relabelled the same), C(T, M), such that

‖um‖2
L2(0,T;V) ≤ T1−α

∫ T

0
(T − s)α−1‖um‖2ds ≤ C(T, M) ∀m ≥ 1,

and

‖um‖p
Lp(0,T;Lp(Ω))

≤ T1−α
∫ T

0
(T − s)α−1‖um‖p

pds ≤ C(T, M) ∀m ≥ 1,

Note that (6), for 1
p + 1

q = 1,

‖ f (um)‖q
Lq((0,T);Lq(Ω))

=
∫ T

0

∫
Ω
| f (um)|qdxdt

≤
∫ T

0

∫
Ω
|α4(1 + |um|p−1)|qdxdt

≤ c
∫ T

0

∫
Ω
(|um|q(p−1) + 1)dxdt

≤ C(T, M) ∀m ≥ 1.
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On the other hand, L2(0, T; V′) and Lq(0, T; Lq(Ω) are continuously included in
Lq(0, T; H−1(Ω)). Then, it follows that, from (10),

‖Dα
t um‖∗ ≤ ν‖um‖+ | f (um)|+ |g(t, um

t )|,

which, together with Remark 2.1(ii) and the above estimates imply that {Dα
t um} is bounded

in L2(0, T; V′). Then, by Proposition 2, we conclude that

um → u strongly in L2((0, T); L2(Ω)).

Step 3. Approximation of initial datum in CH . Let us check

Pmφ→ φ in CH . (12)

Assume that θm → θ ∈ [−h, 0], then Pmφ(θm) → φ(θ), since |Pmφ(θm) − φ(θ)| ≤
|Pmφ(θm)− Pmφ(θ)|+ |Pmφ(θ)− φ(θ)| → 0 as m→ ∞; therefore, (12) holds true.

Step 4. Compactness results. By Proposition 2, there exists a sub-sequence still
relabelled as {um} that converges to u in L2((0, T); H). Using Proposition 3, u has a weak
Caputo derivative with initial value u0, such that

Dα
t u ∈ Lq((0, T); H−1(Ω)),

and

f (um) ⇀ χ in the sense of weak topology of Lq((0, T); Lq(Ω)),

i.e., ∫ T

0
( f (um), v)→

∫ T

0
(χ, v) for all v ∈ Lp((0, T); Lp(Ω)),

1
p
+

1
q
= 1.

We need to identify that χ = f (u). By Corollary 1.12 in [30], we know that um

converges pointwise to u almost everywhere in Ω; therefore, by the continuity of f , we find
that f (um)→ f (u) almost everywhere. Using Lemma 8.3 in [30], we obtain f (um) ⇀ f (u)
in Lq((0, T); Lq(Ω)). By Proposition 3.3 in [31], the space Lq((0, T); Lq(Ω)) with weak
topology is Hausdorff, then the limit is unique, which means that χ = f (u). Next, we need
to prove that g(t, um

t )→ g(t, ut).
By a similar procedure as in Theorem 3.1 in [24], we can verify that g(t, um

t )→ g(t, ut)
in L2((0, T); L2(Ω)). Hence, u is a weak solution of (7) and (8).

Step 5. Uniqueness of solution. Let u(t; φ), v(t; φ) be two weak solutions of problem (7)
and (8), with u(t) = v(t) = φ(t), t ∈ [−h, 0]. Set w(t) = u(t)− v(t), t ≥ 0, then w(t) = 0,
for all t ∈ [−h, 0]. For w(t), we have

Dα
t w− ν∆w = f (u)− f (v) + g(t, ut)− g(t, vt).

Taking the inner product of the above equation with w(t), we obtain

Dα
t |w|2 + 2ν‖w‖2 = ( f (u)− f (v), w) + (g(t, ut)− g(t, vt), w)

≤ 2α3|w|2 + 2Lg sup
0≤s≤t

|w(s)|2

≤ (2α3 + 2Lg) sup
0≤s≤t

|w(s)|2, for all t ∈ [0, T].

