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Abstract: Measuring the correlation between belief functions is an important issue in Dempster–
Shafer theory. From the perspective of uncertainty, analyzing the correlation may provide a more
comprehensive reference for uncertain information processing. However, existing studies about
correlation have not combined it with uncertainty. In order to address the problem, this paper
proposes a new correlation measure based on belief entropy and relative entropy, named a belief
correlation measure. This measure takes into account the influence of information uncertainty on their
relevance, which can provide a more comprehensive measure for quantifying the correlation between
belief functions. Meanwhile, the belief correlation measure has the mathematical properties of
probabilistic consistency, non-negativity, non-degeneracy, boundedness, orthogonality, and symmetry.
Furthermore, based on the belief correlation measure, an information fusion method is proposed. It
introduces the objective weight and subjective weight to assess the credibility and usability of belief
functions, thus providing a more comprehensive measurement for each piece of evidence. Numerical
examples and application cases in multi-source data fusion demonstrate that the proposed method
is effective.

Keywords: Dempster–Shafer theory; belief correlation measure; uncertainty; information fusion;
multi-source data

1. Introduction

The uncertainty of information is mainly manifested as vagueness, unknown, inac-
curacy, etc. [1,2]. At present, related methods of uncertain information processing have
been widely applied to decision making [3,4], image classification [5,6], and many other
fields [7–9]. For example, in target recognition tasks, since the uncertainty is caused by
the dynamicity of the environment in which the target is located, it is difficult to make an
accurate recognition [10]. Meanwhile, due to the uncertainty caused by the unreliability of
sensors, such as sensor failures and noise interference, the data collected by some sensors
may be incorrect, leading to the possibility of making wrong decisions [11]. Similarly,
in practical application of other fields, information uncertainties are also inevitable [12,13].
How to deal with these uncertainties or achieve information fusion is an important issue
in information processing [14,15]. To resolve this problem, several theories have been de-
veloped, including Dempster–Shafer theory (D-S theory) [16–18], fuzzy set theory [19–21],
Z numbers [22–24], evidential clustering [25–28], and so on [29–31]. Among them, the
D-S theory, also known as belief function theory, is a representative uncertainty reasoning
method. It is an extension and evolution of the Bayesian probability theory and satisfies
weaker axiomatic conditions [32]. It also provides effective means to model uncertain
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information and combine pieces of evidence [33]. Therefore, D-S theory has a strong ability
to deal with uncertainty.

Although D-S theory has many advantages, in practical application, conflicts between
evidence sometimes lead to counter-intuitive fusion results, which seriously affect the
reliability of decision-making systems [34,35]. Uncertainty is one of the important reasons
for conflicts between evidence [36]. Therefore, in the process of conflict management,
the measurement of information uncertainty is an issue worth studying. Inspired by
Shannon’s information entropy [37], which solves the problem of information uncertainty
measurement in probability theory, Deng [38] proposed a new uncertainty measurement
method for belief functions, which is called Deng entropy or belief entropy. Belief entropy
can quantify the uncertainty of evidence based on the belief function and has been used in
many fields [39–42].

In D-S theory, uncertainty includes the discord and non-specificity that co-exist in a
basic probability assignment (BPA) [43,44]. The measurement of correlation or divergence
between evidence can quantify the inconsistency, and information fusion based on corre-
lation measures provides an idea for uncertain information processing [45]. In order to
measure conflict and deal with uncertainty from the perspective of evidence correlation,
Jiang [46] proposed a correlation coefficient to carry out a reasonable measurement of the
correlation between evidence. In addition, the relevance and divergence of information
can be transformed into each other. Kullback–Leibler divergence (KLD) [47] is a classical
measurement for the difference between probability distributions. On the basis of KLD,
Xiao [48] proposed a belief divergence measure for belief functions and Gao [49] developed
a generalized divergence measure. In addition, both of them converted divergence measure
into correlation measures and then put forward an information fusion method, which
achieved good results in uncertain information processing. However, these measurement
methods only consider the correlation or difference between basic probability assignments,
and ignore the influence of uncertainty itself on the measurement of information correlation.

In order to analyze evidence more comprehensively, this paper proposes a new cor-
relation measurement method, which is named a belief correlation measure. It combines
information uncertainty to measure the correlation between belief functions. On the basis of
a belief correlation measure and a discriminability measure, an information fusion method
for multi-source data is proposed, which can produce more reasonable decision results.

The main contributions made in this work are:
(a) The belief correlation measure based on belief entropy and relative entropy is

proposed, which combines uncertainty to measure the correlation between belief functions.
It not only provides a more comprehensive correlation analysis, but also has some important
mathematical properties such as probabilistic consistency, non-negativity, non-degeneracy,
boundedness, orthogonality, and symmetry.

(b) An information fusion method for multi-source data is proposed. It introduces
objective weights based on the belief correlation measure and subjective weight based
on the discriminability measure. Then, the combinational weight is designed to perform
evidence fusion, which can improve the rationality and reliability of decision results.

(c) The effectiveness of the proposed belief correlation measure is illustrated by several
numerical examples. Then, two application cases of multi-source data are analyzed to
demonstrate the advantage of the proposed information fusion method.

The organization of this paper is as follows. The concept and connotation of related
theories are described in Section 2. The proposed belief correlation measure and the
mathematical properties are elaborated in Section 3. Several illustrative examples are
presented to demonstrate that the belief correlation measure is reasonable in Section 4.
Then, an information fusion method for multi-source data is proposed in Section 5. Two
specific application cases are described in steps in Section 6, while the comparisons are
discussed to verify the effectiveness of the method. At last, the whole work is summarized
in Section 7 with an outlook for future work.
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2. Preliminaries
2.1. D-S Theory

D-S theory is a classical uncertainty reasoning theory. It satisfies weaker conditions
than probability theory, and can express the uncertainty of information more directly [50].

