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Abstract: Since its conception, the cryptocurrency market has been frequently described as an imma-
ture market, characterized by significant swings in volatility and occasionally described as lacking
rhyme or reason. There has been great speculation as to what role it plays in a diversified portfolio.
For instance, is cryptocurrency exposure an inflationary hedge or a speculative investment that fol-
lows broad market sentiment with amplified beta? We have recently explored similar questions with
a clear focus on the equity market. There, our research revealed several noteworthy dynamics such
as an increase in the market’s collective strength and uniformity during crises, greater diversification
benefits across equity sectors (rather than within them), and the existence of a “best value” portfolio
of equities. In essence, we can now contrast any potential signatures of maturity we identify in the
cryptocurrency market and contrast these with the substantially larger, older and better-established
equity market. This paper aims to investigate whether the cryptocurrency market has recently exhib-
ited similar mathematical properties as the equity market. Instead of relying on traditional portfolio
theory, which is grounded in the financial dynamics of equity securities, we adjust our experimental
focus to capture the presumed behavioral purchasing patterns of retail cryptocurrency investors.
Our focus is on collective dynamics and portfolio diversification in the cryptocurrency market, and
examining whether previously established results in the equity market hold in the cryptocurrency
market and to what extent. The results reveal nuanced signatures of maturity related to the equity
market, including the fact that correlations collectively spike around exchange collapses, and identify
an ideal portfolio size and spread across different groups of cryptocurrencies.

Keywords: cryptocurrencies; collective dynamics; time series analysis; portfolio optimization

1. Introduction

One of the topics at the heart of complex systems analysis is the study of financial
markets. Financial markets have a diverse range of participants ranging from extremely
sophisticated investors leveraging a technological and information advantage to retail
investors who may purchase securities based on other fundamental intuitions. One asset
class that has seen a significant degree of variance in the sophistication of the investor
base is the cryptocurrency market. Over the last few years, the cryptocurrency market
has gathered meaningful interest from institutional and retail investors alike. Despite
exhibiting tumultuous changes in aggregate assets under management, the overall market
has produced substantial growth in total assets since its inception. Given the relative
immaturity of the cryptocurrency market, it is important to study the underlying dynamics
of the market and contrast optimal trading and portfolio management strategies with that
of more traditional asset classes such as the equity market. The main motivation of this
paper is to investigate the next stage of the cryptocurrency market’s evolution. Although
the cryptocurrency market is young, we feel that it may be coming of age and exhibiting
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signs of maturity, becoming more like the equity market. To assess this, we tactically assess
whether certain phenomena such as collective movement, uniformity and diversification
benefits are similar to that of the equity market.

It is worth commenting more broadly on financial market dynamics and the wealth of
work that has been conducted on that topic before we focus on the cryptocurrency market
most specifically. There are a variety of academic communities that have studied financial
market dynamics and evolutionary changes in structural dynamics such as those in applied
mathematics, complex systems and econometrics [1–3]. A wide range of data scientific
methodologies has been used to study evolutionary dynamics in financial assets such
as linear algebraic-inspired techniques [2,4–6], spectral methods such as random matrix
theory [1,7–10], a variety of unsupervised learning methodologies [11,12], change point
detection [13,14] and a litany of statistical modeling techniques [15].

Another topic of substantial interest to the financial markets community is that of
nonstationarity, regime switching and the time-varying nature of model parameters for
phenomena such as volatility. Such research dates back to autoregressive conditionally
heteroskedastic (ARCH) models [16], generalized ARCH (GARCH) [17] and stochastic
adaptations such as stochastic volatility models [18–20]. Recently, many researchers have
explored adaptions to these fundamental models explicitly capturing dynamics exhibited by
various time series. Some of these models include exponential general autoregressive condi-
tional heteroskedastic models [21], Glosten–Jagannathan–Runkle GARCH [22], Threshold
GARCH [23] and T-SV [24], Markov switching GARCH [25–27] and MS-SV [28]. Many
financial mathematicians have also adopted Bayesian estimation methodologies [29–32],
generally citing the need for uncertainty quantification in estimating model parameters.
These modeling techniques have been widely applied to the study of several asset classes
including equities, cryptocurrencies and fixed income [33–38]. Finally, we would be remiss
not to mention the wide range of techniques in time series analysis that have been used to
study financial problems [39–48], including cryptocurrencies [49–58] and diverse fields in
socio- and econophysics [59–77].

