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Abstract: From the perspective of network attackers, finding attack sequences that can cause signifi-
cant damage to network controllability is an important task, which also helps defenders improve
robustness during network constructions. Therefore, developing effective attack strategies is a key
aspect of research on network controllability and its robustness. In this paper, we propose a Leaf
Node Neighbor-based Attack (LNNA) strategy that can effectively disrupt the controllability of
undirected networks. The LNNA strategy targets the neighbors of leaf nodes, and when there are
no leaf nodes in the network, the strategy attacks the neighbors of nodes with a higher degree to
produce the leaf nodes. Results from simulations on synthetic and real-world networks demonstrate
the effectiveness of the proposed method. In particular, our findings suggest that removing neigh-
bors of low-degree nodes (i.e., nodes with degree 1 or 2) can significantly reduce the controllability
robustness of networks. Thus, protecting such low-degree nodes and their neighbors during network
construction can lead to networks with improved controllability robustness.

Keywords: controllability; controllability robustness; undirected networks; attack strategy

1. Introduction

Complex networks have developed rapidly over the past two decades [1]. There are
many real-world systems that can be modeled as complex networks, with a large number
of nodes and edges. The study of networks can help us understand corresponding complex
systems. For example, social networks can help us understand the ways in which humans
interact and how information spreads in society; transportation networks can help us study
the flow and congestion of traffic in cities. The controllability of a network is a crucial
factor, as control networks are designed to serve people [2,3]. In this context, controllability
refers to the ability of a dynamical network to be guided by external inputs from any
initial state to any desired target state within a finite duration of time under an admissible
control input.

Recently, failures and attacks on complex networks have become more frequent and
severe [4–8]. When failures and attacks occur, they are removed in the form of node or edge
removals. On node removals, the target node and the edges previously connected to the
node will be removed, while on edge removals, only the target edges will be disconnected.
Network attacks are typically categorized into two types: random and malicious. Random
attacks refer to the uniform random selection of attack targets, while malicious attacks
choose the most effective targets to attack. Malicious attacks typically have a better effect
than random attacks, but they also consume more computation time. During malicious
attacks, the most destructive target is selected for attacking; such target choices are usu-
ally based on the centrality of nodes. For example, the node with the highest degree is
attacked firstly or the edge with the highest betweenness is preferentially removed. Be-
sides degree and betweenness, commonly used measures of node importance include
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closeness [9], Katz centrality [10], neighborhood similarity [11], branch weighting [12],
structural holes [13], and so on. Many malicious attack models have been proposed; the
hierarchical structure of a directed network enables a random upstream (or downstream)
attack on the network controllability, which results in a more destructive attack strategy
than random attacks [14]. In addition, the module-based attack strategy [15,16] aims at
attacking the nodes with inter-community edges that are crucial to maintain connectivity
among communities.

In addition, nodes can be categorized as critical or non-critical based on their impact
on network controllability when removed. Removing critical nodes can significantly reduce
network controllability [6], so they should be protected during network construction to
enhance controllability robustness. Bridges, a type of edge in networks, can also be targeted
for removal to decrease network controllability [17]. Many deep learning and optimization
methods can be used to find such hidden patterns and key roles of networks; the proposed
Finder framework, which employs reinforcement learning, offers a unified approach for
identifying a group of nodes that can destroy network function to the greatest extent
after removals [18]. Deep learning models are used to predict network robustness [19–22];
evolutionary algorithms are utilized for network attacks [23,24].

The research on network attacks aims to enhance the robustness of networks from
the perspective of attackers, enabling them to better withstand attacks when constructing
networks. One effective approach to improving the controllability robustness of networks
is to protect bridges, as they play a critical role in network connectivity. Protecting criti-
cal nodes and edges during network construction is also a viable strategy for enhancing
controllability robustness [6]. Studies have shown that three-ring and four-ring struc-
tures in networks are beneficial for controllability robustness [25], which suggests that
networks with random triangle and random quadrilateral structures tend to exhibit good
controllability robustnesss.

The structural controllability of the network can be evaluated by identifying the maxi-
mum matching of the network to determine the minimum number of external control inputs
required as driver nodes [4]. However, this approach is only suitable for directed networks and
is challenging to apply to large-scale networks. To address this issue, the exact controllability
framework was proposed, which can be utilized for all large-scale sparse networks [26].

Controllability robustness can be measured using two approaches: A priori measure
and A posteriori measure. The A priori measure calculates network features in a single calcu-
lation, while the A posteriori measure simulates the change in network controllability curve
under attack. Although the A posteriori measure is more accurate, it can be computationally
expensive, especially for large-scale networks. Recently, deep learning has emerged as a
promising approach to measure network robustness accurately and efficiently, providing a
less time-consuming alternative to simulation-based methods [19,21,22,27,28].

