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Abstract: The present paper deals with a class of ξ(a)-quadratic stochastic operators, referred to as
QSOs, on a two-dimensional simplex. It investigates the algebraic properties of the genetic algebras
associated with ξ(a)-QSOs. Namely, the associativity, characters and derivations of genetic algebras
are studied. Moreover, the dynamics of these operators are also explored. Specifically, we focus on
a particular partition that results in nine classes, which are further reduced to three nonconjugate
classes. Each class gives rise to a genetic algebra denoted as Ai, and it is shown that these algebras are
isomorphic. The investigation then delves into analyzing various algebraic properties within these
genetic algebras, such as associativity, characters, and derivations. The conditions for associativity
and character behavior are provided. Furthermore, a comprehensive analysis of the dynamic behavior
of these operators is conducted.

Keywords: quadratic stochastic operator; associativity; dynamics

1. Introduction

Mathematical population genetics investigates the dynamics of frequency distributions
of genetic types (alleles, genotypes, gene collections, etc.) in successive generations under
the action of evolutionary forces. To explore the behavior of the population, the discrete
dynamical system associated with an evolution operator is the main object of the theory.
In ref. [1], a short history of applications of mathematics to solving various problems in
population dynamics is given.

On the other hand, there is another theoretical framework to investigate essential
properties of population genetics, which is based on an algebraic approach [2,3]. In this
scheme, most of the algebras are nonassociative. In the literature (see, for example, [4,5]),
plenty of nonassociative algebras (baric, evolution, Bernstein, train, stochastic, etc.) have
appeared to model inheritance in genetic systems. Such algebras are referred to as “genetic
algebras”. In general, problems of population genetics were started in [6] by employing
quadratic stochastic operators (see also [2]). It is worth recalling those operators which
present the time evolution of species in biology [7,8]. Namely, let us look at a population
consisting of m species (or traits) which are denoted by I = {1, 2, · · · , m}. Assume that
x(0) =

(
x(0)1 , · · · , x(0)m

)
is a probability distribution of species at an initial state, and pij,k is

a probability that individuals in the ith and jth species interbreed to produce an individual
from a kth species. Then, a probability distribution x(1) =

(
x(1)1 , · · · , x(1)m

)
of the species in

the first generation can be found as a total probability, i.e.,

x(1)k =
m

∑
i,j=1

pij,kx(0)i x(0)j , k ∈ {1, . . . , m}.
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The correspondence x(0) → x(1) is called the evolution operator or quadratic stochastic operator
(QSO). In other words, such an operator describes a distribution of the next generation if
the distribution of the current generation was given. Applications of QSOs to population
genetics were given in [2,9–11]. The reader is referred to [12] for a self-contained exposition
of the recent achievements and open problems in the theory of QSOs.

QSOs find applications as discrete-time dynamical systems in various fields, including
economics, epidemiology, and social sciences [13–17]. They are valuable tools for analyzing
and predicting the behavior of complex systems that undergo discrete changes at fixed
time intervals. For instance, in economics, QSOs can assist in modeling and understand-
ing market dynamics, optimizing resource allocation, and predicting economic trends.
In epidemiology, QSOs can be employed to simulate disease spread, evaluate intervention
strategies, and forecast the progression of infectious diseases. Moreover, in social sci-
ences, QSOs can aid in studying social dynamics, opinion formation, and decision-making
processes within populations. By employing QSOs as discrete-time dynamical systems,
researchers can gain insights into the intricate dynamics of these complex systems, enabling
better understanding, planning, and decision-making.

Each QSO defines an algebraic structure on the vector space Rm containing the sim-
plex (see next section for definitions). The associated algebra is called genetic algebra. A
more modern use of the genetic algebra theory for self-fertilization can be found in [18,19].
Therefore, it is the interplay between the purely mathematical structure and the corre-
sponding genetic properties that makes this subject so fascinating. We refer to [2,3,20] for
comprehensive references.

In [21,22], new classes of QSO were introduced, which are called ξ(as)-QSOs. We notice
that such classes of operators depend on the partition of the coupled index set (the coupled
trait set) Pm = {(i, j) : i < j} ⊂ I × I. Furthermore, certain subclasses of these operators
have been intensively explored in [23–25]. However, in those investigations, the algebraic
structures of genetic algebras associated with ξ(a)-QSO are not considered. Therefore, to fill
that gap, in the present paper, we are aiming to study certain algebraic properties of genetic
algebras corresponding to ξ(a)-QSO. We stress that the considered ξ(a)-QSOs are different
from Lotka–Volterra QSOs, which also have important applications in several branches of
sciences [26–29]. The genetic algebras associated with Lotka–Volterra operators have been
intensively explored in [30–33]. There appeared several works on the derivations of genetic
algebras [34–37]. Interpretations of the derivations have been discussed in [18]. Recently,
in [38–41], derivations of Lotka–Volterra algebras have been described. Furthermore, other
types of genetic algebras have been investigated in [42–47].

The paper is organized as follows. In Section 2, we collect necessary definitions from
the theory of genetic algebras. Section 3 is devoted to the construction of a class of ξ(a)-QSO
on two-dimensional simplex. Furthermore, in Section 4, we study the associativity of these
operators along with their dynamics. The characters of these algebras are described in
Section 5. In Section 6, the derivations of genetic algebras associated with ξ(a) are described.
Moreover, in Section 7, the dynamics of these operators are discussed.

2. Preliminaries

Recall that a quadratic stochastic operator (QSO) is a mapping of the simplex

Sm−1 =

{
x = (x1, · · · , xm) ∈ Rm :

m

∑
i=1

xi = 1, xi ≥ 0, i = 1, m

}
(1)

into itself, of the form

x′k =
m

∑
i,j=1

Pij,kxixj, k = 1, m, (2)
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where V(x) = x′ = (x′1, · · · , x′m), and Pij,k is a coefficient of heredity, which satisfies the
following conditions

Pij,k ≥ 0, Pij,k = Pji,k,
m

∑
k=1

Pij,k = 1. (3)

Thus, each quadratic stochastic operator V : Sm−1 → Sm−1 can be uniquely defined by a
cubic matrix P =

(
Pijk
)m

i,j,k=1 with conditions (3).