Another topic of great interest across asset classes is the topic of portfolio optimization,
and more generally, the essence of portfolio construction. The quantitative finance and
econometrics communities have studied core issues related to portfolio diversification,
where portfolios are optimized with respect to different objective functions [78–85]. More
broadly, financial market dynamics are universally difficult to model. The seminal work of
Markowitz in 1952 [78] proposed the concept of diversification as a superior framework
for investing in multiple securities at a time. The principle underpinning diversification
is built upon disassociating the risk of an individual and particular financial asset into a
market (systematic) risk component and an asset-specific risk, called unsystematic risk.
Diversification essentially equates to smoothing (or averaging over) unsystematic risk by
investing in an appropriately large number of individual assets, which leads to candidate
investment portfolios’ only exposure being inherently due to market risk.

In recent work, the authors of this work and collaborators [86] perform a thorough
inspection of diversification properties from the perspective of a pure equity portfolio.
Precisely, they explore the changing diversification benefit of various portfolios spread
across a range of industry sectors. While in more recent years investor composition
has broadened to include the likes of quantitative and high-frequency investors, active
investment management has historically been dominated by fundamental investors who
make investment decisions based on the future potential of companies relative to market
valuations (most commonly, the earnings the company produces relative to its share
price). The authors hypothesized that there is more substantial diversification benefit
investing across sectors, rather than within them. Indeed, different sectors exhibit varying
performance during distinct market periods: some sectors may outperform in buoyant
equity markets (such as information technology and often energy), while other sectors
outperform in declining equity markets (such as healthcare, consumer staples and utilities).
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The authors confirmed this hypothesis, producing four primary findings. First, they
use time-varying PCA to highlight that the collective behavior of equities spikes during
market crises, rendering diversification far less effective. Second, they demonstrate that
various community detection algorithms such as modularity are unable to distinguish
between heterogeneous equity sector dynamics during times of crisis. By contrast, during
more buoyant equity market periods, equity sector behaviors are more easily distinguished.
Third, they introduce a new metric to quantify the uniformity of market impact across
equity sectors. There, they show substantial variance across the uniformity of market
impact across independent equity sectors. Finally, they demonstrate that a best value equity
portfolio exists with respect to evolutionary diversification benefits. They show that a
portfolio of size 36, where 4 equities are sampled randomly from 9 different equity sectors,
provides comparable diversification benefit to a portfolio of size 81, where 9 equities are
randomly sampled from 9 equity sectors. Our critical focus is exploring diversification
benefits for cost-conscious retail investors. These are investors who are intelligent, and may
be financially interested but lack the resources to trade frequently in an efficient manner.

With respect to the signature of maturity, the cryptocurrency market is very much
in its infancy when compared to the equity market. Cryptocurrency sectors are not well
defined, and it is often hard to differentiate behaviors between cryptocurrency sectors [14].
If one explores candidate cryptocurrency sector themes online, categories such as wallet,
web3, yield farming, play to earn, energy, decentralized finance, distributed computing
and cybersecurity can be found. However, these categories frequently overlap or differ
from source to source, and it is not necessarily clear how the behaviors of these cryp-
tocurrency sectors relate to the underlying economy. In fact, it is unclear just how often
cryptocurrencies are purchased with the underlying coin sector or thematic within the
digital ecosystem in mind. We suspect that this phenomenon is especially pronounced
among less sophisticated retail investors—where coins may be bought and sold based on
factors such as their recent price and volume movements, and overall macroeconomic
trends. Accordingly, in this work, we turn to the cryptocurrency market and adapt our
experiments to test for alternative diversification strategies among retail cryptocurrency
investors. Rather than testing diversification effectiveness among equity sectors, we use
tranches of cryptocurrency market capitalizations to proxy sectors. We suspect that many
cryptocurrency investors buy securities from platforms where they simply scan a list of
assets that are ordered by market capitalization, and are unaware of many coins’ associa-
tion with a deeper role in the digital economy. We feel that this is an original and suitable
measure of different “classes” of cryptocurrencies. Here, we apply the same fundamental
methodologies to the cryptocurrency market as a means of testing the levels of maturity
and sophistication in the cryptocurrency market.

