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Abstract: This work aims to study the interplay between the Wilson–Cowan model and connection
matrices. These matrices describe cortical neural wiring, while Wilson–Cowan equations provide
a dynamical description of neural interaction. We formulate Wilson–Cowan equations on locally
compact Abelian groups. We show that the Cauchy problem is well posed. We then select a type of
group that allows us to incorporate the experimental information provided by the connection matrices.
We argue that the classical Wilson–Cowan model is incompatible with the small-world property.
A necessary condition to have this property is that the Wilson–Cowan equations be formulated
on a compact group. We propose a p-adic version of the Wilson–Cowan model, a hierarchical
version in which the neurons are organized into an infinite rooted tree. We present several numerical
simulations showing that the p-adic version matches the predictions of the classical version in
relevant experiments. The p-adic version allows the incorporation of the connection matrices into the
Wilson–Cowan model. We present several numerical simulations using a neural network model that
incorporates a p-adic approximation of the connection matrix of the cat cortex.

Keywords: Wilson–Cowan model; connection matrices; p-adic numbers; small-world networks

1. Introduction

This work explores the interplay among Wilson–Cowan models, connection matrices,
and non-Archimedean models of complex systems.

The Wilson–Cowan model describes the evolution of excitatory and inhibitory activity
in a synaptically coupled neuronal network. The model is given by the following system of
non-linear integro-differential evolution equations:

τ
∂E(x,t)

∂t = −E(x, t)+

(1− rEE(x, t))SE(wEE(x) ∗ E(x, t)− wEI(x) ∗ I(x, t) + hE(x, t))

τ
∂I(x,t)

∂t = −I(x, t)+

(1− rI I(x, t))SI(wIE(x) ∗ E(x, t)− wI I(x) ∗ I(x, t) + hI(x, t)),

where E(x, t) is a temporal coarse-grained variable describing the proportion of excitatory
neuron firing per unit of time at position x ∈ R at instant t ∈ R+. Similarly, the variable
I(x, t) represents the activity of the inhibitory population of neurons. The main parame-
ters of the model are the strength of the connections among the subtypes of population
(wEE, wIE, wEI , and wI I) and the strength of the input to each subpopulation (hE(x, t) and
hI(x, t)). This model generates a diversity of dynamical behaviors that are representative
of activity observed in the brain, such as multistability, oscillations, traveling waves, and
spatial patterns; see, e.g., [1–3] and the references therein.
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We formulate the Wilson–Cowan model on locally compact Abelian topological groups.
The classical model corresponds to the group (R,+). In this framework, using classical
techniques on semilinear evolution equations (see, e.g., [4,5]), we show that the correspond-
ing Cauchy problem is locally well posed, and if rE = rI = 0, it is globally well posed; see
Theorem 1. This last condition corresponds to the case of two coupled perceptrons.

Nowadays, there is a large number of experimental data about the connection matrices
of the cerebral cortex of invertebrates and mammalians. Based on these data, several
researchers hypothesized that cortical neural networks are arranged in fractal or self-
similar patterns and have the small-world property; see, e.g., [6–19] and the references
therein. Connection matrices provide a static view of neural connections.

The investigation of the relationships between the Wilson–Cowan model and con-
nection matrices is quite natural, since the model was proposed to explain the cortical
dynamics, while the matrices describe the functional geometry of the cortex. We initiate
this study here.

A network having the small-world property necessarily has long-range interactions;
see Section 3. In the Wilson–Cowan model, the kernels (wEE, wIE, wEI , and wI I) describing
the neural interactions are Gaussian in nature, so only short-range interactions may occur.
For practical purposes, these kernels have compact support. On the other hand, the Wilson–
Cowan model on a general group requires that the kernels be integrable; see Section 2. We
argue that G must be compact to satisfy the small-world property. Under this condition,
any continuous kernel is integrable. Wilson and Cowan formulated their model on the
group (R,+). The only compact subgroup of this group is the trivial one. The small-world
property is, therefore, incompatible with the classical Wilson–Cowan model.

It is worth noting that the absence of non-trivial compact subgroups in (R,+) is a
consequence of the Archimedean axiom (the absolute value is not bounded on the integers).
Therefore, to avoid this problem, we can replace R with a non-Archimedean field, which is a
field where the Archimedean axiom is not valid. We selected the field of the p-adic numbers.
This field has infinitely many compact subgroups, and the balls have center in the origin.
We selected the unit ball, the ring of p-adic numbers Zp. The p-adic integers are organized
in an infinite rooted tree. We used this hierarchical structure as the topology for our p-adic
version of the Wilson–Cowan model. In principle, we could use other groups, such as
the classical compact groups, to replace (R,+), but it is also essential to have a rigorous
study of the discretization of the model. For the group Zp, this task can be performed using
standard approximation techniques for evolutionary equations; see, e.g., [5] (Section 5.4).

The p-adic Wilson–Cowan model admits good discretizations. Each discretization
corresponds to a system of non-linear integro-differential equations on a finite rooted tree.
We show that the solution of the Cauchy problem of this discrete system provides a good
approximation to the solution of the Cauchy problem of the p-adic Wilson–Cowan model;
see Theorem 2.

We provide extensive numerical simulations of p-adic Wilson–Cowan models. In
Section 5, we present three numerical simulations showing that the p-adic models provide
a similar explanation to the numerical experiments presented in [2]. In these experiments,
the kernels (wEE, wIE, wEI , and wI I) were chosen to have properties similar to those of the
kernels used in [2]. In Section 6, we consider the problem of how to integrate the connection
matrices into the p-adic Wilson–Cowan model. This fundamental scientific task aims to
use the vast number of data on maps of neural connections to understand the dynamics of
the cerebral cortex of invertebrates and mammalians. We show that the connection matrix
of the cat cortex can be well approximated with a p-adic kernel Kr(x, y). We then replace
the excitatory–excitatory relation term wEE ∗ E with

∫
Zp

Kr(x, y)E(y)dy but keep the other
kernels as in Simulation 1 presented in Section 5. The response of this network is entirely
different from that given in Simulation 1. For the same stimulus, the response of the last
network exhibits very complex patterns, while the response of the network presented in
Simulation 1 is simpler.
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The p-adic analysis has shown to be the right tool in the construction of a wide variety
of models of complex hierarchic systems; see, e.g., [20–28] and the references therein. Many
of these models involve abstract evolution equations of the type ∂tu + Au = F(u). In these
models, the discretization of operator A is an ultrametric matrix Al =

[
aij
]

i,j∈Gl
, where Gl

is a finite rooted tree with l levels and pl branches; here, p is a fixed prime number (see the
numerical simulations in [27,28]). Locally, connection matrices look very similar to matrices
Al . The problem of approximating large connection matrices with ultrametric matrices is
an open problem.