The selection of literature reviewed in this paper was based on the following criteria:
(1) Relevance to the research objective: we screened literature that directly related to our
research topic. (2) Credibility and authority: we evaluated the credibility and authority of
the literature. We specifically focused on articles published in reputable journals, conference
proceedings, and reports from authoritative research organizations. (3) Time range: we limited
the articles to recent publications as much as possible to ensure they represented the latest
advancements in the field. By employing these criteria, we aimed to ensure the selection of
the most relevant, credible, and recent literature to support the research objectives.

Overall, this paper presents an attack strategy for undirected network controllability.
The main contributions are:

(1) A novel attack strategy is proposed, which can effectively disrupt the controllability
of undirected networks.

(2) The impact of removing nodes with degree 1 and 2 on network controllability is
analyzed, revealing that nodes with low degree are not beneficial to the robustness of
network controllability.
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(3) The findings provide valuable insights for identifying key nodes and designing net-
works with improved controllability robustness in future research.

The rest of this paper is organized as follows: Section 2 introduces the preliminary
concepts of controllability and controllability robustness; Section 3 illustrates in detail the
proposed attack model LNNA; Section 4 demonstrates the experimental results on synthetic
and real-world networks; and Section 5 concludes this paper.

2. Network Controllability and Controllability Robustness

The robustness of network controllability is mainly concerned with the change in
controllability when the network is attacked [29]. Controllability robustness reflects the
ability of the network to resist attacks, from the perspective of attackers, which can also be
the evaluation index of attack performance, namely, the worse the robustness, the better
the attack model. Network controllability is measured by the density of driver nodes nD,

nD =
ND
N

(1)

where ND represents the number of driver nodes required to maintain network controlla-
bility and N represents the total number of network nodes. The minimum value of nD is
1
N , and the maximum value is 1. A smaller value of nD indicates better network controlla-
bility, while a larger value of nD indicates worse network controllability. According to the
minimum-inputs theorem [4], for directed networks, ND can be obtained by the number of
unmatched nodes for a directed network:

ND = max{1, N − |E∗|} (2)

where |E∗| is the size of maximum matching. As for exact controllability [26], ND is
calculated by:

ND = max{1, N − rank(A)} (3)

where rank(A) is the rank of the adjacency matrix A. For node-removal attacks, the
controllability robustness of the network can be measured by the controllability curve,
which is calculated as follows:

nD(i) =
ND(i)
N − i

, i = 0, 1, . . . , N − 1, (4)

where ND(i) the number of driver nodes needed to maintain network controllability after
removing a total of i nodes, N is the size of the original network, ND is calculated by using
the exact controllability framework as Equation (3), which applies to large and sparse
undirected networks, nD records the changes in network controllability after each node is
removed. The overall measure of controllability robustness can be obtained by averaging
controllability curves as follows:

RN =
1

N − 1

N−1

∑
i=1

nD(i), (5)

where nD(i) is the structural controllability of the remaining network after i nodes are
removed. The network controllability robustness can be evaluated by RN , a smaller RN
indicates better controllability robustness, while a larger RN indicates worse controllability
robustness. For an attack model, a better controllability robustness indicates a worse
attack performance.

3. Leaf Node Neighbor-Based Attack Strategy

The removal of different nodes in networks has different impacts on the controllability
of networks. Leaf nodes, which are the nodes with a degree of 1, are most likely driver
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nodes in the network. If the only neighbor of a leaf node is removed, the leaf node will
become an isolated node and the number of connected components of the network will
increase. Furthermore, after the neighbor of a leaf node is attacked, which is connected to
many leaf nodes, all the leaf nodes connected to it will become drive nodes. Therefore, the
neighbors of a leaf node are important for controllability attacks, and the number of leaf
nodes connected by that neighbor node is also an important reference. The above ideas are
applied to the following attack strategy design; the following subsections analyze in detail
the impacts of removing leaf node neighbors on network controllability.

3.1. Leaf Node Neighbor-Based Attack Strategy

As neighbors of leaf nodes can be removed to reduce the controllability of a network,
a leaf node neighbor-based attack (LNNA) strategy is proposed. Before proposing the
algorithm, there are two necessary concepts, k-neighbor node and k-neighbor degree,
which are pre-defined, where k-neighbor node is a neighbor of a node with degree k, and
k-neighbor degree for a node is the number of neighbors with degree k. The proposed
LNNA is based on the above concepts and is described in detail in Algorithm 1.