This paper is structured as follows. In Section 2, we outline the data that we use in this
paper. In Section 3, we study the evolution of the collective dynamics of the cryptocurrency
market. We compare these findings to what has been observed over 20 years in the equity
market and draw conclusions regarding the cryptocurrency market’s signatures of maturity.
In Section 4, we turn to the theme of optimal portfolio construction among cryptocurrency
portfolios. There we study marginal diversification benefits as additional cryptocurrency
sector deciles, and cryptocurrencies within deciles are sequentially added to a portfolio. In
Section 6, we conclude and summarize our findings regarding recent signatures of maturity
in the cryptocurrency market.

2. Data

Our data are chosen as follows. Our window of analysis ranges from 1 July 2019 to
14 February 2023. As of the final day of our analysis window, we drew the top 75 cryp-
tocurrencies by market capitalization from Yahoo Finance [87], and restricted these to
those with a price history dating back to 1 July 2019. This left 42 cryptocurrencies. We
then discarded the two smallest, leaving N = 40 cryptocurrencies and their closing price
data over T = 1325 days. The window of analysis includes periods of major disruption
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for cryptocurrencies, such as the COVID-19 market crash in 2020, the BitMEX exchange
market crash [88], and the collapse of the FTX exchange in late 2022 [89]. We divide the
40 remaining cryptocurrencies into 10 deciles each with four cryptocurrencies based on
market capitalization as of the end of the analysis window. We list all cryptocurrencies
analyzed in this paper in Table 1.

Table 1. Cryptocurrencies, their tickers and decile allocations

Cryptocurrency Ticker Decile

Bitcoin BTC 1
Ethereum ETH 1

Tether USDT 1
Binance Coin BNB 1

USD Coin USDC 2
XRP XRP 2

Cardano ADA 2
Polygon MATIC 2

Dogecoin DOGE 3
Litecoin LTC 3
TRON TRX 3

Wrapped Bitcoin WBTC 3
Chainlink LINK 4
Cosmos ATOM 4

UNUS SED LEO LEO 4
OKB OKB 4

Ethereum Classic ETC 5
Filecoin FIL 5
Monero XMR 5

Bitcoin Cash BCH 5
Stellar XLM 6

VeChain VET 6
Crypto.com Coin CRO 6

Algorand ALGO 6
Quant QNT 7

Fantom FTM 7
Tezos XTZ 7

Decentraland MANA 7
EOS EOS 8

Bitcoin BEP2 BTCB 8
Theta Network THETA 8

TrueUSD TUSD 8
Rocket Pool RPL 9

Chiliz CHZ 9
USDP Stablecoin USDP 9

Huobi Token HT 9
KuCoin Token KCS 10

Bitcoin SV BSV 10
Dash DASH 10
Zcash ZEC 10

3. Collective Dynamics and Uniformity

Let ci(t), i = 1, . . . , N, t = 0, . . . , T denote the multivariate time series of daily closing
prices among our collection of N cryptocurrencies. Let ri(t) be the multivariate time series
of log returns i = 1, . . . , N, t = 1, . . . , T, defined as

ri(t) = log
(

ci(t)
ci(t− 1)

)
. (1)

In this section, we analyze correlation matrices of log returns across rolling time
windows of length τ; in this paper, we choose τ = 90 days. We standardize the log returns
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over such a window [t− τ + 1, t] by defining Ri(s) = [ri(s)− 〈ri〉]/σ(ri) where 〈.〉 denotes
the average over the time window [t− τ + 1, t] and σ the associated standard deviation.
Let R be the N × τ matrix defined by Ris = Ri(s) with i = 1, . . . , N and s = t− τ + 1, . . . , t,
and then the correlation matrix Ψ is then defined as

Ψ(t) =
1
τ

RRT . (2)

Individual entries describing the correlation between cryptocurrencies i and j can be
written as

Ψij(t) =
1
τ

∑t
s=t−τ+1(ri(s)− 〈ri〉)(rj(s)− 〈rj〉)(

∑t
s=t−τ+1(ri(s)− 〈ri〉)2

)1/2(
∑t

s=t−τ+1(rj(s)− 〈rj〉)2
)1/2 , (3)

for 1 ≤ i, j ≤ N. We may analogously define the cross-correlation matrices for each
individual decile by restricting i and j to be chosen from a set of indices corresponding to
that decile.