2. An Abstract Version of the Wilson–Cowan Equations

In this section, we formulate the Wilson–Cowan model on locally compact topological
groups and study the well-posedness of the Cauchy problem attached to these equations.

2.1. Wilson–Cowan Equations on Locally Compact Abelian Topological Groups

Let (G,+) be a locally compact Abelian topological group. Let dµ be a fixed Haar
measure on (G,+). The basic example is

(
RN ,+

)
, the N-dimensional Euclidean space

considered an additive group. In this case, dµ is the Lebesgue measure of RN .
Let L∞(G) be the R-vector space of functions f : G → R satisfying

‖ f ‖∞ = sup
x∈GrA

| f (x)| < ∞,

where A is a subset of G with measure zero. Let L1(G) be the R-vector space of functions
f : G → R satisfying

‖ f ‖1 =
∫
G

| f (x)|dµ < ∞.

For a fixed w ∈ L1(G), the mapping

L∞(G) → L∞(G)

f (x) → (w ∗ f )(x) =
∫
G w(x− y) f (y)dµ(y)

is a well-defined, linearly bounded operator satisfying

‖w ∗ f ‖∞ ≤ ‖w‖1‖ f ‖∞.

Remark 1. (i) We recall that f : R→ R is called a Lipschitz function if there is a positive constant
L( f ) such that | f (x)− f (y)| ≤ L( f )|x− y| for all x and y.

(ii) Given X and Y , Banach spaces, we denote by C(X ,Y) the space of continuous functions
from X to Y .

(iii) If Y = R, we use the simplified notation C(X ).

We fix two bounded Lipschitz functions SE and SI satisfying

SE(0) = SI(0) = 0.

We also fix wEE, wIE, wEI , wI I ∈ L1(G), and hE(x, t), hI(x, t) ∈ C([0, ∞], L∞(G)).
The Wilson–Cowan model on G is given by the following system of non-linear integro-

differential evolution equations:
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τ
∂E(x, t)

∂t
= −E(x, t)+

(1− rEE(x, t))SE(wEE(x) ∗ E(x, t)− wEI(x) ∗ I(x, t) + hE(x, t))

τ
∂I(x, t)

∂t
= −I(x, t)+

(1− rI I(x, t))SI(wIE(x) ∗ E(x, t)− wI I(x) ∗ I(x, t) + hI(x, t)),

where ∗ denotes the convolution in the space variables, and rE, rI ∈ R.
The space X := L∞(G)× L∞(G) endowed with the norm

‖( f1, f2)‖ = max{‖ f1‖∞, ‖ f2‖∞}

is a real Banach space.
Given f = ( f1, f2) ∈ X , and P(x), Q(x) ∈ L∞(G), we set

FE( f ) = SE(wEE(x) ∗ f1(x)− wEI(x) f2(x) + P(x)), (1)

and
F I( f ) = SI(wIE(x) ∗ f1(x)− wI I(x) ∗ f2(x) + Q(x)). (2)

We also set
X → X
f → H( f ),

where H( f ) = (HE( f ), H I( f )) and

HE( f ) = (1− rE f1)FE( f ), H I( f ) = (1− rI f2)F I( f ). (3)

Remark 2. We say that H is Lipschitz continuous (or globally Lipschitz) if there is a con-
stant L(H) such that ‖H( f )− H(g)‖ ≤ L(H)‖ f − g‖, for all f , g ∈ X . We also say that
H is locally Lipschitz continuous (or locally Lipschitz) if for every h ∈ X , there exists a ball
BR(h) = { f ∈ X ; ‖ f − h‖ < R} such that ‖H( f )− H(g)‖ ≤ L(R, h)‖ f − g‖ for all f ,
g ∈ BR(h). Since X is a vector space, without loss of generality, we can assume that h = 0.

Lemma 1. We use the above notation. If rI 6= 0 or rE 6= 0, H : X → X is a well-defined locally
Lipschitz mapping. If rI = rE = 0, then H : X → X is a well-defined, globally Lipschitz mapping.

Proof. We first notice that for f , g ∈ X , using that SE is Lipschitz,

|(FE( f )− FE(g))(x)|
≤ L(SE)|wEE(x) ∗ ( f1(x)− g1(x))− wEI(x)( f2(x)− g2(x))|
≤ L(SE){‖wEE‖1‖ f1 − g1‖∞ + ‖wEI‖1‖ f2 − g2‖∞}
≤ L(SE)max{‖wEE‖1, ‖wEI‖1}‖ f − g‖,

which implies that
‖FE( f )− FE(g)‖ ≤ L(FE)‖ f − g‖. (4)

Similarly,
‖F I( f )− F I(g)‖ ≤ L(F I)‖ f − g‖, (5)

where L(F I) = L(SI)max{‖wIE‖1, ‖wI I‖1}.
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Now, using estimation (4) and the fact that ‖FE( f )‖ ≤ ‖SE‖∞,

‖HE( f )− HE(g)‖ = ‖(1− rE f1)FE( f )− (1− rEg1)FE(g)‖ =
‖(1− rE f1)(FE( f )− FE(g))− rEFE(g)( f1 − g1)‖

≤ (1 + |rE|‖ f1‖∞)‖FE( f )− FE(g)‖+ |rE|‖FE( f )‖‖ f1 − g1‖∞

≤ {(1 + |rE|‖ f1‖∞)L(FE) + |rE|‖SE‖∞}‖ f − g‖.