The above inequality holds true for any t ∈ [0, T], and then we have

ω(t) ≤
(2α3 + 2Lg)

Γ(α)

∫ t

0
(t− s)α−1 sup

0≤r≤s
|w(r)|2ds := (2α3 + 2Lg)gα ∗ω(t),
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where sup
0≤s≤t

|w(s)|2 = ω(t). Next, we convolve the above inequality with gn0α, and have

ω1(t) ≤ (2α3 + 2Lg)gα ∗ω1(t),

where ω1(t) = gn0α ∗ ω(t). Note that gn0α = Ctn0α−1; if n0 is large enough, then ω1(t)
is continuous on [0, T]. By iteration—group property as well as Stirling formula, i.e.,
Γ(nα + 1) =

√
2πnα( nα

e )nαexp( γ
12nα ) with γ ∈ (0, 1)—we find

ω1(t) ≤ (2α3 + 2Lg)
ngnα ∗ω1(t)

≤
(2α3 + 2Lg)n

Γ(nα + 1)
sup

0≤t≤T
ω1(t)

∫ t

0
(t− s)nαds→ 0, as n large enough.

Then, ω1(t) = 0 on [0, T]. Convolving both sides with g−n0α on ω1(t) = gn0α ∗ ω(t),
to find that sup

0≤s≤t
|w(s)|2 = 0 on [0, T].

Therefore, w(t) = 0 on [−h, T]. The proof is complete.

Remark 1. A detailed procedure of Step 3 in the above proof can be found in Theorem 3.1 in [24],
in which the Banach–Alaoglu–Bourbaki theorem and the Eberlin–Smulian theorem [31] are applied.

Theorem 2. Assume that (g1)–(g3) hold true, then the weak solutions of problems (1)–(3) are
continuous, with respect to the initial values, i.e.,

‖ut − vt‖2
CH
≤ C(t)‖φ(t)− ϕ(t)‖2.

Proof. Let u(t; φ), v(t; ϕ) be two weak solutions of (1)–(3), with initial values, φ and ϕ,
respectively. Set w(t) = u(t)− v(t), for t > 0, and w(t) = φ(t)− ϕ(t) for t ∈ [−h, 0]. Then,
we have

Dα
t w− ν∆w = f (u)− f (v) + g(t, ut)− g(t, vt).

Taking the inner product of the above equation with w(t), we obtain

Dα
t |w|2 + ν‖w‖2 = ( f (u)− f (v), w) + (g(t, ut)− g(t, vt), w)

≤ (2α3 + 2Lg)‖ws‖2
CH

.

By a similar method as we used in Step 2 of Theorem 1, we find that

‖w‖2
CH
≤ C(t)‖φ− ϕ‖2.

The proof is complete.

Remark 2. Compared to [24], the restriction of α ∈ (0, 1
2 ) is removed here.

4. A Priori Estimations: Existence of Global Attracting Set

We establish some estimates of weak solutions to system (1)–(3) by using Lemma 3 in
this section. Henceforth, we assume that

λ1ν > Lg. (13)

Lemma 4 (Existence of absorbing sets in CH). Suppose that (g1)–(g3) and (13) hold true, then
there exists T > 0, such that for all t ≥ T the weak solution of problem (1)–(3) satisfies

‖ut‖2
CH
≤ ρ2

CH
, t ≥ T,
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where ρ2
CH

= 2λ1νβ2|Ω|
(λ1ν)2−L2

g
.

Proof. Taking the inner product of (1) with u, we have

Dα
t |u(t)|2 + λ1ν|u(t)|2 + 2α2‖u‖

p
p ≤ 2β2|Ω|+

L2
g

λ1ν
sup

t−τ(t)≤s≤t
|u(s)|2;

in other words,

Dα
t |u(t)|2 ≤ 2β2|Ω| − λ1ν|u(t)|2 +

L2
g

λ1ν
sup

t−τ(t)≤s≤t
|u(s)|2, t ∈ (0, T],

|u(t)|2 = |φ(t)|2, t ∈ [−h, 0].

Using Lemma 3, we obtain

|u(t)|2 ≤ 2λ1νβ2|Ω|
(λ1ν)2 − L2

g
+ MEα(λ

∗tα),

for all t ≥ τ(t) + 1, where M = ‖φ(t)‖2
CH

= sup
−h≤t≤0

|φ(t)|2, and the parameter λ∗ is

defined by

λ∗ = sup
t−τ(t)≥1

{λ : λ− (−λ1ν)−
L2

g

λ1ν

Eα(λ(t− τ(t))α)

Eα(λtα)
= 0},

which is strictly negative, i.e, there exists some positive constants ε0 satisfying −λ1ν +
L2

g
λ1ν < −ε0, such that λ∗ ∈ [−λ1ν +

L2
g

λ1ν ,−ε0], and the estimate in (9) holds for all t, such
that t ≥ τ(t) + 1.