All entries Ψij lie in the interval [−1, 1]. Ψ is a symmetric and positive semi-definite ma-
trix with real and non-negative eigenvalues λi(t), so we order them as λ1 ≥ · · · ≥ λN ≥ 0.
All the diagonal entries of Ψ are equal to 1, so the trace of Ψ is equal to N. Thus, we may
normalize the eigenvalues by defining by N, to wit, λ̃i =

λi
∑N

j=1 λj
= λi

N . We display the

rolling normalized first eigenvalue λ̃1(t) for both the entire collection of cryptocurrencies
and the 10 deciles in Figure 1.

In Figure 1a, we see particular periods of heightened collective correlation between
cryptocurrencies. In particular, we see extended periods of high correlation in early 2020,
coinciding with COVID-19 and the BitMEX crash, and toward the end of 2022, reflecting
the tumultuous period around the collapse of FTX. These are perhaps the most significant
moments of collective crisis in the cryptocurrency market in the last three years. These
broad trends are reflected on a decile-by-decile basis in Figure 1b, where each individual
decile exhibits a rise in collective correlations in these two periods.

To a nuanced extent, this is a signature of growing maturity in the cryptocurrency
market. Specifically, crisis periods are observed; there is a fairly robust time differential
between crises; collective correlations rise during crises and fall outside these periods; such
effect is seen rather uniformly among different sectors of the market. However, we must
remark that the extent of maturity does not coincide with more established markets such
as the equity market. The time differential between peaks in collective correlations is still
notably shorter than it is for equities; for example, the large time differential between the
Dot-com bubble, the global financial crisis and the COVID-19 crash. Moreover, the strength
of collective correlations between deciles varies significantly, despite their sharing temporal
patterns. Some deciles, such as the third, exhibit significantly higher collective behaviors
than others such as the second, fourth and ninth, whereas these behaviors are much more
uniform for equity indices.

Next, we turn to an analysis of the leading eigenvector v1 to complement our study of
the leading eigenvalue. We analyze its uniformity via the following computation:

h(t) =
|〈v1, 1〉|
‖v1‖‖1‖

, (4)

where 1 = (1, 1, . . . , 1) ∈ RN is a uniform vector of 1’s. We may compute this for both
the entire collection of cryptocurrencies and individual deciles, analogously to the leading
eigenvalue. We observe that h(t) ≤ 1 with h(t) = 1 if and only if v1 = 1 (up to scalar
multiplication). In this case, all cryptocurrencies carry the same amount of variance in
the “market effect” summarized by λ̃1(t). This can be used to quantify the potential
benefit of diversification: increased values of h(t) indicate increased interchangeability of
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cryptocurrencies in the “market”, and hence less opportunity for diversification or judicious
selection of individual cryptocurrencies.

(a)

(b)
Figure 1. Normalized leading eigenvalue λ̃1(t) of the cross-correlation matrix as a function of time,
for (a) the entire collection of cryptocurrencies and (b) the ten deciles. Like the equity market,
collective correlations spike during market crises, such as COVID-19, and the collapse of exchanges
BitMEX and FTX.

We display the rolling uniformity of the first eigenvector h(t) for both the entire
collection of cryptocurrencies and the 10 deciles in Figure 2. Unlike Figure 1, we observe
a substantial difference compared to the equity market. In the case of the equity market,
the uniformity for each sector and the entire market are consistent with the degree of
collectivity. The degree of uniformity spikes during market crises such as the dot-com
bubble GFC and COVID-19. This spike during market crises occurs for sectors (when
studied independently) as well as across the entire market. The cryptocurrency market
produces dramatically different findings to that of the equity market. Most notably, we see
that there are substantial differences between the uniformity of independent sectors of the
cryptocurrency market with that of the equity market. The cryptocurrency market clearly
exhibits less uniformity during crises (which we see during the COVID-19 market crisis),
and significantly higher variance between sectors of securities throughout our window
of analysis. This is opposite to the finding of the equity market, where industry sectors
exhibited more uniformity during crises. Another point to note is the stark contrast in how
low the h(t) values reach when comparing the two asset classes. In the case of equities,
there is a clear lower bound around the value of 0.75, while for cryptocurrencies we see
two groups of cryptocurrencies reach values below 0.5 (with one reaching less than 0.3)
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during our analysis window. Our analysis, therefore, suggests that we see less persistent
and amplified uniformity among cryptocurrencies when compared to equities.