With a similar reasoning, using estimation (5), one obtains

‖H I( f )− H I(g)‖∞ ≤ ((1 + |rI |‖ f2‖∞)L(F I) + |rI |‖SI‖∞)‖ f − g‖,

and consequently,

‖H( f )− H(g)‖ = max{‖HE( f )− HE(g)‖∞, ‖H I( f )− H I(g)‖∞}
≤ (A(1 + B‖ f‖∞) + C)‖ f − g‖, (6)

where

A := max{L(FE), L(F I)}, B := {|rE|, |rI |}, C := max{|rE|‖SE‖∞, |rI |‖SI‖∞}.

In the case rE = rI = 0, estimation (6) takes the form

‖H( f )− H(g)‖ ≤ A‖ f − g‖. (7)

This, in turn, implies that for f ∈ X ,

‖H( f )‖ ≤ ‖H( f )− H(0)‖+ ‖H(0)‖ ≤ A‖ f ‖+ ‖(FE(0), F I(0))‖
= A‖ f ‖+ ‖(SE(0), SI(0))‖ ≤ A‖ f ‖+ max{‖SE‖∞, ‖SI‖∞} < ∞.

(8)

Then, estimations (7) and (8) imply that H is a well-defined, globally Lipschitz mapping.
We now consider the case rI 6= 0 or rE 6= 0. Let us take f , g ∈ BR(0) for some R > 0.

Then, ‖ f1‖∞ < R, and estimation (6) takes the form

‖H( f )− H(g)‖ ≤ {(1 + |rE|R)L(FE) + |rE|‖SE‖∞}‖ f − g‖
≤ C‖ f − g‖, for f , g ∈ BR(0).

This implies that

‖H( f )‖ ≤ ‖H( f )− H(0)‖+ ‖H(0)‖ ≤ C‖ f ‖+ max{‖SE‖∞, ‖SI‖∞} < ∞. (9)

Then, the restriction of H to BR(0)× BR(0) is a well-defined Lipschitz mapping.

The estimations given in Lemma 1 are still valid for functions depending continuously
on a parameter t. More precisely, let us take T > 0 and fi ∈ C([0, T],U ), for i = 1, 2, where
U ⊂ L∞(G) is an open subset. We assume that

(0, T) ⊂ f−1
i (U ), for i = 1, 2.

We use the notation fi = fi(·, t), where t ∈ [0, T] and i = 1, 2. We replace P(x) with
hE(x, t) and Q(x) with hI(x, t), where hE(x, t), hI(x, t) ∈ C([0, ∞), L∞(G)). We denote the
corresponding mapping H( f ) by H( f , s). We also set XU ,T := [0, T]×U .
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Lemma 2. With the above notation, the following assertions hold:

(i) The mapping H : XU ,T ×XU ,T → X is continuous, and for each t ∈ (0, T) and each h ∈ U ,
there exist R > 0 and L < ∞ such that

‖H( f , s)− H(g, s)‖ ≤ L‖ f − g‖ for f , g ∈ BR(h), s ∈ [0, t].

(ii) For t ∈ (0, T) and f ∈ U × U ,

∫ t

0
‖H( f , s)‖ds < ∞.

Proof. (i) This follows from Lemma 1. By estimations (8) and (9), ‖H( f , s)‖ is bounded by
a positive constant C depending on R; then,∫ t

0
‖H( f , s)‖ds < CT.

2.2. The Cauchy Problem

With the above notation, the Cauchy problem for the abstract Wilson–Cowan system
takes the following form:

τ ∂
∂t

[
E(x, t)
I(x, t)

]
+

[
E(x, t)
I(x, t)

]
= H

([
E(x, t)
I(x, t)

])
, x ∈ G, t ≥ 0

[
E(x, 0)
I(x, 0)

]
=

[
E0(x)
I0(x)

]
∈ X .

(10)

Theorem 1. (i) There exists T0 ∈ (0, T] depending on
[

E0(x)
I0(x)

]
∈ X , such that Cauchy problem

(10) has a unique solution
[

E(x, t)
I(x, t)

]
in C1([0, T0),X ).

(ii) The solution satisfies

E(x, t) = e
−t
τ E0(x) +

∫ t

0
e
−(t−s)

τ (1− rEE(x, s))×
{SE(wEE(x) ∗ E(x, s)− wEI(x) ∗ I(x, s) + hE(x, s))}ds,

(11)

I(x, t) = e
−t
τ I0(x) +

∫ t

0
e
−(t−s)

τ (1− rE I(x, s))×
{SI(wIE(x) ∗ E(x, s)− wI I(x) ∗ I(x, s) + hE(x, s))}ds,

(12)

for t ∈ [0, T0) and x ∈ G.

(iii) If rI = rE = 0, then T0 = ∞ for any
[

E0(x)
I0(x)

]
∈ X , and

|E(x, t)| ≤ ‖E0‖∞ + τ‖SE‖∞ and |I(x, t)| ≤ ‖I0‖∞ + τ‖SI‖∞. (13)

(iv) The solution
[

E(x, t)
I(x, t)

]
in C1([0, T0),X ) depends continuously on the initial value.

Proof. (i)–(iii) By Lemma 2-(i) and [5] (Lemma 5.2.1 and Theorem 5.1.2), for each[
E0(x)
I0(x)

]
∈ X ,
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there exists a unique
[

E(x, t)
I(x, t)

]
∈ C([0, T0],X ) that satisfies (11) and (12). By Lemma 2-(i)

and [5] (Corollary 4.7.5),
[

E(x, t)
I(x, t)

]
∈ C1([0, T0),X ) and satisfies (10). By [4] (Theorem 4.3.4)

(see also [5] (Theorem 5.2.6)), T0 = ∞ or T0 < ∞ and limt→T0‖(E(t), I(t))‖ = ∞. In the
case rI = rE = 0, by using

∫ t

0
e
−(t−s)

τ |SE(wEE(x) ∗ E(x, s)− wEI(x) ∗ I(x, s) + hE(x, s))|ds

≤ ‖SE‖∞

∫ t

0
e
−(t−s)

τ ds < τ‖SE‖∞,

and∫ t

0
e
−(t−s)

τ |SI(wIE(x) ∗ E(x, s)− wI I(x) ∗ I(x, s) + hI(x, s))|ds

< τ‖SI‖∞,

one shows (13), which implies that T0 = ∞.
(iv) This follows from [5] (Lemma 5.2.1 and Theorem 5.2.4).