A point x ∈ Sm−1 is called a k-periodic point of V, if V j(x) 6= x, 0 ≤ j < k, Vk(x) = x.
If k = 1, then such a point is called a fixed point of V. The set of fixed points and k−periodic
points of V are denoted by Fix(V) and Perk(V), respectively. For a given point x(0) ∈ Sm−1,
a trajectory {x(n)}∞

n=0 of V starting from x(0) is defined by x(n+1) = V(x(n)). By ωV

(
x(0)

)
,

we denote a set of omega limiting points of the trajectory {x(n)}∞
n=0.

Definition 1. A quadratic stochastic operator V is called regular if for any initial point x ∈ Sm−1

the limit lim
n→∞

Vn(x) exists.

Note that each element x ∈ Sm−1 is a probability distribution of the set I = {1, . . . , m}.
Let x = (x1, · · · , xm) and y = (y1, · · · , ym) be vectors taken from Sm−1. We say that x is
equivalent to y if xk = 0⇔ yk = 0; this relation is denoted by x ∼ y.

Let supp(x) = {i : xi 6= 0} be a support of x ∈ Sm−1. We say that x is singular to y and
denote by x ⊥ y, if supp(x) ∩ supp(y) = ∅.

We denote the sets of coupled indexes by

Pm = {(i, j) : i < j} ⊂ I × I, ∆m = {(i, i) : i ∈ I} ⊂ I × I.

For a given pair (i, j) ∈ Pm ∪ ∆m, we set a vector Pij =
(

Pij,1, · · · , Pij,m
)
. It is clear due to

condition (3) that Pij ∈ Sm−1.
Let ξ = {Ai}N

i=1 and η = {Bi}M
i=1 be some fixed partitions of Pm and ∆m, respectively,

i.e., Ai
⋂

Aj = ∅, Bi
⋂

Bj = ∅, and
N⋃

i=1
Ai = Pm,

M⋃
i=1

Bi = ∆m, where N, M ≤ m.

Definition 2. A quadratic stochastic operator V : Sm−1 → Sm−1 given by (2) and (3), is called a
ξ(as)-QSO with regard to the partitions ξ, η (where the letters “as” stand for absolutely continuous-
singular) if the following conditions are satisfied:

(i) for each k ∈ {1, . . . , N} and any (i, j), (u, v) ∈ Ak, one has that Pij ∼ Puv;
(ii) for any k 6= `, k, ` ∈ {1, . . . , N} and any (i, j) ∈ Ak and (u, v) ∈ A` one has that Pij ⊥ Puv;
(iii) for each d ∈ {1, . . . , M} and any (i, i), (j, j) ∈ Bd, one has that Pii ∼ Pjj;
(iv) for any s 6= h, s, h ∈ {1, . . . , M} and any (u, u) ∈ Bs and (v, v) ∈ Bh one has that

Puu ⊥ Pvv.

Remark 1. If η is the point partition, i.e. ξ2 = {{(1, 1)}, . . . {(m, m)}}, then we call the corre-
sponding QSO by ξ(s)-QSO (where the letter “s” stands for singularity), because in this case, every
two different vectors Pii and Pjj are singular. If η is the trivial, i.e., ξ2 = {∆m}, then we call the
corresponding QSO by ξ(a)-QSO (where the letter “a” stands for absolute continuous), because in
this case, every two vectors Pii and Pjj are equivalent. We note that some classes of ξ(a)-QSO have
been studied in [21].

A BIOLOGICAL INTERPRETATION OF A ξ(a)−QSO: We treat I = {1, · · · , m} as a set of
all possible traits of the population system. A coefficient Pij,k is a probability that parents
in the ith and jth traits interbreed to produce a child from the kth trait. The condition
Pij,k = Pji,k means that the gender of parents does not influence the probability of having a
child from the kth trait. In this sense, Pm ∪ ∆m is a set of all the possible coupled traits of
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the parents. A vector Pij =
(

Pij,1, · · · , Pij,m
)

is a possible distribution of children in a family
where the parents are carrying traits from the ith and jth types.

3. A Class of ξ(a)-QSO on 2D Simplex

In this section, we are going to define ξ(a)−QSO in two-dimensional simplex, i.e., m = 3.
The set P3 has the following possible partitions:

ξ1 = {{(1, 2)}, {(1, 3)}, {(2, 3)}}, |ξ1| = 3,

ξ2 = {{(2, 3)}, {(1, 2), (1, 3)}}, |ξ2| = 2,

ξ3 = {{(1, 3)}, {(1, 2), (2, 3)}}, |ξ3| = 2,

ξ4 = {{(1, 2)}, {(1, 3), (2, 3)}}, |ξ4| = 2,

ξ5 = {(1, 2), (1, 3), (2, 3)}, |ξ5| = 1.

We notice that ξ(as)-QSOs corresponding to the partitions ξ1 − ξ4 have been stud-
ied in [22–25]. Therefore, in the present paper, we concentrate on the partition ξ5 and
η = {(1, 1)(2, 2)(3, 3)}, which defines a class of ξ(a)-QSO. In the sequel, for the sake of
simplicity, we are going to consider the following coefficients (Pij,k)

m
i,j,k=1 given by the table:

P11 P22 P33 P12 P13 P23
(α, 1− α, 0) (1− α, α, 0) (1− α, α, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(α, 0, 1− α) (1− α, 0, α) (1− α, 0, α) (0, 1, 0) (0, 1, 0) (0, 1, 0)
(0, α, 1− α) (0, 1− α, α) (0, 1− α, α) (0, 0, 1) (0, 0, 1) (0, 0, 1)

where α ∈ [0, 1].
The corresponding QSOs are listed as follows:

V1 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = (1− α)x2

1 + αx2
2 + αx2

3

x
′
3 = 0

(4)

V2 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = 0

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3

(5)

V3 :=


x
′
1 = 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = αx2

1 + (1− α)x2
2 + (1− α)x2

3

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3

(6)

V4 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3

x
′
2 = (1− α)x2

1 + αx2
2 + αx2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
3 = 0

(7)

V5 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3

x
′
2 = 2x1x2 + 2x2x3 + 2x1x3

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3

(8)

V6 :=


x
′
1 = 0

x
′
2 = αx2

1 + (1− α)x2
2 + (1− α)x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3

(9)
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V7 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3

x
′
2 = (1− α)x2

1 + αx2
2 + αx2

3

x
′
3 = 2x1x2 + 2x2x3 + 2x1x3

(10)

V8 :=


x
′
1 = αx2

1 + (1− α)x2
2 + (1− α)x2

3+

x
′
2 = 0

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3 + 2x1x2 + 2x2x3 + 2x1x3

(11)

V9 :=


x
′
1 = 0

x
′
2 = αx2

1 + (1− α)x2
2 + (1− α)x2

3

x
′
3 = (1− α)x2

1 + αx2
2 + αx2

3 + 2x1x2 + 2x2x3 + 2x1x3

(12)

4. Associativity

Let V be a QSO, and suppose that x, y ∈ Rm are arbitrary vectors. Then, one can define
a binary rule [9] on Rm by

(x ◦V y)k =
m

∑
i,j=1

Pij,kxixj. (13)

Using (3), one can see that x ◦V y = y ◦V x, i.e., the multiplication is commutative. Certain
algebraic properties of such kinds of algebras were investigated in [2,3,20]. In general,
genetic algebra is not necessarily associative.