On the other hand, if t < τ(t)+ 1, then, by the same argument as in Theorem 4.1 in [24],
we have

|u(t)|2 ≤ CEα(−λ1νtα), t ≥ 0, θ ∈ [−h, 0].

From the Archimedes principle, we conclude that

‖ut‖2
CH
≤ 2λ1νβ2|Ω|

(λ1ν)2 − L2
g
+ MEα(λ

∗tα) + CEα(−λ1νtα), 0 ≤ t < τ(t) + 1.

As λ∗ < 0 and −λ1ν < 0, by the property of the Mittag-Leffler function [2], we obtain

‖ut‖2
CH
≤ 2λ1νβ2|Ω|

(λ1ν)2 − L2
g
+ C

Cα

tα
, as t→ +∞,

where Cα > 0 is a constant independent of t. Hence, there exists T > 0 large enough, such
that ∀t ≥ T, the weak solution of problem (1)–(3), satisfies

‖ut‖2
CH
≤ 2λ1νβ2|Ω|

(λ1ν)2 − L2
g

:= ρ2
CH

, t ≥ T.

Denote by BCH = B(0, ρCH ) the absorbing set in phase space CH .
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Lemma 5 (Existence of absorbing sets in CV). Suppose that (g1)–(g3) and (13) hold true; then,
there exists T > 0, such that for all t ≥ T, the weak solution of problems (1)–(3) satisfies

‖ut‖2
CV
≤ ρ2

CV
, t ≥ T + 1,

where ρ2
CV

=
(Γ(α) + 2α3)(2β2|Ω|+ L2

g) + 4νλ1α3β2|Ω|L2
g

Γ(α + 1)(ν + (λ1ν)2 − L2
g)

.

Proof. Taking the inner product of (1) with −∆u, we find that

1
2

Dα
t ‖u‖2 + ν|∆u|2 ≤ ( f (u),−∆u) + (g(t, ut),−∆u)

≤ α3‖u‖2 +
ν

2
|∆u|2 + 1

2ν
|g(t, ut)|2.

Then,

Dα
t ‖u‖2 + ν|∆u|2 ≤ 2α3‖u‖2 +

L2
g

ν
‖ut‖2

CH
,

integrating above inequality over [s, t], to obtain

‖u(t)‖2 − ‖u(s)‖2 ≤ 2α3

Γ(α)

∫ t

s
(t− r)α−1‖u(r)‖2dr +

L2
g

νΓ(α)

∫ t

s
(t− r)α−1‖ur‖2

CH
dr,

and integrating with respect to s over interval [t− 1, t] with t ≥ T + h + 1, to yield

‖u(t)‖2 ≤
∫ t

t−1
‖u(s)‖2ds +

2α3

Γ(α)

∫ t

t−1

∫ t

s
(t− r)α−1‖u(r)‖2drds

+
L2

g

νΓ(α)

∫ t

t−1

∫ t

s
(t− r)α−1‖ur‖2

CH
drds

=
∫ t

t−1
‖u(s)‖2ds +

2α3

Γ(α)

∫ t

t−1

∫ r

t−1
(t− r)α−1‖u(r)‖2dsdr

+
L2

g

νΓ(α)

∫ t

t−1

∫ r

t−1
(t− r)α−1‖ur‖2

CH
dsdr

=
∫ t

t−1
‖u(s)‖2ds +

2α3

Γ(α)

∫ t

t−1
(r− t + 1)(t− r)α−1‖u(r)‖2dr

+
L2

g

νΓ(α)

∫ t

t−1
(r− t + 1)(t− r)α−1‖ur‖2

CH
dsdr

≤
∫ t

t−1
‖u(s)‖2ds +

2α3

Γ(α)

∫ t

t−1
(t− r)α−1‖u(r)‖2dr

+
L2

g

νΓ(α)