In D-S theory, assume that Θ is a set consisting of n mutually exclusive objects, Θ is
named the frame of discernment (FOD):

Θ = {θ1, θ2, . . . , θi, . . . , θn} (1)

The power set of Θ is defined as 2Θ:

2Θ = {φ, {θ1}, {θ2}, . . . , {θ1, θ2}, . . . , Θ} (2)

where φ represents the empty set. It can be obtained that there are 2n elements in 2Θ.
Each element of 2Θ, which is also the subset of Θ, corresponds to a proposition with the
possible value.

Suppose there is a proposition A belonging to 2Θ. The belief function m, also known
as BPA, maps A from 2Θ to [0, 1] and satisfies:

(i) m : 2Θ → [0, 1]
(ii) ∑

A∈2Θ
m(A) = 1

(iii) m(φ) = 0

(3)

where the mass value m(A) indicates the support degree for proposition A. If A ⊆ Θ and
m(A) > 0, A is referred to as a focal element.

Assume belief functions m1 and m2 are two independent belief functions, Dempster’s
combination rule provides an efficient way to aggregate them:

m(A) =

{ 1
1−K ∑

B∩C=A
m1(B)m2(C), A 6= φ

0, A = φ
(4)

where
K = ∑

B∩C=φ
m1(B)m2(C) (5)

The significance of combining evidence with the orthogonal sum method is in scaling the
conflicting mass K proportionally to the fusion results. Dempster’s rule of combination can
fuse evidence without prior information, thus enabling efficient processing of uncertain
information [51].

2.2. Belief Entropy

Shannon entropy solves the problem of quantitative information measurement in
probability theory [52]. Inspired by Shannon entropy, Deng [38] proposed belief entropy,
which can measure information uncertainty under the theoretical framework of belief
function theory.

The belief entropy of BPA m is defined as:

E(m) = − ∑
A⊆Θ

m(A) log2
m(A)

2|A| − 1

= ∑
A⊆Θ

m(A)log2(2
|A| − 1)− ∑

A⊆Θ
m(A)log2m(A)

(6)

where |A| is the cardinality of set A. The separated two parts in belief entropy can quantify
non-specificity and discord of a BPA.
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If the mass value of a BPA is assigned to the subsets with single elements, then belief
entropy is transformed into Shannon entropy:

E(m) = − ∑
A∈Θ

m(A) log2 m(A) (7)

The probabilistic consistency of belief entropy makes it have better generalizability. In ad-
dition, when further studying the belief entropy and its applications, some limitations,
including non-monotonicity, non-additivity, etc., should also be noticed [53].

2.3. Relative Entropy of Random Variable

The partial entropy in probability theory, and the relative entropy of a random variable
derived from it have been applied in the field of uncertain information recently. The specific
definitions are as follows [54]:

Suppose there are two sets of random variables X and Y, their distributions are:

X :
{

x1, . . . , xK
p1, . . . , pK

}
;

Y :
{

y1, . . . , yK
q1, . . . , qK

} (8)

where xi(i = 1, . . . , K) is the random variable in X, and pi is the corresponding probability
of xi. yi is the random variable in Y, and qi is the corresponding probability of yi. The
definition of entropy for variable X is:

H(X) = −
K

∑
k=1

pi log2 pi (9)

The partial entropy of variable X with respect to variable Y is:

HY(X) = −
K

∑
k=1

qi log2 pi (10)

The relative entropy of the pair of variables X and Y is:

H(X; Y) = HY(X) + HX(Y)

= −
K

∑
k=1

qi log2 pi −
K

∑
k=1

pi log2 qi
(11)

3. The Proposed Belief Correlation Measure

Belief entropy has increased the study of uncertainty measurements based on the belief
function. Relative entropy can describe the correlation between probability distributions.
How to combine the uncertainty information contained in the belief function to describe
the correlation degree between BPAs is worth studying. Therefore, this paper proposes a
new correlation measure on the basis of belief entropy and correlation coefficient, which is
named the belief correlation measure. The specific details are described as follows.

3.1. Definition of Belief Correlation Measure

Assume there are two BPAs m1 and m2:

m1 : {m1(A1), m1(A2), . . . , m1(AN)}
m2 : {m2(A1), m2(A2), . . . , m2(AN)}
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The partial belief entropy of m1 with respect to m2 is defined as:

Em2(m1) = −
N

∑
i=1

m2(Ai) log2
m1(Ai)

2|Ai | − 1
(12)

The relative belief entropy between the belief function m1 and m2 is the sum of their partial
belief entropy, which is defined as:

E(m1; m2) = Em2(m1) + Em1(m2)

= −
N

∑
i=1

m2(Ai) log2
m1(Ai)

2|Ai | − 1
−

N

∑
i=1

m1(Ai) log2
m2(Ai)

2|Ai | − 1

(13)

The partial belief correlation coefficient of evidence m1, m2 are defined as follows:

γm2(m1) =
E(m2)

Em2(m1)

γm1(m2) =
E(m1)

Em1(m2)

(14)

where E(m2) is the belief entropy of m2 defined in Equation (6). Then, the belief correlation
measure of m1 and m2 is defined as:

γ(m1; m2) =
E(m1) + E(m2)

Em2(m1) + Em1(m2)
(15)

It is worth noting that in the actual calculation process, when the mass value of
m1(Ai) or m2(Ai) is 0, its logarithm tends to infinity, which makes it impossible to calculate.
Therefore, this method replaces 0 with a smaller value of 10−12. It has been proved in
Ref. [55], that the setting of this value has no influence on the calculation results.

3.2. Properties of Belief Correlation Measure

When analyzing the mathematical properties of correlation measures, it is usually
necessary to consider such properties as probabilistic consistency, non-negativity, non-
degeneracy, boundedness, orthogonality, symmetry, and triangular inequality [46,48,49,56].
In this section, we prove the properties possessed by the belief correlation measure.

Property 1 (Probabilistic consistency). When two BPAs m1 and m2 are degenerated as probability
distributions, the belief correlation measure of them can be degenerated to the correlation coefficient
in probability theory.