The multiplication (13) in the canonical basis can be represented as follows:

ei ◦V ej =
m

∑
i,j=1

Pij,kek. (14)

It turns out that the multiplication can be given terms of QSO

x ◦V y =
1
4
(V(x + y)−V(x− y)).

One can check that
x ◦V x = x2 = V(x) for any x ∈ Sm−1.

This algebraic interpretation is useful, e.g., a state x is an equilibrium precisely when x is
an idempotent element of the algebra.

The algebra A is called associative if

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z,∈ A.

In this section, we are going to investigate the associativity of genetic algebras gen-
erated by ξ(a)-QSO described in the previous section. To describe such algebras, we are
going to consider more general operators which cover all listed ones. For this reason, we
are going to evaluate the following table:

P11,1 = a1 P11,2 = b1 P11,3 = c1
P22,1 = a2 P22,2 = b2 P22,3 = c2
P33,1 = a3 P33,2 = b3 P33,3 = c3

where ai, bi, ci ≥ 0

a1 + b1 + c1 = 1, a2 + b2 + c2 = 1, a3 + b3 + c3 = 1.

Furthermore, we assume that the coefficients (Pij,k)
m
ij,k=1 are given by
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Cases P12 P13 P23

1 (1,0,0) (1,0,0) (1,0,0)
2 (0,1,0) (0,1,0) (0,1,0)
3 (0,0,1) (0,0,1) (0,0,1)

Then, the corresponding QSOs are described as follows:

W1 :=


x
′
1 = a1x2

1 + a2x2
2 + a3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = b1x2

1 + b2x2
2 + b3x2

3

x
′
3 = c1x2

1 + c2x2
2 + c3x2

3

(15)

W2 :=


x
′
1 = a1x2

1 + a2x2
2 + a3x2

3

x
′
2 = b1x2

1 + b2x2
2 + b3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
3 = c1x2

1 + c2x2
2 + c3x2

3

(16)

W3 :=


x
′
1 = a1x2

1 + a2x2
2 + a3x2

3

x
′
2 = b1x2

1 + b2x2
2 + b3x2

3

x
′
3 = c1x2

1 + c2x2
2 + c3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

(17)

The obtained operators W1, W2 and W3, according to (13), generate corresponding
genetic algebras which are denoted by A1, A2 and A3. Therefore, we are going to investigate
the associativity of these algebras. Let us list their table of multiplication.

Case I: In this case, we consider the QSO W1; then, for the corresponding genetic
algebra A1, the table of multiplication is given by

e1 e2 e3

e1 a1e1 + b1e2 + c1e3 e1 e1
e2 e1 a2e1 + b2e2 + c2e3 e1
e3 e1 e1 a3e1 + b3e2 + c3e3

Case II: Now, let us consider W2, then the algebra A2 has the following table of
multiplication:

e1 e2 e3

e1 a1e1 + b1e2 + c1e3 e2 e2
e2 e2 a2e1 + b2e2 + c2e3 e2
e3 e2 e2 a3e1 + b3e2 + c3e3

Case III: Using the same argument, the algebra A3 is defined by W3, and its table of
multiplication is given by

e1 e2 e3

e1 a1e1 + b1e2 + c1e3 e3 e3
e2 e3 a2e1 + b2e2 + c2e3 e3
e3 e3 e3 a3e1 + b3e2 + c3e3

Theorem 1. The algebras A1, A2 and A3 are isomorphic.

Proof. Let W1 be given by (15) with the parameters ai, bi, ci, and W2 be given by (16) with
the following parameters ai, bi, ci, such that

a2 = b1, b2 = a1, c2 = c1

a1 = b2, b1 = a2, c1 = c2

a3 = b3, b3 = a3, c3 = c3
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For the sake of simplicity, we prove that A1 is isomorphic to A2. To do so, let us define
a mapping

α(x1, x2, x3) = (x2, x1, x3).

It is enough to check

α(ei ◦W1 ej) = α(ei) ◦W2 α(ej), ∀i, j ∈ {1, 2, 3}.

Using Case I and Case II, we find

α(e1 ◦W1 e1) = α(e1) ◦W2 α(e1)⇒ a2 = b1, b2 = a1, c2 = c1

α(e2 ◦W1 e2) = α(e2) ◦W2 α(e2)⇒ a1 = b2, b1 = a2, c1 = c2

α(e3 ◦W1 e3) = α(e3) ◦W2 α(e3)⇒ a3 = b3, b3 = a3, c3 = c3

α(e1 ◦W1 e2) = α(e1) ◦W2 α(e2) = e2

α(e1 ◦W1 e3) = α(e1) ◦W2 α(e3) = e2

α(e2 ◦W1 e3) = α(e2) ◦W2 α(e3) = e2

which completes the proof.

Furthermore, due to the proved theorem, we always consider the genetic algebra A1.

Theorem 2. The genetic algebra A1 is associative if and only if one of the following conditions
is satisfied.

(i) a1 = 1, b1 = 0, c1 = 0 ; a2 = 1, b2 = 0, c2 = 0 ; a3, b3, c3 − arbitary, b3 6= 0
(ii) a1 = 1, b1 = 0, c1 = 0 ; a2, b2, c2 − arbitary, c2 6= 0 ; a3 = 1, b3 = 0, c3 = 0
(iii) a1 = 1, b1 = 0, c1 = 0 ; a2 − arbitary, b2 = 1− a2, c2 = 0 ; a3 − arbitary, b3 = 0, c3 =

1− a3

Proof. To check the associativity, it is enough to establish the associativity on the basis of
elements e1, e2 and e3

ei ◦ (ej ◦ ek) = (ei ◦ ej) ◦ ek, for all i, j, k = 1, 2, 3

By checking all the cases, we obtain the following equations

b1(1− b2) = 0 b1c2 = c1 b1a2 + c1 = 0

c1(1− c3) = 0 c1b3 = b1 c1a3 + b1 = 0

a1 = 1 b1 = 0 c1 = 0

a3(1− a1) = 0 a3b1 = 0 a3c1 = 0

a2(1− a1) = 0 a2b1 = 0 a2c1 = 0

b3(1− a2) = 0 b3b2 = 0 b3c2 = 0

c2(1− a3) = 0 c2b3 = 0 c3c2 = 0.