(a)

(b)
Figure 2. Uniformity h(t) of the leading eigenvector v1 of the cross-correlation matrix as a function
of time, for (a) the entire collection of cryptocurrencies and (b) the ten deciles. The results are
dramatically different compared to the equity market, with numerous deciles exhibiting strikingly
low uniformity scores over time.

4. Portfolio Sampling

In this section, we perform an extensive sampling procedure to explore how diver-
sification benefits depend on the number of cryptocurrencies held in a portfolio and on
the number of decile sectors from which to choose those cryptocurrencies. Motivated by
Section 3, we choose the normalized leading eigenvalue λ̃1(t) to quantify the potential
diversification benefit. We investigate the diversification benefits of portfolios that consist
of mn cryptocurrencies such that n cryptocurrencies are drawn from m separate deciles.
Both the individual cryptocurrencies and the sector deciles are drawn randomly and in-
dependently with uniform probability. We draw D = 500 portfolios for each ordered
pair (m, n).

To quantify the potential diversification benefit for a portfolio consisting of mn cryp-
tocurrencies, we determine the mn×mn correlation matrix Ψ for each draw and calculate
the associated normalized first eigenvalue λ̃m,n(t). Again, we use a rolling time window of
length τ = 90 days when determining the cross-correlation matrix. In particular, we record
the 50th percentile (median) of the D values, which we denote λ̃0.50

m,n (t).
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We analyze this quantity in two experiments. First, we compute the temporal mean of
the median of the normalized first eigenvalue

µm,n =
1

T − τ + 1

T

∑
t=τ

λ̃0.50
m,n (t) (5)

as a measure of the diversification benefit of a portfolio with n cryptocurrencies in each
of m decile sectors. Table 2 records these means µm,n for cryptocurrency portfolios across
values of (m, n) for 1 ≤ m ≤ 10 and 1 ≤ n ≤ 4.

Table 2 shows the mean µm,n of the median normalized eigenvalue λ̃0.50
m,n (t) for various

combinations of cryptocurrency sectors, and randomly sampled cryptocurrencies within
each sector. We also mark in red a “greedy path” to decrease the overall average µm,n (that
is, increase the overall diversification benefit of a portfolio) by greedily increasing either
m or n at each stage. There are several key findings from this analysis. First, the overall
structural finding with respect to optimal portfolio construction strongly resembles that of
the equity market in [86]. We see incrementally greater benefit in diversifying across sectors
rather than within them, and we see a significant reduction in marginal diversification
benefit once a portfolio reaches a critical mass of securities (sampled from different sectors).
This leads to the existence of a “best value” cryptocurrency portfolio, such as that seen in
the equity market. This finding is slightly surprising and may support our hypothesis that
retail cryptocurrency investors diversify across cryptocurrency market capitalization levels.
Indeed, this may occur in the absence of clearly defined sector themes, which may exhibit
different performances during different parts of the business cycle. As investors come to
better understand cryptocurrencies, and cryptocurrencies related to separate aspects of
the digital economy begin to perform differently during various market conditions, this
diversification benefit may slightly alter and amplify. That is, rather than cryptocurrency
market capitalization being a primary discriminator in diversified performance we may see
a closer resemblance to the equity market with cryptocurrency sector themes more closely
resembling equity dynamics.

Table 2. Average µm,n of the median normalized eigenvalue λ̃0.50
m,n (t) for different pairs of m sectors

and n cryptocurrencies per sector. In red we display a greedy path that aims to increase the total
diversification benefit (by decreasing µm,n) at each step. We identify a best value cryptocurrency
portfolio consisting of 4 sectors and 4 cryptocurrencies per sector. This (4,4) portfolio has nearly
the same diversification benefit as the largest possible (10,4) portfolio, as we will also show in the
next experiment.