Proof. When the mass value is assigned to single elements, the belief entropy values E(m1)
and E(m2) are reduced to Shannon entropy:

E(m1) = −
N
∑

i=1
m1(Ai)log2m1(Ai)

E(m2) = −
N
∑

i=1
m2(Ai)log2m2(Ai)

The partial belief entropy values Em2(m1) and Em1(m2) are reduced to partial entropy:

Em2(m1) = −
N
∑

i=1
m2(Ai)log2m1(Ai)

Em1(m2) = −
N
∑

i=1
m1(Ai)log2m2(Ai)
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Then, the belief correlation measure γ(m1; m2) is degenerated to:

γ(m1; m2) =
E(m1) + E(m2)

Em2(m1) + Em1(m2)

=

−
N
∑

i=1
m1(Ai)log2m1(Ai)−

N
∑

i=1
m2(Ai)log2m2(Ai)

−
N
∑

i=1
m2(Ai)log2m1(Ai)−

N
∑

i=1
m1(Ai)log2m2(Ai)

It is consistent with the correlation coefficient V(X; Y) in probability theory [55]:

V(X; Y) =
H(X) + H(Y)

HY(X) + HX(Y)

=

−
N
∑

i=1
pilog2 pi −

N
∑

i=1
qilog2qi

−
N
∑

i=1
qilog2 pi −

N
∑

i=1
pilog2qi

Thus, the probabilistic consistency of the belief correlation measure is proved.

Property 2 (Non-negativity). γ(m1; m2) ≥ 0.

Proof. Suppose P and Q are probability distributions from [47], we know that the KLD is
non-negative, that is:

DKL(P ‖ Q) =
k

∑
i=1

pi log2
pi
qi

=
k

∑
i=1

pi log2 pi−
k

∑
i=1

pi log2 qi ≥ 0

Through the derivation process:

k
∑

i=1
pi log2 qi ≤

k
∑

i=1
pi log2 pi ≤ 0

⇒
k
∑

i=1
pi log2

qi
c ≤

k
∑

i=1
pi log2

pi
c ≤ 0

(16)

where c is a constant and c ≥ 1. It can be obtained that:

−
k
∑

i=1
pi log2

qi
c ≥ 0

−
k
∑

i=1
pi log2

pi
c ≥ 0

With Equations (6) and (12), it can be obtained that:

E(m1) = −
N
∑

i=1
m1(Ai)log2

m1(Ai)

2|Ai |−1
≥ 0

E(m2) = −
N
∑

i=1
m2(Ai)log2

m2(Ai)

2|Ai |−1
≥ 0

Em2(m1) = −
N
∑

i=1
m2(Ai)log2

m1(Ai)

2|Ai |−1
≥ 0

Em1(m2) = −
N
∑

i=1
m1(Ai)log2

m2(Ai)

2|Ai |−1
≥ 0

Therefore,

γ(m1; m2) =
E(m1) + E(m2)

Em1(m2) + Em2(m1)
≥ 0
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Thus, the non-negativity of the belief correlation measure is proved.

Property 3 (Non-degeneracy). γ(m1; m2) = 1 if and only if m1 = m2.

Proof. Firstly consider m1 = m2, it can be obtained that:

E(m1) = E(m2) = Em2(m1) = Em1(m2)

Thus,

γ(m1; m2) =
E(m1) + E(m2)

Em1(m2) + Em2(m1)
= 1

Next, when γ(m1; m2) = 1, that is:

E(m1) + E(m2)

Em1(m2) + Em2(m1)
= 1

It can be obtained that:

E(m1) + E(m2) = Em1(m2) + Em2(m1)

Through the derivation process:

−
N
∑

i=1
m1(Ai)log2

m1(Ai)

2|Ai |−1
−

N
∑

i=1
m2(Ai)log2

m2(Ai)

2|Ai |−1
= −

N
∑

i=1
m2(Ai)log2

m1(Ai)

2|Ai |−1
−

N
∑

i=1
m1(Ai)log2

m2(Ai)

2|Ai |−1

⇒
N
∑

i=1
m1(Ai)log2m1(Ai) +

N
∑

i=1
m2(Ai)log2m2(Ai) =

N
∑

i=1
m2(Ai)log2m1(Ai) +

N
∑

i=1
m1(Ai)log2m2(Ai)

⇒
N
∑

i=1
(m1(Ai)−m2(Ai))log2m1(Ai) =

N
∑

i=1
(m1(Ai)−m2(Ai))log2m2(Ai)

⇒
N
∑

i=1
(m1(Ai)−m2(Ai))m1(Ai) =

N
∑

i=1
(m1(Ai)−m2(Ai))m2(Ai)

Here, we consider it from the idea of disproof. Since the case that m1 6= m2 does not
exist, making the above equation hold, it can be obtained that m1 = m2. Therefore,
the nondegeneracy of the belief correlation measure is proved.

Property 4 (Boundedness). 0 ≤ γ(m1; m2) ≤ 1.

Proof. From Property 2, it has been proved that γ(m1; m2) ≥ 0. Next, we prove the upper
bound of γ(m1; m2).

Though the derivation process of Equation (16), it can be obtained that:

−
k

∑
i=1

pi log2
qi
c
≥ −

k

∑
i=1

pi log2
pi
c
≥ 0

Then, we have:

−
N
∑

i=1
m2(Ai)log2

m1(Ai)

2|Ai |−1
≥ −

N
∑

i=1
m1(Ai)log2

m1(Ai)

2|Ai |−1
≥ 0

−
N
∑

i=1
m1(Ai)log2

m2(Ai)

2|Ai |−1
≥ −

N
∑

i=1
m2(Ai)log2

m2(Ai)

2|Ai |−1
≥ 0

With Equations (6) and (12), it can be obtained that:

Em2(m1) ≥ E(m1) ≥ 0
Em1(m2) ≥ E(m2) ≥ 0
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Therefore,

γ(m1; m2) =
E(m1) + E(m2)

Em1(m2) + Em2(m1)
≤ 1.