Solving these, we get

1. a1 = 1, b1 = 0, c1 = 0 ; a2 = 1, b2 = 0, c2 = 0 ; a3, b3, c3 − arbitary, b3 6= 0.

Hence, the corresponding operator W1 has the following form:

W1 :


x
′
1 = x2

1 + x2
2 + a3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = b3x2

3
x
′
3 = c3x2

3
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2. a1 = 1, b1 = 0, c1 = 0 ; a2, b2, c2 − arbitary, c2 6= 0 ; a3 = 1, b3 = 0, c3 = 0.

Hence, the corresponding operator W1 has the following form:

W1 :


x
′
1 = x2

1 + a2x2
2 + x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = b2x2

2
x
′
3 = c2x2

2

3. a1 = 1, b1 = 0, c1 = 0 ; a2− arbitary, b2 = 1− a2, c2 = 0 ; a3− arbitary, b3 = 0, c3 = 1− a3.

Hence, the corresponding operator W1 has the following form:

W1 :


x
′
1 = x2

1 + a2x2
2 + a3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = (1− a2)x2

2
x
′
3 = (1− a3)x2

3

Dynamics of W1

In this subsection, we are going to investigate the dynamics of a QSO corresponding to
associative genetic algebra A1. Let us study the dynamics of W1 according to the different
cases described in Theorem 2.

According to part (i), W1 has the following form

W1 :


x
′
1 = x2

1 + x2
2 + a3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = b3x2

3
x
′
3 = c3x2

3

If x3 = 0, then W1(x1, x2, 0) = (1, 0, 0). If x3 6= 0⇒ 0 < x3 ≤ 1, then x(1)3 = C3x2
3,⇒

x(n)3 = C2n−1
3 x2n

3 . Now, if c3 < 1⇒ x(n)3 → 0 and x(1)2 = b3x(2)3 ⇒ x(n)2 = b3c2n−1−1
3 x2n−1

3 ⇒
x(n)2 → 0. So, x(n)1 + x(n)2 + x(n)3 = 1 ⇒ x(n)1 = 1. Thus, W(n)

1 (x) → (1, 0, 0). If c3 = 1,⇒
a3 = b3 = 0, which gives W1(0, 0, 1) = (0, 0, 1). Therefore, W1(x1, x2, x3) = (1− x2

3, 0, x2
3).

If x3 < 1⇒ W(n)
1 (x)→ (1, 0, 0).

According to part (ii), W1 is represented as follows

W1 :


x
′
1 = x2

1 + a2x2
2 + x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = b2x2

2
x
′
3 = c2x2

2

If x2 = 0, then W1(x1, 0, x3) = (1, 0, 0). If x2 6= 0 ⇒ 0 < x2 ≤ 1, then x(1)2 = b2x2
2,⇒

x(n)2 = b2n−1
2 x2n

2 . Now, if b2 < 1⇒ x(n)2 → 0 and, x(1)3 = c2x(2)2 ⇒ x(n)3 = c2b2n−1−1
2 x2n−1

3 ⇒
x(n)3 → 0. So, x(n)1 + x(n)2 + x(n)3 = 1 ⇒ x(n)1 = 1. Thus, W(n)

1 (x) → (1, 0, 0). If b2 = 1,⇒
a2 = b2 = 0, which gives W1(0, 1, 0) = (0, 1, 0). Therefore, W1(x1, x2, x3) = (1− x2

2, x2
2, 0).

If x2 < 1⇒ Wn
1 (x)→ (1, 0, 0).

By part (iii), W1 is given by

W1 :


x
′
1 = x2

1 + a2x2
2 + a3x2

3 + 2x1x2 + 2x2x3 + 2x1x3

x
′
2 = (1− a2)x2

2
x
′
3 = (1− a3)x2

3
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If a2 = 1, a3 = 1, then W1(x1, x2, x3) → (1, 0, 0). If a3 = 1, 0 6= a2 < 1, then
x1

2 = (1 − a2)x2
2 ⇒ x(n)2 = (1 − a2)

2n−1x2n

2 because a2 < 1 ⇒ x(n)2 → 0. Addition-

ally, x(n)3 = 0 ⇒ x(n)1 → 1. Therefore, W(n)
1 (x) → (1, 0, 0). If a2 = 1, 0 6= a3 < 1,

then x1
3 = (1 − a3)x2

2 ⇒ xn
3 = (1 − a3)

2n−1x2n

3 because a3 < 1 ⇒ x(n)3 → 0. Ad-

ditionally, x(n)2 = 0 ⇒ x(n)1 → 1. Therefore, W(n)
1 (x) → (1, 0, 0). If a2 < 1, a3 < 1

x1
2 = (1− a2)x2

2, which gives x(n)2 = (1− a2)
2n−1x2n

2 ⇒ x(n)2 → 0, x1
3 = (1− a3)x2

2, which

gives x(n)3 = (1 − a3)
2n−1x2n

3 ⇒ x(n)3 → 0 ⇒ x(n)1 = 1. Therefore, W(n)
1 (x) → (1, 0, 0).

If a2 = 0⇒ x
′
2 = x2

2 ⇒ x2 = 0, 1 or a3 = 0⇒ x
′
3 = x2

3 ⇒ x3 = 0, 1.

Hence, we can formulate the following theorem.

Theorem 3. Let W1 be a QSO whose genetic algebra A1 is associative, then W1 is regular, moreover
one has

W(n)
1 (x)→ e1, for every x ∈ S2.

5. Character

In this section, we characterize all characters of genetic algebras. Let A be a genetic
algebra. Let us recall that a character of A is a linear functional on A with

h(x ◦ y) = h(x)h(y) ∀ x, y ∈ A.

We notice that the functional

h(x) = x1 + x2 + x3

is a trivial character for any genetic algebra. Therefore, we are interested to find other
nontrivial characters A1.