Number of Cryptocurrencies per Sector

Number of Sectors 1 2 3 4

1 1 0.759 0.668 0.645
2 0.774 0.651 0.598 0.587
3 0.681 0.605 0.581 0.576
4 0.641 0.587 0.572 0.565
5 0.613 0.583 0.565 0.559
6 0.607 0.57 0.565 0.557
7 0.593 0.565 0.559 0.555
8 0.582 0.564 0.557 0.552
9 0.552 0.565 0.557 0.553
10 0.581 0.560 0.554 0.552
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In the second experiment, we investigate which portfolio combinations (m, n) share
the most similar evolution in their collective dynamics. For this purpose, we perform
hierarchical clustering on the distance metric

d((m, n), (m′, n′)) =
1

T − τ + 1

T

∑
t=τ

|λ̃0.50
m,n (t)− λ̃0.50

m′ ,n′(t)|, (6)

which computes the average absolute difference between the median eigenvalues of
two portfolios (m, n) and (m′, n′). This results in a 40× 40 distance matrix for 1 ≤ m ≤ 10,
1 ≤ n ≤ 4. Hierarchical clustering is a convenient and easily visualizable tool to reveal
the proximity between different elements of a collection. Here, we perform agglomerative
hierarchical clustering using the average-linkage criterion [90]. The algorithm works in a
bottom-up manner, where each ordered pair (m, n) starts in its own cluster, and pairs of
clusters are successively merged as one traverses up the hierarchy.

The results of hierarchical clustering are displayed in Figure 3. The resulting structure
is interesting. The dendrogram consists of four predominant groups of clusters. There
is an easily identified outlier cluster, consisting of the smallest portfolios that provide
the least diversification benefit. This cluster, located at the bottom of the dendrogram,
includes portfolio combinations such as (1,1), (1,2) and (2,1). The second least diversified
cluster is located at the top of the dendrogram and includes portfolio combinations such
as (1,3), (1,4) and (4,1). Below this, is a significantly larger cluster consisting of portfolio
combinations such as (8,1), (3,3) and (4,2). Finally, the largest, most well-diversified fourth
cluster consists of portfolio combinations ranging from (4,3) through to (10,4). The size and
range of portfolio combinations within this cluster have interesting implications for risk
management in cryptocurrency portfolio diversification. The fact that combination (4,3)
is in the same cluster as portfolio (10,4) suggests that comparable risk mitigation can be
realized with a portfolio of size 12 when compared to a portfolio of size 40. This finding
is not dissimilar to that proposed in [86], where a “best value” portfolio (9,4) is shown to
provide comparable diversification benefit to a (9,9) portfolio. Furthermore, the sheer size
of this cluster indicates that one may require a lower cardinality portfolio in cryptocurrency
portfolio management than in equities when trying to attain a “best value” portfolio.

Figure 3. Results of hierarchical clustering applied to (6) between ordered pairs (m, n). A large
majority cluster confirms the finding of Table 2 that the (4,4) portfolio is closely similar to the full
(10,4) portfolio in its diversification benefit over time.
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5. Discussion

This paper has investigated the cryptocurrency market with a focus on collective corre-
lation dynamics and portfolio diversification benefits across different market capitalization
size deciles. We choose to investigate deciles as an analog of industry sectors in the equity
market motivated by the vagueness of existing cryptocurrency sectors and the hypothesis
that many retail investors use size as a primary means of diversifying across highly different
cryptocurrencies. Throughout the paper, we consistently observed signatures of maturity
in the cryptocurrency market with nuanced differences relative to established patterns in
the (much) more mature equity market.

In Section 3, we analyzed the collective dynamics of the cryptocurrency market,
focusing on collective correlation strength and market uniformity summarized in the
leading eigenvalue and eigenvector of the correlation matrix, examining both the full
market and individual deciles. Our first finding is that collective correlations spike during
market crises connected to cryptocurrency exchange crashes; this occurs in every decile and
closely resembles analogous behavior in the more mature equity market. Other findings of
this section portray a more nuanced picture of the differences between the cryptocurrency
and equity markets. While collective correlations spike across every decile during a crisis, it
is not the case that correlations within each decile sector are uniformly higher than collective
correlations across the whole market, as we previously observed for the equity market.
In addition, the uniformity h(t) of different deciles over time exhibited a finding highly
dissimilar from the equity market. This was the most significant difference relative to the
equity market observed in this paper. While the uniformity (measuring the uniformity of
different assets contributing toward the first principle component) was close to maximal 1
for every sector in the equity markets, that finding was not at all observed for the deciles of
the cryptocurrency market. Curiously, it was observed for just two deciles consistently over
time, but not the others. In addition, uniformity within deciles dropped during market
crises, the opposite finding for the equity market.