Algorithm 1 Leaf Node Neighbor-based Attack Strategy

Input: a network G with N nodes
Output: index t of target node to be attacked

1: degrees← {}
2: neighbors← {}
3: // get node degrees and neighbors
4: for i = 1 to N do
5: d← get_degree(nodei)
6: if d! = 0 then
7: degrees[i]← d
8: neighbors[i]← get_neighbor_indexes(nodei)
9: end if

10: end for
11: if degrees.size()! = 0 then
12: // get the nodes and their neighbors with smallest degree k, generally, k equals to 1
13: k← degrees.minimum()
14: k_nodes← {}
15: k_neighbors← {}
16: for j = degrees.keys() do
17: if degrees[j] == k then
18: k_nodes.insert(j)
19: k_neighbors.insert(neighbors[j])
20: end if
21: end for
22: k_neighbor_degrees← Array(k_neighbors.size())
23: for j = 1 to k_neighbors.size() do
24: for neighbor_id = get_neighbor_indexes(k_neighbors[j]) do
25: if neighbor_id in k_nodes then
26: k_neighbor_degrees[j]← k_neighbor_degrees[j] + 1
27: end if
28: end for
29: end for
30: t← k_neighbors[argmax(k_neighbor_degrees)]
31: else
32: t← random_integer(1, N)
33: end if
34: return t
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As shown in Algorithm 1, LNNA usually starts from the neighboring node of leaf
nodes, i.e., 1-neighbors. When attacking the 1-neighbors, the attack target is determined
based on the number of leaf nodes connected to these nodes, i.e., the 1-neighbor degree.
The node with the highest 1-neighbor degree among the 1-neighbors will be attacked.
When there are no leaf nodes in the network, LNNN will choose nodes to attack from the
2-neighbors. Similarly, the node with the highest 2-neighbor degree among the 2-neighbors
will be selected as the target. This process continues recursively.

In terms of time complexity, for each attack, finding neighbors of each node is O(N2),
N is the number of nodes; finding and getting the smallest k-neighbors is O(N); getting
k-neighbor degrees is O(KN), K is the number of k-neighbors, K < N; thus, the total time
complexity is max{O(N2), O(N), O(KN)} = O(N2). For typical malicious attack methods,
namely, degree- (DEG), betweenness- (BET), closeness- (CLO) based attacks, the time
complexity comparison is listed in Table 1. For degree-based attacks, getting the degree of
each node is O(N2), similar to finding neighbors of each node; for a betweenness-based
attack, getting the betweenness of each node is O(N3) when using the Floyd–Warshall
algorithm; for a closeness-based attack, computing time of closeness is O(N(M + N)), and
M is the number of edges.

Table 1. Time complexity of attack methods.

Method LNNA DEG BET CLO

Time complexity O(N2) O(N2) O(N3) O(N(M + N))

3.2. Influence of Leaf Node Neighbor Failures

An algorithm that targets the neighbors of low-degree nodes (i.e., leaf nodes) with
a node attack has been developed in Section 3.1. In this subsection, we also provide a
mathematical proof detailing why attacking the neighbors of leaf nodes is effective and
leads to an increase in the number of driver nodes.

Theorem 1. Let AN be the adjacency matrix of a network, and AN−1 be the adjacency matrix after
removing a node Vr. rank(AN) = rank(AN−1) + 2, if the following condition holds: Vr is the only
neighbor of a leaf node Vl .

Proof. The adjacency matrix AN and AN−1can be represented as follows:

AN =

0 ~0′ 1
~0 D ~a′

1 ~a′ 0

, AN−1 =

[
0 ~0′
~0 D

]
,

As the permutation invariance of adjacency matrix, the first row (column) of AN
represents Vl , the last row (column) of AN represents Vr; it is clear that

rank(D) = rank(AN−1) = rank(AN)− 2

Theorem 2. Let ND be the number of driver nodes in a network, and N
′
D be the number of driver

nodes on the network after removing a leaf node neighbor. N
′
D = ND + 1, if the following condition

holds: rank(AN) < N.

Proof. If rank(AN) < N, then, rank(AN−1) = rank(AN) − 2 < N − 2. Therefore, the
following equation holds:
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ND = max{1, N − rank(AN)}
= N − rank(AN)

= N − rank(AN−1)− 2

= [(N − 1)− rank(AN−1)]− 1

= max{1, (N − 1)− rank(AN−1)} − 1

= N
′
D − 1

Theorem 3. Let ND be the number of driver nodes in a network, and N
′
D be the number of driver

nodes on the network after removing a leaf node neighbor. N
′
D = ND = 1, if the following condition

holds: rank(AN) = N.