Theorem 4. Let us consider algebra A1. Then, the following statements hold.

(i) If c1 = c2 = 0, c3 6= 0, then h(x) = c3x3 is a character;
(ii) If b1 = b3 = 0, b2 6= 0, then h(x) = b2x2 is a character;
(iii) otherwise, there is only a trivial character.

Proof. Let h(x) = h1x1 + h2x2 + h3x3 be a linear functional, where x = (x1, x2, x3). To
check h is a character, it is enough to verify

h(ei ◦ ej) = h(ei)h(ej) for all i, j = 1, 2, 3. (18)

It is clear that h(ei) = hi; then, checking (18) yields

a1h1 + b1h2 + c1h3 = h2
1 (19)

h1 = h1h2 ⇒ h1(1− h2) = 0 (20)

h1 = h1h3 ⇒ h1(1− h3) = 0 (21)

a2h1 + b2h2 + c2h3 = h2
2 (22)

h1 = h2h3 (23)

a3h1 + b3h2 + c3h3 = h2
3 (24)

Now we want to solve these equations. Consider several cases.

Case I: h1 = 0, then h2h3 = 0.



Entropy 2023, 25, 934 10 of 22

Sub-case I1: Assume that h2 = 0, h3 6= 0.

Then, from the above given equations, we find

c1h3 = 0⇒ c1 = 0 and c2h3 = 0⇒ c2 = 0. Moreover, h2
3 − c3h3 = 0⇒ h3 = c3 6= 0

Hence, h(x) = c3x3, c3 6= o, c1 = c2 = 0.

Sub-case I2: h2 6= 0, h3 = 0

b1h2 = 0⇒ b1 = 0

b3h2 = 0⇒ b3 = 0

h2
2 − b2h2 = 0⇒ h2 = b2 6= 0

Thus, h(x) = b2x2, b2 6= o, b1 = b3 = 0.

If h1 6= 0, h2 = 1, h3 = 1, then we get the trivial derivation.

Remark 2. It is worth mentioning that the characters of Lotka–Volterra and other kinds of genetic
algebras have been investigated in [40,44].

6. Derivations

In this section, we are going to describe derivations of genetic algebras associated with
ξ(a)-QSOs. We recall that a derivation on algebra (A, ◦) is a linear mapping D : A → A
such that D(u ◦ v) = D(u) ◦ v + u ◦ D(v) for all u, v ∈ A. It is clear that D ≡ 0 is also a
derivation, and such a derivation is called a trivial one. It is important to know whether
the given algebra possesses a nontrivial derivation. Notice that a genetic interpretation of
derivations was discussed in [35].

Let A be a genetic algebra associated with W1. Its table of multiplication is given in
Case 1. It is well known that d is a derivation if and only if

d(ei ◦ ej) = d(ei) ◦ ej + ei ◦ d(ej) (25)

To describe derivations of the algebra A, we check the validity of (25). Assume that

D(ei) =
3

∑
j=1

di,jej, i ∈ 1, 2, 3 (26)
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for some matrix (dij). Then, we obtain the following system of equations:



a1d11 + b1d21 + c1d31 = 2(a1d11 + d12 + d13)

a1d12 + b1d22 + c1d32 = 2b1d11

a1d13 + b1d23 + c1d33 = 2c1d11

a2d11 + b2d21 + c2d31 = 2(d21 + a2d22 + d23)

a2d12 + b2d22 + c2d32 = 2b2d22

a2d13 + b2d23 + c2d33 = 2c2d22

a3d11 + b3d21 + c3d31 = 2(d31 + a2d32 + d33)

a3d12 + b3d22 + c3d32 = 2b3d33

a3d13 + b3d23 + c3d33 = 2c3d33

a2d12 + d13 + a1d21 + d22 + d23 = 0

d12 = b2d12 + b1d21

d13 = c2d12 + c1d21

a3d13 + d12 + a1d31 + d32 + d33 = 0

d12 = b1d31 + b3d13

d13 = c2d13 + c1d31

d21 + d22 + a3d23 + d31 + a3d32 + d33 = d11

d12 = b3d23 + b2d32

d13 = c3d23 + c2d32

(27a)

(27b)

(27c)

(27d)

(27e)

(27f)

(27g)

(27h)

(27i)

(27j)

(27k)

(27l)

(27m)

(27n)

(27o)

(27p)

(27q)

(27r)

In what follows, for the sake of simplicity, we restrict ourselves to case ci = 0 ∀i ∈
{1, 2, 3}. In this case, the system is reduced to

b1d21 = a1d11 + 2d12 + 2d13

a1d12 + b1d22 = 2b1d11

b1d23 = 0

a2d11 + b2d21 = 2(d21 + a2d22 + d23)

a2d12 = 2b2d22

b2d23 = 0

a3d11 + b3d21 = 2(d31 + a2d32 + d33)

a3d12 + b3d22 = 2b3d33

b3d23 = 0

a2d12 + d13 + a1d21 + d22 + d23 = 0

(b2 − 1)d12 + b1d21 = 0

a3d13 + d12 + a1d31 + d32 + d33 = 0

d12 = b1d31 + b3d13

d21 + d22 + a3d23 + d31 + a3d32 + d33 = d11

d12 = b3d23 + b2d32

d13 = 0

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

(28g)

(28h)

(28i)

(28j)

(28k)

(28l)

(28m)

(28n)

(28o)

(28p)

Let us consider several cases:
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Case 1: Assume that bi = 0, i ∈ {1, 2, 3} which means ai = 1, i ∈ {1, 2, 3}; then, from the
above equations, we obtain

d11 = 0 d12 = 0 d13 = 0

d21 + d22 + d23 = 0

d31 + d32 + d33 = 0

which yields

D =

0 0 0
α β −α− β
γ δ −γ− δ

, α, β, γ, δ is arbitrary.

Case 2: Assume that bi = 0, ∀i ∈ {1, 2, 3}; then, from the above equations, one finds

d13 = 0, d23 = 0, d32 =
d12

b2
,

d31 =
d12

b1
, d22 =

a2

b1
d12, d21 =

a2

b1
d12,

d11 =
d12

2

{
a1

b1
+

a2

b2

}
, d33 =

d12

2

{
a3

b3
+

a2

b2

}
.

From a3d13 + d12 + a1d31 + d32 + d33 = 0, substituting values of d31, d32, d33, we get

d12

{
a3

b3
+

a2

b2

}
= −2

{
1 +

a1

b1
+

1
b2

}
d12.