These findings have significant implications for the alpha generation in the cryp-
tocurrency market. The fact that collective correlations are so pronounced during market
crises implies that alpha-generating opportunities based on systematic market movements
would be more predictable and successful if performed on the short side. During market
crises, correlations translate upward and cryptocurrencies of all sizes tend to decline. This
would suggest that fundamentally-driven investment strategies may be more successful
when implemented during buoyant equity markets, where there is less correlation among
underlying securities. By contrast, during market crises (which are typically coincident
among the equity and cryptocurrency asset classes) the collective strength of the market is
so strong that the weight of underlying security investments driven by bottom-up analysis
may be washed away by the sheer weight of money.

In Section 4, our portfolio sampling experiment investigated the diversification ben-
efit of portfolios of total size mn spread evenly across m separate deciles. In a greedy
experiment, we demonstrated that greater diversification benefit is generally obtained by
increasing the number of decile sectors rather than the number of cryptocurrencies per
decile, a result analogous to that observed for the cryptocurrency market. We followed
this up with a careful experiment clustering different temporal trajectories of median
normalized eigenvalue functions λ̃m,n(t). A large majority cluster showed a similar re-
sult as observed for the equity market, that a portfolio of spread (4,4) had near-identical
diversification benefit as our maximal size (10,4) cryptocurrency collection.

Our findings in this section may drive decision-making for optimal portfolio con-
struction for cryptocurrency investors. First, the emergence of a low-cardinality highly
diversified portfolio implies that retail investors may gain exposure to high-quality di-
versification at low-cost. When contrasting this analysis with that of the equity market,
if we were to assume equivalent transaction costs and equivalent periodicity of portfolio
rebalancing, the cryptocurrency may be a more retail-friendly market for easy access and
portfolio diversification. Of course, given that the equity market is so sophisticated, there
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is a large number of index-tracking and factor-based investment strategies that may benefit
retail investors. This could be an opportunity for asset managers and large investment firms
who are looking to create cryptocurrency investment products and is certainly a signature
of the market’s maturity. Finally, our analysis supports the notion that the cryptocurrency
market may be a suitable environment for skillful stock pickers. We have highlighted
that a portfolio of just 16 stocks produces low correlation and significant diversification
benefits. This would indicate that an investment portfolio built upon a smaller number of
high-conviction ideas could thrive in the cryptocurrency market.

There are several insights contained within concerning the cryptocurrency market’s
levels of maturity. First, the overall structure of the aforementioned hierarchical clustering
is highly similar to that of the equity market. We have identified heterogeneous clusters of
diversification benefit, and highlight the existence of a “best value” cryptocurrency portfolio
where comparable diversification benefit is attained with relatively fewer securities held in
a portfolio. Second, a crucial corollary of this finding is that retail investors with limited
ability to hold complex portfolios of many cryptocurrencies may be sufficiently diversified
with a relatively small portfolio across just 16 cryptocurrencies. However, there are some
key differences in the equity market. First, the link between underlying cryptocurrencies’
business functions (at least those coins that have a business function) and various business
cycles is far less clear than in the equity market. Perhaps when the market becomes
more sophisticated and such technological understanding becomes more mainstream
knowledge, this could change the landscape of cryptocurrency investing. This could lead to
the development of better-understood and widely disseminated cryptocurrency investment
principles, which may drive more predictable investment patterns during different market
cycles. Such dynamics are likely to drive further differentiation in cryptocurrency price
patterns in varying market cycles and may lead to further diversification benefits as the
market approaches greater levels of maturity.