Proof. If rank(AN) = N, then ND = max{1, N − rank(AN)} = 1, the following
equation holds:

rank(AN−1) = rank(AN)− 2 = N − 2, N
′
D = max{1, (N − 1)− rank(AN−1) = 1

According to Theorem 1, 2, and 3, removing the neighbor of a leaf node from the net-
work increases or maintains the total number of driver nodes. From Equations (1) and (4),
we can find that the more driver nodes there are, the worse controllability the network has.

4. Experimental Studies

LNNA is applied to three kinds of synthetic networks and real networks. In order
to verify its effectiveness, the performance of LNNA was compared with feature-based
attacks such as degree-, betweenness-, and closeness-based attacks. The main focus of this
paper is to investigate the impact of attacking nodes with the lowest degree, excluding
isolated nodes, on network controllability. Specifically, the study explores the effects of
removing neighbors of leaf nodes on network controllability.

The three synthetic networks are Erdös-Rényi (ER) random-graph [30], Generic scale-
free (SF) network [31], and Newman–Watts small-world (SW) network [32]. The real-world
networks are econ-mahindas and soc-wiki-Vote; all networks are undirected. The number
of nodes are N = 500 and N = 1000; the average degree 〈k〉 = 3, 5, and 10, respectively.
In order to reduce the influence of randomness, 30 random instances are generated for
each network.

4.1. Results on Synthetic Networks for Different Average Degrees

Liu et al. [4] suggested that controlling sparse heterogeneous networks can be chal-
lenging and that such networks tend to have poor network controllability and robustness.
Conversely, dense homogeneous networks are easier to control and have better network
controllability and robustness. Moreover, networks with higher average degrees have more
redundant edges, which help maintain the core structure of the network and make it less
susceptible to destruction, resulting in better network controllability and robustness.

As shown in Figure 1, for ER and SW networks with an average degree of 3, LNNA can
effectively disrupt network controllability from the beginning of attacks. When the average
degree is 5, for the degree- (DEG), betweenness- (BET), closeness- (CLO) based attacks
on ER networks, the controllability of ER networks begins to decrease significantly after
about 20% of nodes are removed, and for the SW networks, the threshold proportion is 40%.
However, LNNA can significantly reduce the controllability of networks from the beginning
of the attacks. For SF networks, there is no significant difference between different attacks,
since the topology of SF networks makes the network robust on controllability, and nodes
that can disrupt the network controllability are easy to find. When 〈k〉 = 10, for ER



Entropy 2023, 25, 945 7 of 12

networks, the three feature-based attacks rapidly reduce the controllability of the network
when more than 40% of the nodes are removed. For SW networks, the ratio is around 50%.
For SF networks, LNNA is slightly better than other attacks, because with the increase in
average degree, the network controllability robustness is improved. Overall, as shown in
Table 2, LNNA has the best attack effect on the three synthetic networks with different
average degrees;

4.2. Results on Synthetic Networks for Different Network Sizes

The size of a network is typically defined as the number of nodes in the network.
Large-scale networks tend to be more complex and may exhibit a variety of structures, and
the controllability robustness of networks can vary across different scales. Moreover, in
terms of attack strategies, networks with more nodes require higher computational costs
relative to smaller networks. As shown in Figure 2, the effect of different attacks on the
three synthetic networks is similar when the average degree is 5, regardless of network
size (i.e., 500, 1000, or 1500 nodes). However, LNNA shows better attack performance on
ER and SW networks compared to other attack methods, while no significant difference
is observed in SF networks. Table 3 also shows that when the average degree is 5, LNNA
performs the best on the three networks with 500, 1000, and 1500 nodes.

n D

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

n D

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

PN

n D

PN PN
NLA DEG BET CLO

Figure 1. Controllability robustness of networks with N = 1000.
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n
D

n
D

P
N

n
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P
N

P
N

LNNA DEG BET CLO

Figure 2. Controllability robustness of networks with 〈k〉 = 5.

Table 2. Robustness of network controllability with different average degrees; the values are calcu-
lated by Equation (5).

Networks 〈k〉 LNNA DEG BET CLO

ER

3 0.5893 0.5258 0.4274 0.4921

5 0.4759 0.3942 0.3139 0.3619

7 0.3382 0.2537 0.2012 0.2299

SF

3 0.8836 0.8808 0.8259 0.8759

5 0.8085 0.8027 0.7322 0.7938

7 0.6636 0.6421 0.5683 0.6273

SW

3 0.4961 0.382 0.1612 0.3656

5 0.4324 0.3354 0.1802 0.3073

7 0.3236 0.2375 0.166 0.2173
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Table 3. Robustness of network controllability with different network sizes; the values are calculated
by Equation (5).