If d12 6= 0, because R.H.S is a negative number, then L.H.S must be negative, which is
impossible, so d12 = 0. This implies that dij = 0, ∀i, j ∈ {1, 2, 3}. In this case, we have only
the trivial derivation.

Case 3: Assume that b1 6= 0, b2 = 0, b3 = 0 which means a1 = 1, a2 = 1; then, from the
above equations, we get

d13 = 0, d23 = 0, d12 = 0,

d31 = 0, d21 = 0 , d22 = 0,

d33 = −d32, d11 = 0

which yields

D =

0 0 0
0 0 0
0 β −β

, β is arbitrary.

Case 4: Assume that b1 = 0, b2 6= 0, b3 = 0; this means a1 = 1, a3 = 1. Then, using the same
argument, we obtain a nontrivial derivation given by

D =

0 0 0
0 0 0
β 0 −β

, β is arbitrary.



Entropy 2023, 25, 934 13 of 22

Case 5: Assume that b1 = 0, b2 = 0, b3 6= 0, which means a1 = 1, a2 = 1. In this case, we
need to examine the system

d13 = 0, d23 = 0, d12 = 0, d11 = 0,

d21 = −d22, d33 =
d22

2
,

d31 = −d32 −
d22

2
,

which implies

D =

 0 0 0
−α α 0
− α

2 − β β α
2

, α, β is arbitrary.

Case 6: Assume that b1 = 0, b2 6= 0, b3 6= 0; here a1 = 1, hence

d13 = 0, d23 = 0, d12 = 0,

d32 = 0, d21 = 0 , d22 = 0,

d33 = −d31, d11 = 0

which gives

D =

0 0 0
0 0 0
β 0 −β

, β is arbitrary.

Case 7: Assume that b1 6= 0, b2 = 0, b3 6= 0; this means a2 = 1. Then, using the same
argument, we obtain a nontrivial derivation given by

D =

0 0 0
0 0 0
0 β −β

, β is arbitrary.

Case 8: Assume that b1 6= 0, b2 6= 0, b3 = 0, then we obtain dij = 0, ∀i, j ∈ {1, 2, 3}. Hence,
in this case, there is only a trivial derivation.

Now let us finalize the obtained results.

Theorem 5. Let A1 be the genetic algebra generated by W1 (15) with ci = 0, ∀i ∈ {1, 2, 3}. Then,
the following statements hold.

(i) If all bi 6= 0, i ∈ {1, 2, 3} or b1 6= 0, b2 6= 0, b3 = 0, then there is only a trivial derivation.
(ii) If b1 6= 0, b2 = 0, b3 = 0 or b1 6= 0, b2 = 0, b3 6= 0, then there is a nontrivial derivation

given by

D =

0 0 0
0 0 0
0 β −β

 β is arbitrary.

(iii) If b1 = 0, b2 6= 0, b3 = 0 or b1 = 0, b2 6= 0, b3 6= 0, then there is a nontrivial derivation
given by

D =

0 0 0
0 0 0
β 0 −β

 β is arbitrary.
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(iv) If b1 = 0, b2 = 0, b3 6= 0, then there is a nontrivial derivation given by

D =

 0 0 0
−α α 0
− α

2 − β β α
2

 α, β is arbitary.

(v) If bi = 0, ∀i ∈ {1, 2, 3}, then there is a nontrivial derivation given by

D =

0 0 0
α β −α− β
γ δ −γ− δ

 α, β, γ, δ is arbitary.

7. Dynamics of Some ξ(a)-QSOs

This section is devoted to the investigation of the dynamical behavior of ξ(a)-QSOs.
We concentrate on the investigation of V1, V2, . . . , V9 operators given in Section 2. Using the
argument of Theorem (1), we can establish that V1 is conjugate to V2, V6; V4 is conjugate to
V8, V9, and V3 is conjugate to V5, V7. Therefore, we concentrate on the investigation of the
V1, V4 and V7 operators, which will be studied separately. Furthermore, in order to provide
a visual representation of the behavior of the considered class of ξ(a)-quadratic stochastic
operators (QSOs), we present accompanying images that illustrate their dynamics. These
images aim to aid in understanding and interpreting the behavior of the operators in a
graphical manner.

7.1. Dynamics of V1

Now, we are going to study the dynamics of V1. The dynamics of V1 depend on the
value of the parameter α. For this reason, we are going to consider three cases; namely,
when α = 1, α = 0, and 0 < α < 1.

Let lz = {(x, y, 0), x, y ≥ 0, x + y = 1}.

Proposition 1. The following statement holds for V1:

1. If x(0) /∈ Fix(V1) be any initial point, then V1(x(0)) ∈ lz=0.
2. The line lz=0 is invariant.

Proof. The proof is straightforward.

Let us assume that α = 1. Then, V1 has the following form:

V1 :


x′ = x2 + 2xy + 2xz + 2yz
y′ = y2 + z2

z′ = 0

Due to Proposition (1), it is enough to study the dynamic of V1 on the line lz=0. Hence,
the second coordinate becomes y′ = y2. So, the fixed points of V1 when α = 1 are (1, 0, 0)
and (0, 1, 0). Because y′ = y2, then the sequence {y(n)} is decreasing and bounded; this
implies that y(n) → 0. Hence, x(n) → 1 − y(n). Thus, ω(x(0)) = (1, 0, 0), as shown in
Figure 1.
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Figure 1. Trajectory when α = 1.

Assume that α = 0; then V1 becomes

V1 :


x′ = (y2 + z2) + 2xy + 2xz + 2yz
y′ = x2

z′ = 0

To find the fixed point of V1 in this case, we use the second coordinate and x = 1− y.
Hence, y = (1 − y)2, which is equivalent to y2 − 3y + 1 = 0. The solution of the last
equation is y = 3±

√
5

2 . However, 3+
√

5
2 > 1. Hence, the fixed point in this case Fix(V1) ={(

−1+
√

5
2 , 3−

√
5

2 , 0
)}

. In this case we have also periodic points. From the second coordinate,

one has y′′ = (1− (1− y)2)2, which is equivalent to y′′ = (2y− y2)2. So, y′′ = y if and only
if y ∈ {0, 3−

√
5

2 , 1}. So, the periodic points of V1 when α = 0 are as follows:{
e1, e2,

(
−1 +

√
5

2
,

3−
√

5
2

, 0

)}
.