Thus, the boundedness of the belief correlation measure 0 ≤ γ(m1; m2) ≤ 1 is proved.

Property 5 (Orthogonality). γ(m1; m2) = 0 if and only if m1 and m2 are orthogonal.

Proof. When m1 and m2 are orthogonal, it should satisfy that: Ai ∩ Aj = φ, where Ai and
Aj are propositions in mass functions m1 and m2, respectively. From Equation (6), it can be
obtained that:

E(m1) =

{
0, ∃m1(Ai) = 1 and Ai ∈ Θ
c1, others

E(m2) =

{
0, ∃m2(Aj) = 1 and Aj ∈ Θ
c2, others

where c1 and c2 are constants. Under the orthogonality condition, there exists m1(Ai) = 0
and m2(Aj) = 0. Then, from Equation (12), it can be obtained that:

Em1(m2)→ +∞,
Em2(m1)→ +∞

Therefore,

γ(m1; m2) =
E(m1) + E(m2)

Em1(m2) + Em2(m1)
= 0

Then, the orthogonality of the belief correlation measure is proved.

Property 6 (Symmetry). γ(m1; m2) = γ(m2; m1).

Proof. According to Equation (15), it can be obtained that:

γ(m1; m2) =
E(m1) + E(m2)

Em1(m2) + Em2(m1)

γ(m2; m1) =
E(m2) + E(m1)

Em2(m1) + Em1(m2)

Therefore,
γ(m1; m2) = γ(m2; m1)

Finally, the symmetry of the belief correlation measure is proved.

Through the above proof processes, it is verified that the proposed belief correla-
tion measure has probabilistic consistency, non-negativity, non-degeneracy, orthogonality,
boundedness, and symmetry. It should be indicated that the two properties, orthogo-
nality and triangular inequality, are in conflict. The belief correlation measure satisfies
orthogonality, so it does not satisfy the triangle inequality.

4. Numerical Examples

This part provides the following numerical examples to illustrate the advantages
of the belief correlation measure, and also verify its validity by comparing with other
correlation measures.

Firstly, Example 1 is described in steps to illustrate the calculation procedure of the
belief correlation measure and the rationality of the method.



Entropy 2023, 25, 925 9 of 23

Example 1. Assume there are three mass functions m1, m2, m3 on the FOD Θ = {C, D, E}:

m1 : m1(C) = 0.5, m1(D) = 0.4, m1(C, E) = 0.1;
m2 : m2(C) = 0.6, m2(D) = 0.3, m2(C, E) = 0.1;
m3 : m3(C) = 0.8, m3(D) = 0.1, m3(C, E) = 0.1.

Firstly, the belief entropy of m1, m2, and m3 can be obtained by Equation (6):

E(m1) = −(0.5× log20.5 + 0.4× log20.4 + 0.1× log2
0.1

22−1 ) = 1.5195
E(m2) = −(0.6× log20.6 + 0.3× log20.3 + 0.1× log2

0.1
22−1 ) = 1.4540

E(m3) = −(0.8× log20.8 + 0.1× log20.1 + 0.1× log2
0.1

22−1 ) = 1.0804

Meanwhile, the partial belief entropy of m1, m2, and m3 can be obtained by Equation (12):

Em2(m1) = −(0.6× log20.5 + 0.3× log20.4 + 0.1× log2
0.1

22−1 ) = 1.4873
Em1(m2) = −(0.5× log20.6 + 0.4× log20.3 + 0.1× log2

0.1
22−1 ) = 1.5540

Em3(m1) = −(0.8× log20.5 + 0.1× log20.4 + 0.1× log2
0.1

22−1 ) = 1.4229
Em1(m3) = −(0.5× log20.8 + 0.4× log20.1 + 0.1× log2

0.1
22−1 ) = 1.9804

Em3(m2) = −(0.8× log20.6 + 0.1× log20.3 + 0.1× log2
0.1

22−1 ) = 1.2540
Em2(m3) = −(0.6× log20.8 + 0.3× log20.1 + 0.1× log2

0.1
22−1 ) = 1.6804

Then, the belief correlation measure of m1, m2, and m3 can be calculated by Equation (15):

γ(m1; m2) =
E(m1) + E(m2)

Em2(m1) + Em1(m2)
=

1.5195 + 1.4540
1.4873 + 1.5540

= 0.9777

γ(m1; m3) =
E(m1) + E(m3)

Em3(m1) + Em1(m3)
=

1.5195 + 1.0804
1.4229 + 1.9804

= 0.7639

γ(m2; m3) =
E(m2) + E(m3)

Em3(m2) + Em2(m3)
=

1.4540 + 1.0804
1.2540 + 1.6804

= 0.8637

From the above example, it can be seen intuitively that m3 is more inconsistent with other evidence,
and m2 is more reliable. In the results obtained using this method, the average correlation degree
of evidence m2 and other evidence is 0.9777+0.8637

2 = 0.9207, which is the highest. Meanwhile, the
average correlation degree between m3 and other evidence is 0.7639+0.8637

2 = 0.8138, which is the
lowest. This is consistent with intuition, indicating that the method is reasonable.

In the following example, we calculate the belief correlation measure between the
evidence corresponding to varying focal elements and mass values, thus illustrating the
reliability of the proposed method.

Example 2. Suppose Θ = {O, P, Q, . . . , X}, let t be a variable and t ∈ [0, 1]. N is a variable
subset, as in Table 1, and its number of elements n changes from 1 to 10. There are two mass
functions:

m1 : m1({O, P, Q, R, S}) = 0.2, m1(N) = 0.8;
m2 : m2({O}) = t, m2(N) = 1− t.