No analysis is without its limitations. There are several limitations in our work. First,
we have only looked at a collection of 40 cryptocurrencies. This could be extended, and
include a much wider variety of cryptocurrency securities. The difficulty here is that many
smaller coins do not have sufficient time windows for us to analyze. However, as time goes
on, doing such analysis on a larger number of coins will become easier and may provide
more robust insights. Furthermore, we could extend our portfolio sampling analysis to
explicitly study diversification benefits during various market conditions. In the near
future, we may be able to compare a short and intense market crisis such as the COVID-19
market crash or the Bitmex crash with that of the Russian financial crisis—or something
more protracted and systemic. At present, the data is most likely insufficient.

6. Conclusions

Overall, we have uncovered nuanced similarities and differences between the cryp-
tocurrency and equity markets. These mathematical properties signal increased signatures
of maturity in the collective dynamics and diversification benefit of different portfolio
spreads and provide concrete suggestions to retail investors seeking a relatively low-
complexity exposure to the cryptocurrency market. Cryptocurrency decile sectors have
been shown to share several properties, but not all, with industry sectors of the equity
markets, and the most relevant findings for small-scale investors interested in limited-size
portfolios are shared.

There are a variety of opportunities for future research building upon the method-
ologies we have developed and the insights highlighted in this paper. First, it would be
interesting to test how the cryptocurrency market compares with other more mature and
better-established asset classes with respect to various statistical properties. A thorough in-
spection of metrics such as drawdowns, peak-to-trough analysis, changepoint propagation,
intra and inter-asset correlations, etc., could reveal information as to how cryptocurrencies
can complement a multi-asset investment portfolio. An additional avenue of future research
could be studying the data at a higher sampling rate than daily data. Given the significant
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composition of day traders in the cryptocurrency market, we may see patterns that deviate
from what we see intra-day within the equity market. In a somewhat-related manner,
studying these securities in a longer time horizon may highlight regime shifts in dynamics
or optimal portfolio construction. One of the key assumptions in this work is our separating
cryptocurrencies into size deciles. Further work could look into alternative bucketing crite-
ria such as sector allocation, volatility or other measures of risk. Finally, given the number
of quantitative investment firms with burgeoning high-frequency cryptocurrency trading
operations, one could examine the effectiveness of frequency-based trading strategies to
see if there is greater “power” with certain trading windows. This could reveal typical
holding periods for investment firms that trade in the cryptocurrency market.
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53. Wątorek, M.; Drożdż, S.; Kwapień, J.; Minati, L.; Oświęcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global

cryptocurrency market. Phys. Rep. 2021, 901, 1–82. [CrossRef]

http://dx.doi.org/10.1111/j.1467-9965.1994.tb00057.x
http://dx.doi.org/10.2307/2938260
http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/10.1016/0165-1889(94)90039-6
http://dx.doi.org/10.1002/for.840
http://dx.doi.org/10.1016/0304-4076(94)90067-1
http://dx.doi.org/10.1111/1468-0262.00418
http://dx.doi.org/10.1080/0960310042000314214
http://dx.doi.org/10.1002/jae.1234
http://dx.doi.org/10.1007/s11222-022-10103-4
http://dx.doi.org/10.1016/j.ins.2020.03.075
http://dx.doi.org/10.1016/j.ins.2017.05.028
http://dx.doi.org/10.1016/j.ins.2017.02.002
http://dx.doi.org/10.1016/0020-0255(96)00117-x
http://dx.doi.org/10.1016/j.ins.2018.01.029
http://dx.doi.org/10.1016/j.physa.2019.04.077
http://dx.doi.org/10.3390/e23020133
http://dx.doi.org/10.1016/S0378-4371(97)00368-3
http://dx.doi.org/10.3390/econometrics11010008
http://dx.doi.org/10.1016/j.physa.2007.01.011
http://dx.doi.org/10.3390/e23070884
http://dx.doi.org/10.1080/1350486X.2021.2007146
http://dx.doi.org/10.1016/S0378-4371(01)00119-4
http://dx.doi.org/10.1016/j.chaos.2022.112664
http://dx.doi.org/10.1007/s11071-019-05335-5
http://dx.doi.org/10.1088/1742-5468/ac3d91
http://dx.doi.org/10.1038/s41598-018-37773-3
http://dx.doi.org/10.3390/e22091043
http://dx.doi.org/10.1007/s11071-021-07166-9
http://dx.doi.org/10.1063/1.5139634
http://dx.doi.org/10.1016/j.physrep.2020.10.005


Entropy 2023, 25, 931 14 of 15
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