Define the function f (y) = (1− y)2, this function is decreasing on [0, 1]. Consider g(y) :=
f ( f (y)) − y = y4 − 4y3 + 4y2 − y. After simple calculations, one has g(y) < 0 when
0 ≤ y < 3−

√
5

2 , and g(y) > 0 when 3−
√

5
2 < y ≤ 1.

Assume that x(0) ∈ lz=0 is any initial point. If x(0) is chosen such that y(0) < −1+
√

5
2 ,

because f (y) is decreasing, then y(1) > −1+
√

5
2 . Then, the trajectory implies that the

sequence −1+
√

5
2 < {y(2k)} ≤ 1 and the sequence 0 ≤ {y(2k+1)} < −1+

√
5

2 . One can find
that the sequence {y(2k+1)} is decreasing. Hence, y(2k+1) → 0, consequently, x(2k+1) → 1.
Additionally, the sequence {y(2k)} is increasing. Hence, y(2k) → 1, consequently, x(2k+1) →
0. Thus,

ω(x(0)) = {e1, e2}.

From Figure 2, one can see that the trajectory jumps between the periodic points
{e1, e2}.
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Figure 2. Trajectory when α = 0.

Now, consider 0 < α < 1. Then, to find the fixed points, we shall solve the follow-
ing systems

αx2 + (1− α)(1− x)2 + 2x(1− x) = x

y2 + (2α− 2)y + 1− α = y

From y2 +(2α− 2)y+ 1− α = y, one finds y = 3−2α−
√

4α2−8α+5
2 . Hence, x = (2α−1)+

√
4α2−8α+5

2 .

So,
(

(2α−1)+
√

4α2−8α+5
2 , 3−2α−

√
4α2−8α+5
2 , 0

)
is a fixed point. Define the function

h(y) = y2 + (2α− 2)y + 1− α.

This function increases for any y ≥ 1− α and decreases for any y ≤ 1− α.
Let us denote ∆ = 4α2 − 8α + 5. The following result is well known [48] (see

also [49]).

Theorem 6. The following statements hold:

(i) If 0 < ∆ < 4, then all the trajectories of V converge to the fixed point.
(ii) If 4 < ∆ < 5, then there exist two periodic points of V, and all trajectories go to them except

for the fixed point.

Now we are going to clarify under which conditions of α we can explicitly find the
fixed and periodic points respectively.

(i) Assume that 0 < ∆ < 4, then

4α2 − 8α + 5 < 4⇒ 4α2 − 8α + 1 < 0⇒ 1−
√

3
2

< α ≤ 1.

The unique fixed point is given by

f1 =

(
(2α− 1) +

√
4α2 − 8α + 5

2
,

3− 2α−
√

4α2 − 8α + 5
2

, 0

)
.

(ii) Let us assume that 4 < ∆ < 5, then, keeping in view the above calculations, we have

0 < α ≤ 1−
√

3
2

.
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In this case, V has two periodic points. To find them, we need to solve

y4 + (4α− 4)y3 + (4a2 − 8a + 4)y2 − y + a− a2 = 0.

The solutions of this equation are

y =
3− 2α±

√
4α2 − 8α + 5
2

, y =
1− 2α±

√
4α2 − 8α + 5
2

.

Hence, two periodic points are given by

f2 =

(
1 + 2α−

√
4α2 − 8α + 1
2

,
(1− 2α) +

√
4α2 − 8α + 1

2
, 0

)

f3 =

(
1 + 2α +

√
4α2 − 8α + 1
2

,
(1− 2α)−

√
4α2 − 8α + 1

2
, 0

)
.

We note that

f1 =

(
(2α− 1) +

√
4α2 − 8α + 5

2
,

3− 2α−
√

4α2 − 8α + 5
2

, 0

)

is a fixed point of V1.

Furthermore, the point

f4 =

(
(2α− 1)−

√
4α2 − 8α + 5

2
,

3− 2α +
√

4α2 − 8α + 5
2

, 0

)

does not belong to the simplex S2. Now, keeping in mind theorem 6, we can summarize
the following result:

(i) If 0 < α ≤ 1−
√

3
2 , then for any x(0) ∈ S2 we have ω(x(0)) = { f2, f3}.

(ii) If 1−
√

3
2 < α < 1, then for any x(0) ∈ S2 one has ω(x(0)) = { f1}.

Remark 3. We stress that the dynamics of V4 can be investigated by the same argument as V1.
Therefore, we leave this without going into detail.

7.2. Dynamics of V7

In this section, we are going to study the general properties of the operator V7. The
finding of a fixed point depending on the parameter α is a difficult task. Hence, we are
going to estimate the region of the fixed point.

Proposition 2. The following statements hold for V7 :

(i) x′ + y′ ≥ 1/3.
(ii) If z(0) < 1

2 , then the sequence {z(n)} is strictly increasing.
(iii) If α < 1

2 then x(n) > y(n), if α > 1
2 then x(n) < y(n), and if α = 1

2 then x(n) = y(n).

Proof. Consider x′ + y′ = x2 + y2 + z2. Using the Lagrange Multilayer method, one has
that the minimum value of the function x2 + y2 + z2, subject to x + y + z = 1 and x, y, z ≥ 0,
is 1

3 . This implies that x′ + y′ ≥ 1
3 .

To prove (ii), let us take

z′ − z = 2z(x + y) + 2xy− z = z− 2z2 + 2xy.
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It is not hard to show that z ≥ 2z2 in [0, 1
2 ], then z− 2z2 + 2xy ≥ 0. This implies that z′ > z.

Hence, the sequence {z(n)} is strictly increasing.
For (iii), consider

x(n) − y(n) = (2α− 1)(x(n−1))2 + (1− 2α)(y(n−1))2 + (1− 2α)(z(n−1))2.

By (ii) we have that z(n−1) is going to be the maximum value of {x(n−1), x(n−1), z(n−1)}.
This implies that, if α < 1

2 , then

x(n) − y(n) = (2α− 1)(x(n−1))2 + (1− 2α)(y(n−1))2 + (1− 2α)(z(n−1))2 > 0

and if α > 1
2 , then x(n) − y(n) < 0, and if α = 1

2 , then x(n) − y(n) = 0.