The calculation results of the belief correlation measure are visualized as shown in Figure 1.
Where the belief correlation measure changing with n and t is shown in Figure 1a. Figure 1b shows
the variation intervals of variables n and t. Figure 1c shows the value of belief correlation measure
varying with n. From this, we can see that when n = 5, i.e., N = {O, P, Q, R, S}, m1 and m2
have the highest consistency at this time, so the value of belief correlation measure at n = 5 is much
larger than other variable subsets. In more detail, since the distribution of focal elements in the two
mass functions is different when n = 1 and n = 2, the belief correlation measure show different
trend with the change of t. In other cases of n, the belief correlation measure generally tends to
increase as n increases. This is because the correlation between the two mass functions increases as
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the subset N expands. Figure 1d shows the value of the belief correlation measure varying with t.
From this, we can see that with the increase of t, the belief correlation measure generally shows a
downward trend. This is because as t increases, the degree of variation between belief functions also
increases, resulting in a decrease in correlation; this is consistent with our intuition.

Additionally, the values of the belief correlation measure all ranged from 0∼1, verifying that
the belief correlation measure is bounded.

Table 1. The variable subset N.

n N

1 {O}
2 {O, P}
3 {O, P, Q}
4 {O, P, Q, R}
5 {O, P, Q, R, S}
6 {O, P, Q, R, S, T}
7 {O, P, Q, R, S, T, U}
8 {O, P, Q, R, S, T, U, V}
9 {O, P, Q, R, S, T, U, V, W}
10 {O, P, Q, R, S, T, U, V, W, X}

Figure 1. The calculation results of the belief correlation measure.

In addition, for demonstrating the validity of this method, it is compared with other
correlation measures, such as Jousselme’s Distance dJ [57], Belief Jensen–Shannon diver-
gence BJS [48], Plausibility and Belief Jensen–Shannon divergence PBl_BJS [58], and the
correlation coefficient rBPA [46]. Since dJ , BJS, and PBl_BJS describe the evidence relation-
ships through the differences between them, here we use 1− dJ , 1− BJS, 1− PBl_BJS to
measure the correlation between evidence for comparison as follows:
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Example 3. Assume the FOD is Θ={C, D}, t is a value in the set {0, 0.1, 0.2, 0.3, . . . , 1}, two
pieces of evidence are defined as:

m1 : m1(C) = 0.3, m1(D) = 0.4, m1(C, D) = 0.3
m2 : m2(C) = 0.5 ∗ (1− t), m2(D) = t, m2(C, D) = 0.5 ∗ (1− t)

Then, we obtain 11 pairs of BPAs and the comparisons of their correlation measures in Table 2 and
Figure 2.

Table 2 and Figure 2 show that with the change of t, the change trend of these correlation
measurement methods are consistent, and when t = 0.4, i.e., m1 and m2 are exactly the same,
the correlation degree value of all measurement methods are 1; this is reasonable. Since the mass
values of m2 change in the focal elements {C} and {C, D}, it is more reasonable that the result of
the correlation measure is nonlinear.

From the details, when t = 0, evidence m2 is: m2(C) = 0.5, m2(D) = 0, m2(C, D) = 0.5,
indicating that the evidence m2 is completely unsupported for the focal element {D}, while the
evidence m1 has the highest support degree for {D}. At this time, the correlation between these
two pieces of evidence should be small. In addition, when t = 1, evidence m2 is: m2(C) = 0,
m2(D) = 1, m2(C, D) = 0, indicating that evidence m2 fully supports {D}, and does not support
{C} and {C, D} at all, and the evidence m1 has a similar support degree for each focal element.
At this time, the correlation between them should also be smaller. It is unreasonable that other
comparison correlation measures maintain relatively high correlation values for evidence m2 at both
t = 0 and t = 1. However, the proposed belief correlation measure has low correlation values at both
t = 0 and t = 1, indicating that the method has a high sensitivity in terms of uncertainty. This is
because this method integrates belief entropy, which makes it possible to calculate the correlation of
belief functions by also taking uncertainty into account, thus making the calculation more reasonable.

Table 2. Comparisons of the correlation measures in Example 3.

t 1− dBPA 1− BJS 1− PBl_BJS rBPA Proposed

0 0.6838 0.7635 0.9311 0.8563 0.1964
0.1 0.7628 0.9087 0.9626 0.9111 0.8419
0.2 0.8419 0.9651 0.9837 0.9574 0.9363
0.3 0.9209 0.9921 0.9959 0.9888 0.985
0.4 1 1 1 1 1
0.5 0.9209 0.9927 0.9958 0.9888 0.9854
0.6 0.8419 0.971 0.9826 0.9574 0.941
0.7 0.7628 0.9333 0.9586 0.9111 0.8647
0.8 0.6838 0.8755 0.92 0.8563 0.7515
0.9 0.6047 0.7859 0.858 0.7985 0.5894
1 0.5257 0.6042 0.7272 0.7416 0.0796

Figure 2. Comparisons of the correlation measures.
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5. A New Information Fusion Method Based on Belief Correlation Measure

Based on the belief correlation measure, this paper proposes an information fusion
method for multi-source data. This method considers not only the correlation between belief
functions, but also their own discriminability to introduce objective weight and subjective
weight, respectively. Specifically, it utilizes the belief correlation measure to quantify the
support degree between belief functions for generating objective weights. Meanwhile,
the discriminability measure is used to quantify the certainty of the belief function to
generate subjective weights. Then, the combinational weight is designed to perform
evidence fusion, which can improve the rationality and reliability of decision results.

This part first introduces the information fusion method in phases, especially the
weights of belief functions that need to be determined in the process. Figure 3 shows the
process diagram of this method. Then, the procedures are described through an algorithm
for readers to better understand.

Figure 3. Process diagram of the proposed information fusion method.

Phase 1: Generate objective weights for each evidence.

(a) Assume that m1, m2, . . . , mn are n belief functions with independent sources on FOD
Θ = {θ1, θ2, . . . , θN}. According to the proposed belief correlation measure, the belief
correlation between mi and mj can be calculated by Equation (12)–(15). Then, the belief
correlation measure matrix BCMM = [γ(mi; mj)]n×n is constructed as follows:

BCMM =



1 · · · γ(m1; mj) · · · γ(m1; mn)
...

...
...

...
...

γ(mi; m1) · · · 1 · · · γ(mi; mn)
...

...
...

...
...