3. Small-World Property and Wilson–Cowan Models

After formulating the Wilson–Cowan model on locally compact Abelian groups, our
next step is to find the groups for which the model is compatible with the description of
the cortical networks given by connection matrices. From now on, we take rI = rE = 0; in
this case, the Wilson–Cowan equations describe two coupled perceptrons.

3.1. Compactness and Small-World Networks

The original Wilson–Cowan model is formulated on (R,+). The kernels wAB, A,
B ∈ {E, I}, which control the connections among neurons, are supposed to be radial
functions of the form

e−CAB |x−y|, or e−DAB |x−y|2 , (14)

where CAB and DAB are positive constants. Since R is unbounded, hypothesis (14) implies
that only short-range interactions among neurons occur. The strength of the connections
produced by kernels of type (14) is negligible outside of a compact set; then, for practical
purposes, interactions among groups of neurons only occur at small distances.

Nowadays, it is widely accepted that the brain is a small-world network; see, e.g., [8–11]
and the references therein. Small-worldness is believed to be a crucial aspect of efficient
brain organization that confers significant advantages in signal processing; furthermore,
small-world organization is deemed essential for healthy brain function (see, e.g., [10], and
the references therein). A small-world network has a topology that produces short paths
across the whole network, i.e., given two nodes, there is a short path between them (the
“six degrees of separation” phenomenon). In turn, this implies the existence of long-range
interactions in the network. The compatibility of the Wilson–Cowan model with the small-
world network property requires a non-negligible interaction between any two groups of
neurons, i.e., wAB(x) > ε > 0, for any x ∈ G, and for A, B ∈ {E, I}, where the constant
ε > 0 is independent of x. By Theorem 1, it is reasonable to expect that wAB, A, B ∈ {E, I}
are integrable; then, necessarily, G must be compact.

Finally, we mention that
(
RN ,+

)
does not have non-trivial compact subgroups. In-

deed, if x0 6= 0, then 〈x0〉 = {nx0; n ∈ Z} is a non-compact subgroup of
(
RN ,+

)
, because

{|n|; n ∈ Z} is not bounded. This last assertion is equivalent to the Archimedean axiom
of real numbers. In conclusion, the compatibility between the Wilson–Cowan model and
the small-world property requires changing (R,+) to a compact Abelian group. The
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simplest solution is to replace (R, |·|) with a non-Archimedean field (F, |·|F), where the
norm satisfies

|x + y|F ≤ max{|x|F, |y|F}.

3.2. Neuron Geometry and Discreteness

Nowadays, there are extensive databases of neuronal wiring diagrams (connection
matrices) of the invertebrates’ and mammalians’ cerebral cortex. The connection matrices
are adjacency matrices of weighted directed graphs, where the vertices represent neurons,
regions in a cortex, or neuron populations. These matrices correspond to the kernels wAB,
A, B ∈ {E, I}; then, it seems natural to consider using discrete Wilson–Cowan models [2,3]
(Chapter 2). We argue that two difficulties appear. First, since the connection matrices
may be extremely large, studying the corresponding Wilson–Cowan equations is only
possible via numerical simulations. Second, it seems that the discrete Wilson–Cowan model
is not a good approximation of the continuous Wilson–Cowan model; see [3] (page 57).
Wilson–Cowan equations can be formally discretized by replacing integrals with finite sums.
However, these discrete models are relevant only when they are good approximations of
continuous models. Finally, we want to mention that O. Sporns has proposed the hypothesis
that cortical connections are arranged in hierarchical self-similar patterns [8].

4. p-Adic Wilson–Cowan Models

The previous section shows that the classical Wilson–Cowan can be formulated on a
large class of topological groups. This formulation does not use any information about the
geometry of the neural interaction, which is encoded in the geometry of the group G. The
next step is to incorporate the connection matrices into the Wilson–Cowan model, which
requires selecting a specific group. In this section, we propose the p-adic Wilson–Cowan
models where G is the ring of p-adic integers Zp.

4.1. The p-Adic Integers

This section reviews some basic results of p-adic analysis required in this article. For a
detailed exposition on p-adic analysis, the reader may consult [29–32]. For a quick review
of p-adic analysis, the reader may consult [33].

From now on, p denotes a fixed prime number. The ring of p-adic integers Zp is
defined as the completion of the ring of integers Z with respect to the p-adic norm | · |p,
which is defined as

|x|p =

{
0 if x = 0
p−γ if x = pγa ∈ Z,

(15)

where a is an integer coprime with p. The integer γ = ordp(x) := ord(x), with ord(0) := +∞,
is called the p-adic order of x.

Any non-zero p-adic integer x has a unique expansion of the form

x = xk pk + xk+1 pk+1 + . . . ,

with xk 6= 0, where k is a non-negative integer, and xj are numbers from the set {0, 1, . . . , p− 1}.
There are natural field operations, sum and multiplication, on p-adic integers; see, e.g., [34].
Norm (15) extends to Zp as |x|p = p−k for a non-zero p-adic integer x.

The metric space
(
Zp, |·|p

)
is a complete ultrametric space. Ultrametric means that

|x + y|p ≤ max
{
|x|p, |y|p

}
. As a topological space, Zp is homeomorphic to a Cantor-like

subset of the real line; see, e.g., [29,30,35].
For r ∈ N, let us denote by B−r(a) = {x ∈ Zp; |x− a|p ≤ p−r} the ball of radius p−r

with center in a ∈ Zp and take B−r(0) := B−r. Ball B0 equals the ring of p-adic integers Zp. We

use Ω
(

pr|x− a|p
)

to denote the characteristic function of ball B−r(a). Given two balls in
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Zp, either they are disjoint, or one is contained in the other. The balls are compact subsets;

thus,
(
Zp, |·|p

)
is a compact topological space.