∫ t

t−1
(t− r)α−1‖ur‖2

CH
dsdr

≤ (1 +
2α3

Γ(α)
)
∫ t

t−1
(t− r)α−1‖u(r)‖2dr +

4νλ1α3β2|Ω|L2
g

((λ1ν)2 − L2
g)Γ(α)

∫ t

t−1
(t− r)α−1dr

≤ (1 +
2α3

Γ(α)
)(

2β2|Ω|
αν

+
L2

g

αν
) +

4νλ1α3β2|Ω|L2
g

((λ1ν)2 − L2
g)Γ(α + 1)

=
(Γ(α) + 2α3)(2β2|Ω|+ L2

g) + 4νλ1α3β2|Ω|L2
g

Γ(α + 1)(ν + (λ1ν)2 − L2
g)

.
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Therefore, ∀t ≥ T + 2h + 1, and we deduce that

‖ut‖2
CV
≤

(Γ(α) + 2α3)(2β2|Ω|+ L2
g) + 4νλ1α3β2|Ω|L2

g

Γ(α + 1)(ν + (λ1ν)2 − L2
g)

:= ρ2
CV

.

Theorem 3. Assume that (4)–(6), (g1)–(g3) and (13) hold true; then, the system (1)–(3) possesses
a global attracting set in CH .

Proof. Let {un} with un = u(tn; 0, φn) be a sequence of weak solutions to problem (1),
defined on [−h, ∞), with initial value φn ∈ BCH , and tn → ∞ as n→ ∞.

On the one hand, by Lemmas 4 and 5, we know that the system (1)–(3) has a global
absorbing set in CH and CV , respectively. If we could show that {un

tn
} is compact in CH , then

by attractor theory [30], we conclude that the system (1)–(3) possesses a global attracting
set in CH .

We use the Arzelà–Ascoli Theorem to prove this, i.e., we need to verify the following
two conditions:

(i) for any sequence {un} of weak solutions of (1) with initial value φn ∈ BCH , we can
find a sub-sequence denoted as {un}, such that {un

tn
} is pre-compact in H for all

θ ∈ [−h, 0];
(ii) the sequence {un

tn
} is equi-continuous with respect to θ ∈ [−h, 0].

By Lemmas 4 and 5 and the compact embedding V ↪→ H, we conclude that there
exists N ∈ N, such that for all n ≥ N, tN ≥ T + 2h + 1, it holds that {un

tn
} is compact in H

for any θ ∈ [−h, 0].
Let θ1, θ2 ∈ [−h, 0], without loss of generalization, we assume that θ1 ≤ θ2; note that

|u(t + θ2)− u(t + θ1)| = |
1

Γ(α)

∫ t+θ2

t+θ1

(t + θ2 − s)α−1Dα
s u(s)ds|

≤ 1
Γ(α)

∫ t+θ2

t+θ1

(t + θ2 − s)α−1|ν∆u(s) + f (u) + g(s, us)|ds

≤ 1
Γ(α)

∫ t+θ2

t+θ1

(t + θ2 − s)α−1(|ν∆u(s)|+ | f (u)|+ |g(s, us)|)ds

≤ C|θ2 − θ1|α.

Then, conclusion (ii) is proved immediately. Hence, {un
tn
} is compact in CH , using the

theory of [30], and we conclude that system (1) has a global attracting set.

Remark 3. The global attracting set is obtained, which is different from its integer counterparts,
such as [32], in which the existence of a pullback attractor is obtained.

5. Conclusions

In this work, we researched the fractional reaction–diffusion equation with bounded
delay, in the sense of weak topology. The existence and uniqueness of a weak solution and
global attracting sets were proved. Compared to the classic evolution equation with delay
(bounded or unbounded), the study of the limit behavior of the time-fractional evolution
equation with unbounded delay is much more complicated. As the derivative is not integer,
methods that are used to analyze classic evolution equation do not work anymore. To
detect the limit behavior of the time-fractional evolution equation with unbounded delay,
we need to explore new techniques. We studied the dynamics of fractional Navier–Stokes
equations in our former work [24]; however, we could not prove the existence of a global
attracting set even in the non-delay case, let alone the delay case. It is complicated to prove
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the existence of a weak solution in the delay case; therefore, in the future, we will also work
on fractional delayed Navier–Stokes equations.
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