Network N LNNA DEG BET CLO

ER

500 0.4759 0.3942 0.3139 0.3619

1000 0.4803 0.3963 0.318 0.3654

1500 0.4815 0.3966 0.3211 0.3676

SF

500 0.8085 0.8027 0.7322 0.7938

1000 0.8357 0.8312 0.765 0.8242

1500 0.8519 0.848 0.787 0.8422

SW

500 0.4324 0.3354 0.1802 0.3073

1000 0.4347 0.3368 0.1788 0.3066

1500 0.1238 0.072 0.0582 0.061

4.3. Results on Real-World Networks

LNNA is applied to two real-world networks, called econ-mahindas and soc-wiki-Vote [33].
The information of networks is shown in Table 4.

Table 4. Information of real-world networks.

Network N M

econ-mahindas 1258 7682

soc-wiki-Vote 889 2914

As shown in Figure 3, for the econ-mahindas network, the attack effect of LNNA is
obviously better than that of other attack strategies. For the soc-wiki-Vote network, the
attack effect of LNNA is slightly better than other strategies, but there is no significant
difference. These results are consistent with those obtained on synthetic networks. Further-
more, for networks with good controllability robustness, LNNA is more destructive to the
network controllability.

P
N

n
D

econ-mahindas

P
N

soc-wiki-Vote

LNNA DEG BET CLO

Figure 3. Controllability robustness of real-world networks.
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4.4. Attack Process Discussion

Figure 4 illustrates types of the selected nodes during the LNNA. When approximately
70% of the nodes are removed, only isolated nodes remain in the network.

0 0.2 0.4 0.6 0.8 1.0
P

0

1

2

3

4

5

k-
ne

ig
hb

or
 n

od
e

Figure 4. Visualization of targeted nodes in the attack process of LNNA.

Figure 5 illustrates the proportion of different nodes removed by different networks
under LNNA. It can be observed that the proportion of nodes decreases as the k of k-
neighbor increases. Apart from isolated nodes, the largest proportion represents 1-neighbor
nodes, which refers to the neighbor of a leaf node. When a k-neighbor node is attacked,
a (k − 1)-neighbor node is generated. In the case of ER and SW networks, 1-neighbor
nodes account for approximately 30% and 25%, respectively, and the damage to network
controllability is significant. For the SF network, it can be seen that the attacked nodes are
1-neighbor nodes, accounting for about 40%. Subsequently, only isolated nodes remain in
the network, indicating that the SF network is vulnerable to attack.

ER

0 1 2 3 4
k-neighbor node

0

0.05

0.1

0.15

0.2

0.25

0.3

P

SF

0 1
k-neighbor node

0

0.1

0.2

0.3

0.4

0.5

0.6

SW

0 1 2 3 4 5
k-neighbor node

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5. The proportion of attacked node types in the three networks under LNNA, N = 1000 and
〈k〉 = 5.

5. Conclusions

In order to investigate the controllability robustness of networks from the perspective
of attacks, this paper mainly examines the destructive impact of the neighbor nodes of a
node with low degree on network controllability. We proposed an attack strategy targeted
on leaf node neighbors, named LNNA, and introduced the defined concepts of k-neighbor
nodes and k-neighbor degrees. First, we investigated the role of neighboring nodes of
leaf nodes in network controllability and the changes that occur in network controllability
when these nodes are removed. Then, we defined the concepts of k-neighbor nodes and
k-neighbor degrees, which denote the neighboring nodes of a node with degree k, and
the degree of k-neighbor node itself. Based on the exploration, we proposed an attack
strategy targeting these nodes to achieve maximum disruption of network controllability;
the attack strategy prioritizes attacking the neighbor node of a node with the lowest degree,
except for isolated nodes. In a network, if the k-neighbor nodes are attacked, the (k− 1)-
neighbor nodes will be generated, and this process continues until 1-neighbor nodes appear,
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which will then be attacked. Simulated experiments on synthetic and real-world networks
demonstrate that the proposed LNNA performs better than degree-, betweenness-, and
closeness-based attacks. This suggests that the presence of low-degree nodes in networks
is not conducive to network controllability robustness. In the future, when designing
networks with good controllability robustness, it is advisable to make the network more
homogeneous to avoid the presence of a large number of low-degree neighbor nodes, such
as 1-neighbor nodes and 2-neighbor nodes.
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