Tree-like Structures

The set of p-adic integers modulo pl , l ≥ 1, consists of all the integers of the form
i = i0 + i1 p + . . . + il−1 pl−1. These numbers form a complete set of representatives of
the elements of additive group Gl = Zp/plZp, which is isomorphic to the set of integers
Z/plZ (written in base p) modulo pl . By restricting |·|p to Gl , it becomes a normed space,

and |Gl |p =
{

0, p−(l−1), · · · , p−1, 1
}

. With the metric induced by |·|p, Gl becomes a finite
ultrametric space. In addition, Gl can be identified with the set of branches (vertices at
the top level) of a rooted tree with l + 1 levels and pl branches. By definition, the tree’s
root is the only vertex at level 0. There are exactly p vertices at level 1, which correspond
with the possible values of the digit i0 in the p-adic expansion of i. Each of these vertices
is connected to the root by a non-directed edge. At level k, with 2 ≤ k ≤ l + 1, there are
exactly pk vertices, and each vertex corresponds to a truncated expansion of i of the form
i0 + · · ·+ ik−1 pk−1. The vertex corresponding to i0 + · · ·+ ik−1 pk−1 is connected to a vertex
i′0 + · · ·+ i′k−2 pk−2 at level k− 1 if and only if

(
i0 + · · ·+ ik−1 pk−1

)
−
(

i′0 + · · ·+ i′k−2 pk−2
)

is divisible by pk−1. See Figure 1. Balls B−r(a) = a + prZp are infinite rooted trees.

Figure 1. The rooted tree associated with the group Z2/23Z2. The elements of Z2/23Z2 have the form
i = i0 + i12 + i222, i0, i1, i2 ∈ {0, 1}. The distance satisfies − log2|i− j|2 =level of the first common
ancestor of i, j.

4.2. The Haar Measure

Since (Zp,+) is a compact topological group, there exists a Haar measure dx, which is
invariant under translations, i.e., d(x + a) = dx [36]. If we normalize this measure by the
condition

∫
Zp

dx = 1, then dx is unique. It follows immediately that∫
B−r(a)

dx =
∫

a+prZp

dx = p−r ∫
Zp

dy = p−r, r ∈ N.

In a few occasions, we use the two-dimensional Haar measure dxdy of the additive group
(Zp × Zp,+) to normalize this measure by the condition

∫
Zp

∫
Zp

dxdy = 1. For a quick
review of the integration in the p-adic framework, the reader may consult [33] and the
references therein.
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4.3. The Bruhat–Schwartz Space in the Unit Ball

A real-valued function ϕ defined on Zp is called Bruhat–Schwartz function (or a test
function) if, for any x ∈ Zp, there exists an integer l ∈ N such that

ϕ(x + x′) = ϕ(x) for any x′ ∈ Bl . (16)

The R-vector space of Bruhat–Schwartz functions supported in the unit ball is denoted
by D(Zp). For ϕ ∈ D(Zp), the largest number l = l(ϕ) satisfying (16) is called the exponent
of local constancy (or the parameter of constancy) of ϕ. A function ϕ in D(Zp) can be written as

ϕ(x) =
M

∑
j=1

ϕ
(

x̃j
)
Ω
(

p−rj
∣∣x− x̃j

∣∣
p

)
,

where x̃j, j = 1, . . . , M, are points in Zp; rj, j = 1, . . . , M, are non-negative integers; and

Ω
(

prj
∣∣x− x̃j

∣∣
p

)
denotes the characteristic function of ball B−rj(x̃j) = x̃j + prjZp.

We denote by Dl(Zp) the R-vector space of all test functions of the form

ϕ(x) = ∑
i∈Gl

ϕ(i)Ω
(

pl |x− i|p
)

, ϕ(i) ∈ R,

where i = i0 + i1 p + . . . + il−1 pl−1 ∈ Gl = Zp/plZp, l ≥ 1. Notice that ϕ is supported on
Zp and that D(Zp) = ∪l∈NDl(Zp).

The space Dl(Zp) is a finite-dimensional vector space spanned by the basis{
Ω
(

pl |x− i|p
)}

i∈Gl
.

By identifying ϕ ∈ Dl(Zp) with the column vector [ϕ(i)]i∈Gl
∈ R#Gl , we get that

Dl(Zp) is isomorphic to R#Gl endowed with the norm∥∥∥[ϕ(i)]i∈GN
l

∥∥∥ = max
i∈Gl
|ϕ(i)|.

Furthermore,
Dl ↪→ Dl+1 ↪→ D(Zp),

where ↪→ denotes continuous embedding.

4.4. The p-Adic Version and Discrete Version of the Wilson–Cowan Models

The p-adic Wilson–Cowan model is obtained by taking G = Zp and dµ = dx in (10).
On the other hand, ‖ f ‖1 ≤ ‖ f ‖∞, and

L1(Zp) ⊇ L∞(Zp) ⊇ C(Zp) ⊇ D(Zp),

where C(Zp) denotes the R-space of continuous functions on Zp endowed with the norm
‖·‖∞. Furthermore, D(Zp) is dense in L1(Zp) [30] (Proposition 4.3.3); consequently, it is
also dense in L∞(Zp) and C(Zp).

For the sake of simplicity, we assume that wEE, wIE, wEI , wI I ∈ C(Zp), and hE(x, t),
hI(x, t) ∈ C([0, ∞], C(Zp)). Theorem 1 is still valid under these hypotheses. We use the
theory of approximation of evolution equations to construct good discretizations of the
p-adic Wilson–Cowan system; see, e.g., [5] (Section 5.4).

This theory requires the following hypotheses.
(A) (a) X =

(
C(Zp)× C(Zp)

)
and Xl =

(
Dl(Zp)×Dl(Zp)

)
, l ≥ 1, endowed with

the norm ‖ f ‖ = ‖( f1, f2)‖ = max{‖( f1)‖∞, ‖( f2)‖∞} are Banach spaces. It is relevant to
mention that Xl is a subspace of X and that Xl is a subspace of Xl+1.