γ(mn; m1) · · · γ(mn; mj) · · · 1

 (17)

(b) According to the belief correlation measure matrix BCMM, the support degree of mi
is defined as:

Sup(mi) = ∑n
j=1,j 6=i γ(mi, mj) (18)
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(c) On the basis of Sup(mi), the objective weight of mi can be generated:

wO(mi) =
Sup(mi)

∑n
i=1 Sup(mi)

(19)

The objective weight can reflect the credibility of evidence to some extent. A larger
value of wO(mi) indicates that the evidence mi is supported by other evidence to a
greater extent, indicating that its credibility is higher.

Phase 2: Generate subjective weight for each evidence.

(d) The subjective weight can be analyzed based on the certainty of evidence itself, which
can be obtained by calculating the discriminability measure (DM):

DM(mi) = max
θ∈Θ

(BetPmi (θ))− max
θk∈Θ,θ 6=θk

(BetPmi (θk)) (20)

where BetPm is the pignistic probability transformation [59]:

BetPm(θ) = ∑
θ∈B⊆Θ

1
|B|

m(B)
1−m(φ)

(21)

According to the belief functions m1, m2, . . . , mn, the discriminability measure of each
evidence can be calculated and denoted as DM(mi).

(e) Then, the subjective weight of evidence can be calculated:

wS(mi) =
DM(mi)

∑n
i=1 DM(mi)

(22)

The subjective weight can reflect the certainty of evidence. A larger value of wS(mi)
indicates that more certainty information is provided by evidence mi; then, it has a
higher usability.

Phase 3: Generate new evidence and perform information fusion.

(f) According to the objective weight wO(mi) obtained by Step 1 and the subjective weight
wS(mi) obtained by Step 2, the combinational weight is defined as:

wC(mi) = λwO(mi) + (1− λ)wS(mi) (23)

where λ is an adjusting coefficient that takes a value between 0 and 1. It represents
the relative importance of the subjective weight and objective weight. Under normal
circumstances, the objective and subjective weight are considered equally important,
the value of λ is 0.5.

(g) After determining the combinational weight wC(mi), a new evidence m̃(θ) is generated
by the weighted average operation:

m̃(θ) =
n

∑
i=1

wC(mi)×mi(θ), θ ∈ Θ (24)

(h) The generated evidence is combined for (n− 1) times according to Dempster’s combi-
nation rule to obtain the fusion result:

m̃F = m̃⊕ m̃⊕ · · · ⊕ m̃︸ ︷︷ ︸
(n−1)times

. (25)

In the proposed information fusion method, the belief correlation measure and discrim-
inability measure are utilized to generate the objective and subjective weights. The method
takes into account the relational information, as well as the certainty information, to deter-
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mine the combinational weight, which can reflect the credibility and usability of evidence
in an integrated manner. For readers to understand the method better, the corresponding
pseudo-code is given to illustrate the combination process in Algorithm 1.

Algorithm 1: An algorithm for the proposed information fusion method
Input: n pieces of evidence from independent sources;
Output: The recognition results of data fusion.

1 for i = 1 : n do
2 for j = 1 : n(j 6= i) do
3 Calculate the belief correlation measure γ(mi; mj) between evidence mi and mj by

Equation (12)–(15);
4 end
5 Calculate the support degree Sup(mi) of evidence mi by Equation (18);
6 end
7 for i = 1 : n do
8 Obtain the objective weight wO(mi) of evidence mi by Equation (19);
9 Calculate the discriminability measure DM(mi) of evidence mi by

Equation (20) and (21);
10 Obtain the subjective weight wS(mi) of evidence mi by Equation (22);
11 Obtain the combinational weight wC(mi) of evidence mi by Equation (23);
12 end
13 Generate a new evidence m̃ by the weighted average operation of Equation (24);
14 Fuse the evidence m̃ by Equation (25);
15 Return the focal element corresponding to the maximum mass value as the final

recognition result.

6. Application in Multi-Source Data Fusion

This part, the application in the field of multi-source data fusion, is studied to validate
the proposed information fusion method, which is based on the belief correlation measure-
ment. Since target recognition is a typical task that requires multi-sensor data fusion, two
application cases for target recognition are given below.

Case 1: There is a target recognition task from Ref. [48], which acquires multi-source
information based on different types of sensors. These sensors report the target type
information as shown in Table 3. In this case, there are five different types of sensors Si
(i = 1, 2, 3, 4, 5), and their corresponding BPAs are mi. According to the sensor reports, there
are three kinds that the target may be recognized as, which form the FOD Θ = {A1, A2, A3}.

Table 3. The BPAs of sensor reports in Case 1.

{A1} {A2} {A3} {A1, A3}
S1 : m1(·) 0.41 0.29 0.3 0
S2 : m2(·) 0 0.9 0.1 0
S3 : m3(·) 0.58 0.07 0 0.35
S4 : m4(·) 0.55 0.1 0 0.35
S5 : m5(·) 0.6 0.1 0 0.3

• Implementation by the proposed method
Step 1: Generate objective weights for each evidence.

(a) The belief correlation measure matrix BCMM = (γij)5×5 can be constructed as:

BCMM =


1 0.1062 0.1173 0.1206 0.1254

0.1062 1 0.0505 0.0544 0.0517
0.1173 0.0505 1 0.9952 0.9924
0.1206 0.0544 0.9952 1 0.9953
0.1254 0.0517 0.9924 0.9953 1
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(b) According to the belief correlation measure matrix BCMM, the Sup(mi) are
calculated:

Sup(m1) = 0.4696
Sup(m2) = 0.2628
Sup(m3) = 2.1555
Sup(m4) = 2.1655
Sup(m5) = 2.1647

(c) Then, the objective weight wO(mi) of each evidence can be obtained:

wO(m1) = 0.0651
wO(m2) = 0.0364
wO(m3) = 0.2986
wO(m4) = 0.3000
wO(m5) = 0.2999

Step 2: Generate subjective weight for each evidence.
(d) According to the BPA value of each, the discriminability measures DM(mi) are

calculated as:
DM(m1) = 0.1100
DM(m2) = 0.8000
DM(m3) = 0.5800
DM(m4) = 0.5500
DM(m5) = 0.6000