7.3. The Dynamic of V7 When α = 1

In this subsection, we are going to study the dynamic of V7 when α = 1. Substituting
α = 1 in V7, one has the following operator:

V7 :


x′ = x2

y′ = (y2 + z2)
z′ = 2xy + 2xz + 2yz

Theorem 7. The following hold true for V7 when α = 1 :

(i) Fix(V7) =
{

e1, e2,
(

0, 1
2 , 1

2

)}
(ii) If x(0) /∈ Fix(V7) is any initial point, then ω(x(0)) =

{(
0, 1

2 , 1
2

)}
.

Proof. To find the fixed point, we must solve the following system

x2 = x

y2 + z2 = y

2xy + 2xz + 2yz = z.

Then, x ∈ {0, 1}. If x = 1, we have the fixed point e1. If x = 0, then we use the fact
x + y + z = 1, which implies that z = 1− y. Putting this value into the second equation of
the above system yields 2y2 − 3y + 1 = 0. Hence, y ∈ { 1

2 , 1}. If y = 1, then we get the fixed

point e2. If y = 1
2 , then z = 1− y = 1

2 . Consequently, we have the fixed point
(

0, 1
2 , 1

2

)
.

To prove (ii), we note that the sequence {x(n)} is strictly decreasing and bounded.
Hence, it converges to a fixed point, which is 0. Thus, it is enough to study the dynamic on
the line lx=0. Define the function k(y) = 2y2 − 2y + 1. One can show that the last function
is decreasing when 0 ≤ y ≤< 1

2 and increasing when 1
2 ≤ y ≤ 1. Using (i) of Proposition

(2), we get y′ ≥ 1
3 . Because k(y) is decreasing when 0 ≤ y ≤< 1

2 , then k
([

1
3 , 1

2

])
⊂
[

1
2 , 1
]
.

Because k(y) is increasing when 1
2 ≤ y ≤ 1, then k

([
1
2 , 1
])
⊂
[

1
2 , 1
]
. So, the dynamic of V3

is reduced to the region when y ∈
[

1
2 , 1
]

Now, consider k(y)− y = 2y2 − 3y + 1. It is easy

to show that k(y) ≤ y in
[

1
2 , 1
]
. Hence, the sequence {y(n)} is decreasing and bounded.

Therefore, y(n) → 1
2 . This implies that

ω(x(0)) =
{(

0,
1
2

,
1
2

)}
.

The following Figure 3 shows the dynamic of V7 when α = 1.
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Figure 3. Trajectory when α = 1.

7.4. The Dynamic of V7 When α = 1
2

In this section, we are going to study the dynamic of V7 when α = 1
2 . Substituting

α = 1
2 in V3, one has the following operator:

V7 :


x′ = x2 + y2 + z2

y′ = x2 + y2 + z2

z′ = 2xy + 2xz + 2yz

Theorem 8. The following hold true for V7 when α = 1
2 :

(i) Fix(V7) =
{(

1
2 −

√
3

6 , 1
2 −

√
3

6 ,
√

3
3

)}
.

(ii) The line lx=y is invariant.

(iii) If x(0) /∈ Fix(V7) is any initial point, then ω(x(0)) =
{(

1
2 −

√
3

6 , 1
2 −

√
3

6 ,
√

3
3

)}
.

Proof. To find the fixed point, we shall solve the following system:

1
2

x2 +
1
2

y2 +
1
2

z2 = x

1
2

x2 +
1
2

y2 +
1
2

z2 = y

2xy + 2xz + 2yz = z

Clearly, x = y and we use z = 1− x− y; then, the first equation becomes 3x2 − 2x + 1
2 = 0.

The solutions of the last equation are x = 1
2 −

√
3

6 , x = 1
2 +

√
3

6 . The solution x = 1
2 +

√
3

6 is

rejected because x + y ≤ 1. Hence, we have the fixed point
(

1
2 −

√
3

6 , 1
2 −

√
3

6 ,
√

3
3

)
.

The proof of (ii) is straightforward.
To prove (iii), it is enough to study the trajectory on the line lx=y. To complete this

task, define the function m(x) = 3x2 − 2x + 1
2 . This function is decreasing when 0 ≤ x ≤ 1

3
and increasing when 1

3 ≤ x ≤ 1 due to the fact x = y; this implies that x ≤ 1
2 . Additionally,

from the fact x + y > 1
3 , this implies that x ≥ 1

6 . So, it is enough to study the dynamic when
1
6 ≤ x ≤ 1

2 . One can show that m
([

1
6 , x∗

])
⊂
[

x∗, 1
4

]
where x∗ = 1

2 −
√

3
6 . Additionally,

m
([

1
3 , 1

2

])
⊂
[

1
6 , 1

4

]
. Consider the function m(m(x))− x = 27 x4 − 36 x3 + 15 x2 − 3 x +

1
4 . One can see that this function is increasing when x ∈

[
1
6 , x∗

]
and decreasing when
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x ∈
[

x∗, 1
4

]
. So, x(2n) → x∗ and x(2n+1) → x∗. Hence, if x(0) /∈ Fix(V7) is any initial point,

then ω(x(0)) =
{(

1
2 −

√
3

6 , 1
2 −

√
3

6 ,
√

3
3

)}
.

The following Figure 4 is the dynamic of V7 when α = 1
2 .

Figure 4. Trajectory when α = 1
2 .

Remark 4. From the results, we infer that the considered operators are regular to the unique fixed
point. This indicates whether these operators are contractions or not. It turns out that these operators
are not contractions. Indeed, to verify this, one needs to check the condition [11]

max
i1.i2,k

d

∑
j=1
|pi1k,j − pi2k,j| < 1

One can check, for example, for V7, that

3

∑
j=1
|p1,1,1 − p2,1,1| < 1⇒ 2 < 1 is a contradiction

which implies that V7 is not a contraction. Up to now, there is no clear rigorous proof of the
regularity of these operators in a general setting.

8. Conclusions

In the current paper, we investigated the algebraic properties of the genetic algebras
associated with ξ(a)-QSOs. The associativity of these operators corresponding to partition
ξ5, along with their dynamics, were studied. The characters of these QSOs were described.
We also fully characterized all derivations of such kinds of algebras. Finally, the regularity
of the dynamics of ξ(a)-QSOs were investigated. However, the study of the behavior of
these operators in higher dimensional simplex still remains as an open problem. Further
work could include generalization to other classes of QSOs; while the present paper focuses
on a specific class of QSOs corresponding to the partition ξ5, there are other partitions
and classes that could be explored. Investigating the algebraic properties, dynamics,
and behavior of these different classes could provide a more comprehensive understanding
of QSOs as a whole.
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