Entropy 2023, 25, 949 11 of 20

(b) The operator

Pl : X → Xl

f (x) → (Pl f )(x) = ∑
i∈Gl

f (i)Ω
(

pl |x− i|p
)

is linear and bounded, i.e., Pl ∈ B(X ,Xl) and ‖Pl f ‖ ≤ ‖ f ‖, for every f ∈ X .
(c) We set 1l : Xl → X to be the identity operator. Then, 1l ∈ B(Xl ,X ), and

‖1l f ‖ = ‖ f ‖, for every f ∈ Xl .
(d) Pl1l f = f , for l ≥ 1, f ∈ Xl .
(B, C) The Wilson–Cowan system, see (10), involves the operator 1

τ 1, where 1 ∈ B(X ,X )
is the identity operator. As approximation, we use 1 ∈ B(Xl ,Xl), for every l ≥ 1. Further-
more,

lim
l→∞
‖Pl f − f ‖ = 0,

(see [37] (Lemma 1)).
(D) For t ∈ (0, ∞), 1

τ H(s, f ) : [0, t]×X → X is continuous and such that, for some
L < ∞, ∥∥∥∥ 1

τ
H(s, f )− 1

τ
H(s, g)

∥∥∥∥ ≤ L‖ f − g‖,

for 0 ≤ s ≤ t, f , g ∈ X . This assertion is a consequence of the fact that H : X → X is
well-defined, globally Lipschitz; see Lemma 1.

We use the notation E(t) = E(·, t), I(t) = I(·, t) ∈ C1([0, T),X ) and, for the approxi-
mations, El(t) = El(·, t), Il(t) = Il(·, t) ∈ C1([0, T),X ). The space discretization of p-adic
Wilson–Cowan system (10) is

∂
∂t

[
El(t)
Il(t)

]
+ 1

τ

[
El(t)
Il(t)

]
= 1

τ Pl

(
H
([

El(t)
Il(t)

]))
,

[
El(0)
Il(0)

]
= Pl

([
E0(x)
I0(x)

])
∈ Xl .

(17)

The next step is to obtain an explicit expression for the space discretization given in (17).
We need the following formulae.

Remark 3. Let us take

w(x) = ∑
j∈Gl

w(j)Ω
(

pl |x− j|p
)

, φ(y) = ∑
i∈Gl

φ(i)Ω
(

pl |y− i|p
)
∈ Dl(Zp).

Then,

(w ∗ φ)(x) =
∫
Zp

w(x− y)φ(y)dy =

∑
k∈Gl

{
p−l ∑

i∈Gl

w(k− i)φ(i)

}
Ω
(

pl |x− k|p
)
∈ Dl(Zp).

Indeed,
(w ∗ φ)(x) = ∑

j∈Gl

∑
i∈Gl

w(j)φ(i)
∫
Zp

Ω
(

pl |x− y− j|p
)

Ω
(

pl |y− i|p
)

dy.
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By changing variables as z = y− i, dz = dx, in the integral,

(w ∗ φ)(x) = ∑
j∈Gl

∑
i∈Gl

w(j)φ(i)
∫
Zp

Ω
(

pl |x− z− (i + j)|p
)

Ω
(

pl |z|p
)

dz

= ∑
j∈Gl

∑
i∈Gl

w(j)φ(i)
∫

plZp

Ω
(

pl |x− z− (i + j)|p
)

dz.

Now, by taking k = i + j and using the fact that Gl is an additive group,

(w ∗ φ)(x) = ∑
k∈Gl

∑
i∈Gl

w(k− i)φ(i)
∫

plZp

Ω
(

pl |x− z− k|p
)

dz

= ∑
k∈Gl

{
p−l ∑

i∈Gl

w(k− i)φ(i)

}
Ω
(

pl |x− k|p
)

.

Remark 4. Let us take S : R→R. Then,

S

(
∑

i∈Gl

φ(i)Ω
(

pl |y− i|p
))

= ∑
i∈Gl

S(φ(i))Ω
(

pl |y− i|p
)

.

This formula follows from the fact that the supports of the functions Ω
(

pl |y− i|p
)

, i ∈ Gl , are
disjoint.

The space discretization of the integro-differential equation in (17) is obtained by

computing the term Pl

(
H(

[
El(t)
Il(t)

]
)

)
using Remarks 3 and 4. By using the notation

wAB
l =

[
wAB

i

]
i∈Gl

, wAB
i = wAB(i), for A, B ∈ {E, I},

El(t) = [Ei(t)]i∈Gl
, Ei(t) = E(i, t), and Il(t) = [Ii(t)]i∈Gl

, Ii(t) = I(i, t),

hA
l (t) =

[
hA

i (t)
]

i∈Gl
, hA

i (t) = hA(i, t), for A ∈ {E, I},

and for φl = [φi]i∈Gl
, θl = [θi]i∈Gl

,

φl ∗ θl =

[
∑

k∈Gl

φi−kθk

]
i∈Gl

.

With this notation, the announced discretization takes the following form:
τ

∂El(t)
∂t = −El(t) + SE

(
wEE

l ∗ El(t)− wEI
l ∗ Il(t) + hE

l (t)
)

τ
∂Il(t)

∂t = −Il(t) + SI
(
wIE

l ∗ El(t)− wI I
l (x) ∗ Il(t) + hI

l (t)
)
.

Theorem 2. Let us take rI = rE = 0,
[

E0(x)
I0(x)

]
∈ X , and T ∈ (0, ∞). Let

[
E(t)
I(t)

]
∈

C1([0, T0),X ) be solutions (11) and (12) given in Theorem 1. Let
[

El(t)
Il(t)

]
be the solution of

Cauchy problem (17). Then,

lim
l→∞

sup
0≤t≤T

∥∥∥∥[ El(t)
Il(t)

]
−
[

E(t)
I(t)

]∥∥∥∥ = 0.
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Proof. We first notice that Theorem 1 is valid for Cauchy problem (17); more precisely, this

problem has a unique solution
[

El(t)
Il(t)

]
in C1([0, T0),Xl) satisfying properties akin to the

ones stated in Theorem 1. Since Xl is a subspace of X , by applying Theorem 1 to Cauchy

problem (17), we obtain the existence of a unique solution
[

El(t)
Il(t)

]
in C1([0, T0),X )

satisfying the properties announced in Theorem 1. To show that the solution
[

El(t)
Il(t)

]
belongs to C([0, T0),Xl), we use [5] (Theorem 5.2.2). For similar reasoning, the reader may
consult Remark 2 and the proof of Theorem 1 in [27]. The proof of the theorem follows
from hypotheses A, B, C, and D according to [5] (Theorem 5.4.7). For similar reasoning, the
reader may consult the proof of Theorem 4 in [27].