(e) Based on the discriminability measure, the subjective weight wS(mi) of each
evidence value can be obtained as:

wS(m1) = 0.0417
wS(m2) = 0.3030
wS(m3) = 0.2197
wS(m4) = 0.2083
wS(m5) = 0.2273

Step 3: Generate new evidence and perform information fusion.
(f) Based on the objective weight obtained by Step 1 and the subjective weight

obtained by Step 2, and set the value of λ to 0.5, the combinational weight wC(mi)
can be calculated as:

wC(m1) = 0.0534
wC(m2) = 0.1697
wC(m3) = 0.2592
wC(m4) = 0.2542
wC(m5) = 0.2636

(g) The new evidence generated by the weighted average operation is obtained as:

m̃({A1}) = 0.4701
m̃({A2}) = 0.2381
m̃({A3}) = 0.0330
m̃({A1, A3}) = 0.2588

(h) The generated evidence is combined four times to obtain the fusion results:

m̃F({A1}) = 0.9861
m̃F({A2}) = 0.0037
m̃F({A3}) = 0.0046
m̃F({A1, A3}) = 0.0056
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• Comparison and discussion
The proposed belief correlation measure is compared with other correlation measure-
ment methods. Among the contrast methods, Xiao’s method [48], Song’s method [56],
and Wang’s method [58] use the reciprocal of the divergence measure they proposed
to represent the correlation between evidence. In order to conduct a comparative anal-
ysis more objectively, the correlation of each evidence obtained by other correlation
measurement methods are normalized as objective weights, and the discriminability
measure is used as the subjective weight. Next, the combinational weight is used to
generate the weighted average evidence. Figure 4 and Table 4 display the experimental
results, where the value of parameter λ in all methods is 0.5.

Figure 4. The comparation of different methods for Case 1.

Table 4. Fusion results of comparison methods in Case 1.

Method {A1} {A2} {A3} {A1, A3} Target

Jiang’s method [46] 0.9758 0.0106 0.0094 0.0041 A1
Xiao’s method [48] 0.9833 0.0050 0.0069 0.0048 A1
Song’s method [56] 0.9755 0.0116 0.0084 0.0045 A1
Wang’s method [58] 0.9815 0.0058 0.0084 0.0043 A1
Proposed method 0.9861 0.0037 0.0046 0.0056 A1

By analyzing the original evidence obtained by the sensors, it can be found that the
BPA value reported by sensor S1 supports the three targets A1, A2, A3 to a similar
degree, so the evidence is poor in usability. Furthermore, the BPA value reported
by sensor S2 has a large conflict with other evidence, indicating that the sensor S2
may be abnormal or fault, so the evidence is unreliable. The method proposed in
this paper assigns lower weight values to evidence m1 and m2, which is reasonable.
As shown in Table 4 and Figure 4, the target recognition result of the proposed method
is A1, it is consistent with the recognition results of comparison methods. Meanwhile,
the proposed method supports A1 with a degree of 0.9861, which is higher than other
comparison methods, and the decision result is more certain.
Then, we conduct a sensitivity analysis on the values of parameter λ. When λ takes a
different value between 0 and 1, the change trends of the support degree to the target
A1 of different methods are shown in Figure 5. In this case, as the value of parameter
λ increases, different methods have improved the support degree for target A1, indi-
cating that the objective weight has a positive impact on the support degree for target
A1, and the subjective weight has a negative impact on it. Moreover, the proposed
method has a consistently higher support degree than other comparison methods.
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Figure 5. The sensitivity analysis on parameter λ for Case 1.

To further demonstrate the validity of the proposed belief correlation measure, we
perform a statistical test by adding different levels of noise to evidence and analyze
the fusion results when λ takes the value of 1. The sensor evidence with the highest
support degree to target is selected to add noise. The noise makes the sensor evidence
decrease the support degree to target and increase the unknown. Specifically, the focal
element with the largest mass value in the original evidence is selected, that is the
focal element {A1} in m5. Then, its mass value is reduced and the reduced part of the
mass value is assigned to the Θ of the corresponding evidence. After adding noise,
the focal elements in m5 become:

m′5 : m′5{A1} = 0.6− v, m′5{A2} = 0.1, m′5{A1, A3} = 0.3, m′5{Θ} = v

where v denotes the variation of the mass value due to the addition of noise. Then
data fusion is conducted based on different correlation measurement methods. Table 5
records the mass values of focal element {A1} in the fusion results under different
variation values and their average is statistically calculated. The visualization is shown
in Figure 6. From the experimental results it can be seen that the proposed method
always has a higher support for focal element {A1} under different levels of noise
conditions. The statistical average values show that there is a significant difference
between the proposed method and the comparison methods. It is verified that the
proposed method is more beneficial for decision making.

Table 5. The mass values of focal element {A1} in fusion results under different variation values.

Variation Jiang’s Method Xiao’s Method Song’s Method Wang’s Method Proposed

0.30 0.9241 0.9242 0.9207 0.9102 0.9548
0.32 0.9198 0.9165 0.9158 0.9000 0.9528
0.34 0.9156 0.9083 0.9109 0.8890 0.9509
0.36 0.9114 0.8997 0.9059 0.8772 0.9492
0.38 0.9072 0.8906 0.9008 0.8646 0.9475
0.40 0.9031 0.8812 0.8957 0.8514 0.9459
0.42 0.8991 0.8715 0.8906 0.8376 0.9445
0.44 0.8952 0.8617 0.8855 0.8233 0.9433
0.46 0.8915 0.8519 0.8804 0.8087 0.9422
0.48 0.8880 0.8422 0.8754 0.7938 0.9412
0.50 0.8847 0.8328 0.8705 0.7789 0.9405

Average 0.9036 0.8801 0.8957 0.8486 0.9466
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Figure 6. Visualization of mass value of focal element {A1} under different variation values.

Case 2: In another target recognition task [56], the possible targets constitute the frame
of discernment Ω = {B1, B2, B3}. There are four sensors in the sensor system that report
the target type information in Table 6.

Table 6. The BPAs of sensor reports in Case 2.

{B1} {B2} {B3} {B1, B3} {B1, B2, B3}
S1 : m1(·) 0 0.08 0.12 0.1 0.7
S2 : m2(·) 0.3 0.05 0.05 0.2 0.4
S3 : m3(·) 0.15 0.1 0.1 0.15 0.5
S4 : m4(·) 0.3 0.05 0.1 0.1 0.45

Since the implementation process of this case is consistent with Case 1, it will not
be repeated in this part. When compared with other correlation measurement methods,
the normalized correlation degree calculated by each method is still used as the objective
weight, and the discriminability measure is used as the subjective weight. Table 7 and
Figure 7 display the fusion results.

Table 7. Fusion results of comparison methods in Case 2.

Method {B1} {B2} {B3} {B1, B3} {B1, B2, B3} Target

Jiang’s method 0.5383 0.0559 0.1635 0.1547 0.0877 B1
Xiao’s method 0.5472 0.0565 0.1608 0.1530 0.0825 B1
Song’s method 0.5557 0.0552 0.1573 0.1520 0.0799 B1
Wang’s method 0.5417 0.0576 0.1635 0.1530 0.0843 B1

Proposed method 0.5614 0.0525 0.1551 0.1503 0.0807 B1
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Figure 7. The comparison of different methods for Case 2.

By analyzing the original evidence obtained by the sensors, it can be seen that the BPA
value of sensor S1 for B1 was 0, which is in great conflict with other evidence. The BPA
value of the focal element {B1, B2, B3} was 0.7, indicating that the evidence has uncertainty
to a large extent. Therefore, the proposed method gives evidence m1 a lower weight. Sensor
S2 and sensor S4 are more inclined to support target B1, and the evidence they correspond
to has higher certainty and less conflict with other evidence, so it is reasonable that they
are given higher weights. From Table 7 and Figure 7, it can be seen that the recognition
result of the proposed method is consistent with other comparison methods, and supports
B1 with a degree of 0.5614, which is higher than other comparison methods. This shows
that the proposed method of the belief correlation measure is more effective.

We also conducted a sensitivity analysis of each method on the value of parameter λ.
When λ takes a different value between 0 and 1, the change trends of the support degree
to the target B1 of different methods are shown in Figure 8. It can be found that as the
parameter λ increases, the fusion results of different methods have reduced the support
degree for target B1, indicating that, in this case, the objective weight had a negative impact
on the support degree for target B1, and the subjective weight had a positive impact on it.
The proposed method always had a higher support degree than other comparison methods.

Then, a statistical test by adding different levels of noise to evidence was also per-
formed. Specifically, the focal element {B1} in m4 was selected to add noise. After adding
noise, the focal elements in m4 became:

m′4 : m′4{B1} = 0.3− v, m′4{B2} = 0.05, m′4{B3} = 0.1, m′4{B1, B3} = 0.1, m′4{Θ} = 0.45 + v

Then, data fusion was conducted based on different correlation measurement methods.
Table 8 and Figure 9 display the experimental results. It can be seen that when the variation
value was small, the support degree of Song’s method was similar with the proposed
method. However, when the variation value became larger, its support for {B1} decreased
dramatically. The proposed method always had the highest support for {B1} under differ-
ent levels of noise conditions. The statistical average value of the proposed method was
higher than other comparison methods. It is verified that the proposed method is effective.
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Figure 8. The sensitivity analysis on parameter λ for Case 2.

Table 8. The mass values of focal element {B1} in fusion results under different variation values.

Variation Jiang’s Method Xiao’s Method Song’s Method Wang’s Method Proposed

0.15 0.3854 0.3908 0.4148 0.3694 0.4205
0.16 0.3792 0.3808 0.4044 0.3589 0.4128
0.17 0.3730 0.3707 0.3932 0.3484 0.4049
0.18 0.3667 0.3605 0.3811 0.3381 0.3969
0.19 0.3605 0.3503 0.3680 0.3280 0.3888
0.20 0.3542 0.3401 0.3539 0.3183 0.3805
0.21 0.3479 0.3301 0.3387 0.3090 0.3721
0.22 0.3416 0.3203 0.3222 0.3001 0.3635
0.23 0.3353 0.3109 0.3044 0.2917 0.3547
0.24 0.3290 0.3020 0.2855 0.2838 0.3457
0.25 0.3227 0.2935 0.2654 0.2765 0.3365

Average 0.3541 0.3409 0.3483 0.3202 0.3797

Figure 9. The visualization for mass value of focal element {B1} under different variation values.

7. Conclusions

In this work, a new correlation measure for belief functions is proposed on the basis
of belief entropy and relative entropy. The proposed belief correlation measure takes into
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account the influence of information uncertainty on the relevance between belief functions.
In addition, this measure has some important mathematical properties of probabilistic
consistency, non-negativity, non-degeneracy, boundedness, orthogonality, and symmetry.
Based on the belief correlation measure and discriminability measure, a new information
fusion method is designed. This fusion method uses the belief correlation measure between
evidence to generate the objective weight, and uses the discriminability measure of evidence
to generate the subjective weight. Then, the combinational weight is obtained, which can
reflect more comprehensive information of evidence. The information fusion method can be
applied to multi-source data processing tasks. Two specific application cases are described
in steps to demonstrate the reliability of the proposed method. Through comparison and
analysis with existing methods, it is verified that the proposed method is effective.

It should be noted that the proposed belief correlation measure satisfies the property of
orthogonality but does not satisfy triangular inequality, which conflicts with orthogonality.
We will conduct further work to improve the consistency of this approach. In addition, we
also tend to integrate the information fusion method into recognition or control systems to
construct end-to-end models in future studies, which may further enhance the performance
of information processing systems.
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