5. Numerical Simulations

We use heat maps to visualize approximations of the solutions of p-adic discrete
Wilson–Cowan Equations (17). The vertical axis gives the position, which is a truncated
p-adic number. These numbers correspond to a rooted tree’s vertices at the top level, i.e.,
Gl ; see Figure 1. For convenience, we include a representation of this tree. The heat maps’
colors represent the solutions’ values in a particular neuron. For instance, let us take p = 2,
l = 4, and

φ(x) = Ω(24|x|2)−Ω(24|x− 2|2) + Ω(24|x− 1|2) + Ω(24|x− 7|2). (18)

The corresponding heat map is shown in Figure 2. If the function depends on two variables,
say, φ(x, t), where x ∈ Zp and t ∈ R, the corresponding heat map color represents the value
of φ(x, t) at time t and neuron x.

Figure 2. Heat map of function φ(x); see (18). Here, φ(0) = φ(1) = φ(7) = 1 is white; φ(2) = −1 is
black; and φ(x) = 0 is red for x 6= 0, 1, 7, 2.

We take τ = 10, rI = rE = 1, p = 3, and l = 6; then,

wAB(x) = bAB exp(σAB)− bAB exp(σAB|x|p), for A, B ∈ {E, I},

and

SA(z) =
1

1 + exp(−vA(z− θA))
− 1

1 + exp(vAθA)
, for z ∈ R, A ∈ {E, I}.

The kernel wAB(x) is a decreasing function of |x|p. Thus, close neurons interact strongly.
SA(z) is a sigmoid function satisfying SA(0) = 0.

5.1. Numerical Simulation 1

The purpose of this experiment is to show the response of the p-adic Wilson–Cowan
network to a short pulse and a constant stimulus. See Figures 3–5. Our results are consistent
with the results obtained by Cowan and Wilson in [2] (Sections 2.2.1–2.2.5). The pulses are

hE(x, t) = 3.7Ω(p2|x− 4|p)1[0,δ](t), for x ∈ Zp, t ∈ [0, δ], (19)



Entropy 2023, 25, 949 14 of 20

hI(x, t) = QΩ(|x− 4|p)1[0,δ](t), for x ∈ Zp, t ∈ [0, δ], (20)

where 1[0,δ](t) is the characteristic function of time interval [0, δ], δ > 0. We use the
following parameters: vE = 2.75, vI = 0.3, bEE = 1.5, σEE = 4, bI I = 1.8, σI I = 3, θE = 9,
θI = 17, bIE = 1.35, σIE = 6, bEI = 1.35, and σEI = 6.

Figure 3. An approximation of E(x, t). We take Q = 0 and δ = 5. The time axis goes from 0 to 100
with a step of 0.05. The figure shows the response of the network to a brief localized stimulus (the
pulse given in (19)). The response is also a pulse. This result is consistent with the numerical results
in [2] (Section 2.2.1, Figure 3).

Figure 4. An approximation of E(x, t). We take Q = 0 and δ = 100. The time axis goes from 0 to 200
with a step of 0.05. The figure shows the response of the network to a maintained stimulus (see (19)).
The response is a pulse train. This result is consistent with the numerical results in [2] (Section 2.2.5,
Figure 7).

Figure 5. An approximation of E(x, t). We take Q = −30 and δ = 100. The time axis goes from 0
to 100 with a step of 0.05. The figure shows the response of the network to a maintained stimulus
(see (19) and (20)). The response is a pulse train in space and time. This result is consistent with the
numerical results in [2] (Section 2.2.7, Figure 9).

5.2. Numerical Simulation 2

In [2] (Section 3.3.1), Wilson and Cowan applied their model to the spatial hysteresis
in the one-dimensional tissue model. In this experiment, a human subject was exposed to
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a binocular stimulus. The authors used sharply peaked Gaussian distributions to model
the stimuli. The two stimuli were symmetrically moved apart by a small increment and
re-summed, and the network response was allowed to reach equilibrium.

Initially, the two peaks (stimuli) were very close; the network response consisted of a
single pulse (peak) (see [2] (Section 3.3.1, Figure 13A)). Then, the peaks separated from each
other (i.e., the disparity between the two stimuli increased). The network response was a
pulse in the middle of the binocular stimulus until a critical disparity was reached. At this
stimulus disparity, the single pulse (peak) decayed rapidly to zero, and twin response pulses
formed at the locations of the now rather widely separated stimuli; see [2] (Section 3.3.1,
Figure 13B).

Following this, the stimuli were gradually moved together again in the same form
until they essentially consisted of one peak. However, the network response consisted of
two pulses; see [2] (Section 3.3.1, Figure 13C).

The classical Wilson–Cowan model and our p-adic version can predict the results of
this experiment. We use the function

h̃E(x, t) = e−(30(0.5−m(x))−0.5t)2
+ e−(30(0.5−m(x))+0.5t)2

(21)

to model the stimuli in the case where the peaks do not move together and

hE(x, t) = h̃E(x, t)1[0,18](t) + h̃E(x, 36− t)1[18,36](t) (22)

to model the stimuli in the case where the peaks gradually move together. The function
m : Zp → R is the Monna map; see [38].

Figure 6 shows the stimuli (see (21)) and the network response when the stimulus
peaks are gradually separated. The network response begins with a single pulse. When
a critical disparity threshold is reached, the response becomes a twin pulse, which is the
prediction of the classical Wilson–Cowan model; see [2] (Section 3.3.1, Figure 13A,B).

Figure 7 depicts the stimuli and the network response in the instance where the
stimulus peaks gradually split and finally move together. The network response at the
end of the experiment consists of twin pulses. This finding is consistent with that of the
classical Wilson–Cowan model [2] (Section 3.3.1, Figure 13C).

Figure 6. An approximation of h̃E(x, t) and E(x, t). We take hI(x, t) ≡ 0, p = 3, and l = 6; the kernels
wAB are as in Simulation 1, and hE(x, t) is as in (21). The time axis goes from 0 to 60 with a step of
0.05. The first figure is the stimuli, and the second figure is the response of the network.



Entropy 2023, 25, 949 16 of 20

Figure 7. An approximation of hE(x, t) and E(x, t). We take hI(x, t) ≡ 0, p = 3, and l = 6; the kernels
wAB are as in Simulation 1, and hE(x, t) is as in (22). The time axis goes from 0 to 60 with a step of
0.05. The first figure is the stimuli, and the second figure is the response of the network.

6. p-Adic Kernels and Connection Matrices

There have been significant theoretical and experimental developments in compre-
hending the wiring diagrams (connection matrices) of the cerebral cortex of invertebrates
and mammals over the last thirty years; see, for example, [6–19] and the references therein.
The topology of cortical neural networks is described by connection matrices. Building
dynamic models from experimental data recorded in connection matrices is a very rele-
vant problem.

We argue that our p-adic Wilson–Cowan model provides meaningful dynamics on
networks whose topology comes from a connection matrix. Figure 8 depicts the connec-
tion matrix of the cat cortex (see, e.g., [7–14]) and the matrix of the kernel wEE used in
Simulation 1. The p-adic methods are relevant only if the connection matrices can be very
well approximated for matrices coming from discretizations of p-adic kernels. This is an
open problem. Here, we show that such an approximation is feasible for the cat cortex
connection matrix.

Figure 8. The left matrix is the connection matrix of the cat cortex. The right matrix corresponds to a
discretization of the kernel wEE used in Simulation 1.

Given an arbitrary matrix A, by adding zero entries, we may assume that its size
is pk × pk, where p is a suitable prime number. We assume that A =

[
aij
]

i,j∈Gk
, where
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Gk is the ring of integers modulo pk endowed with the p-adic topology, as in the above.
This hypothesis means that the connection matrices have an ultrametric nature; this type
of matrices appear in connection with complex systems, such as spin glasses; see [23]
(Section 4.2) and the references therein. Given an integer r satisfying 0 ≤ r ≤ k, the
reduction mod pr map is defined as i0 + i1 p + . . . + ik−1 pk−1 → i0 + i1 p + . . . + ir−1 pr−1.
We now define

Gk × Gk Πr−→ Gr × Gr

(i, j) → (i mod pr, j mod pr).

Map Π−1
r induces a block decomposition of matrix A into p2(k−r) blocks of size pr × pr.

Given (a, b) ∈ Gr × Gr, the corresponding block is A(a,b) =
[
aij
]
(i,j)∈Π−1

r (a,b). Now, we
attach to (a, b) ∈ Gr × Gr,

φa,b(x, y) = ∑
l∈Gr

∑
m∈Gr

φa,b(l, m)Ω
(

pr|x− l|p
)

Ω
(

pr|y−m|p
)
∈ Dr(Zp ×Zp),

and identify φa,b(x, y) with matrix [φa,b(l, m)]l,m∈Gr
. By using the correspondence

[φa,b(l, m)]l,m∈Gr
←→ A(a,b),

we approximate matrix A with a kernel Kr(x, y), which is locally translation invariant. More
precisely, for each a, b ∈ Gr, Kr(x, y) = φa,b(x− y) for all x ∈ a + prZp and y ∈ b + prZp.
Notice that if r = k, the matrix attached to Kr(x, y) is A. See Figure 9. This procedure
allows us to incorporate experimental data from connecting matrices into our p-adic Wilson–
Cowan model.

Figure 9. Three p-adic approximations for the connection matrix of the cat cortex. We take p = 2 and
l = 6. The first approximation uses r = 0; the second, r = 3; and the last, r = 5.

By using the above procedure, we replace the excitatory–excitatory relation term
wEE ∗ E with

∫
Zp

Kr(x, y)E(y)dy but keep the other kernels as in Simulation 1. For the

stimuli, we use hE = 3.5Ω(p2|x− 1|p), with p = 2, l = 6, and hI(x) = −30. In Figure 9,
we show three different approximations for the cat cortex connection matrix using p-adic
kernels. The black area in the right matrix in Figure 9 (which corresponds to zero entries)
comes from the process of adjusting the size of the origin matrix to 26 × 26.

The corresponding p-adic network responses are shown in Figure 10 for different
values of r. In the case r = 0, the interaction among neurons is short range, while in the
case r = 5, there is long-range interaction. The response in the case r = 0 is similar to
the one presented in Simulation 1; see Figure 5. When the connection matrix gets close
to the cat cortex matrix (see Figure 9), which is when the matrix allows more long-range
connections, the response of the network presents more complex patterns (see Figure 10).
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Figure 10. We use p = 2 and l = 6, and the time axis goes from 0 to 150 with a step of 0.05. The left
image uses r = 0; the right one uses r = 3; and the central one uses r = 5.

7. Final Discussion

The Wilson–Cowan model describes interactions between populations of excitatory
and inhibitory neurons. This model constitutes a relevant mathematical tool for under-
standing cortical tissue functionality. On the other hand, in the last twenty-five years, there
has been tremendous experimental development in understanding the cerebral cortex’s
neuronal wiring in invertebrates and mammalians. Employing different experimental
techniques, the wiring patterns can be described by connection matrices. Such a matrix is
just an adjacency matrix of a directed graph whose nodes represent neurons, groups of
neurons, or portions of the cerebral cortex. The oriented edges represent the strength of the
connections between two groups of neurons. This work explores the interplay between the
classical Wilson–Cowan model and connection matrices.

Nowadays, it is widely accepted that the networks in the cerebral cortex of mam-
malians have the small-world property, which means a non-negligible interaction exists
between any two groups of neurons in the network. The classical Wilson–Cowan model is
not compatible with the small-world property. We show that the original Wilson–Cowan
model can be formulated on any topological group, and the Cauchy problem for the un-
derlying equations of the model is well posed. We give an argument showing that the
small-world property requires that the group be compact, and consequently, the classical
model should be discarded. In practical terms, the classical Wilson–Cowan model cannot
incorporate the experimental information contained in connection matrices. We propose a
p-adic Wilson–Cowan model, where the neurons are organized in an infinite rooted tree.
We present numerical experiments showing that this model can explain several phenomena,
similarly to the classical model. The new model can incorporate experimental information
coming from connection matrices.
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