
Citation: Galitsky, B.; Ilvovsky, D.;

Goldberg, S. Shaped-Charge

Learning Architecture for the

Human–Machine Teams. Entropy

2023, 25, 924. https://doi.org/

10.3390/e25060924

Academic Editors: Donald Sofge,

William Lawless and Daniel Lofaro

Received: 12 April 2023

Revised: 22 May 2023

Accepted: 1 June 2023

Published: 12 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Shaped-Charge Learning Architecture for the
Human–Machine Teams
Boris Galitsky 1,*, Dmitry Ilvovsky 2,* and Saveli Goldberg 3

1 Knowledge-Trail, San Jose, CA 93635, USA
2 Computer Science Faculty, HSE University, Moscow 101000, Russia
3 Department of Radiology at Massachusetts General Hospital, Boston, MA 02114, USA; savelig@gmail.com
* Correspondence: bgalitsky@hotmail.com (B.G.); dilvovsky@hse.ru (D.I.)

Abstract: In spite of great progress in recent years, deep learning (DNN) and transformers have
strong limitations for supporting human–machine teams due to a lack of explainability, information
on what exactly was generalized, and machinery to be integrated with various reasoning techniques,
and weak defense against possible adversarial attacks of opponent team members. Due to these
shortcomings, stand-alone DNNs have limited support for human–machine teams. We propose a
Meta-learning/DNN→ kNN architecture that overcomes these limitations by integrating deep learning
with explainable nearest neighbor learning (kNN) to form the object level, having a deductive
reasoning-based meta-level control learning process, and performing validation and correction of
predictions in a way that is more interpretable by peer team members. We address our proposal from
structural and maximum entropy production perspectives.

Keywords: machine-learning support for human–machine teams; deep and nearest-neighbor learning;
structural entropy production; maximum entropy production

1. Introduction

Despite much advancement in AI systems to reproduce human language, designing
agents that use natural language (NL) to communicate with human agents in real-world
productive environments remains a major challenge. A major long-term goal for Artificial
Intelligence (AI) is to build machines capable of conversing, interacting, planning, agreeing,
and disagreeing with humans in NL. Although much progress has been made in language
models that imitate human language, effective collaborating agents must go beyond this
by understanding and communicating their beliefs, goals, and intentions of themselves
and their peers; and by planning joint actions that account for their peer’s goals and
intentions. In terms of supporting such collaboration, the machine-learning (ML) engines
of these agents need to combine the efficiency of deep-learning networks (DNN) and
the transparency of classical AI methods such as deductive reasoning and deterministic
inductive learning.

This is the first paper in a series of two with a focus on the architecture and methodol-
ogy, while the second paper addresses applications and evaluation. The purpose of such a
split is to convince the reader that the novel learning architecture is fruitful and efficient, as
seen analytically, without the involvement of an evaluation as a black box. This is to oppose
our approach to the most popular papers from the DNN community, where the evaluation
section is frequently essential, and an approach cannot be accepted by the community
without it.

As team performance can be characterized by entropy [1], we proceed from unexplain-
able ML support vulnerable to adversarial attacks to achieve explainable, collaboration-
efficient support [2–5]. Entropy evolves accordingly from high structural entropy to a
reduced one under higher team efficiency and productivity.

Entropy 2023, 25, 924. https://doi.org/10.3390/e25060924 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060924
https://doi.org/10.3390/e25060924
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25060924
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060924?type=check_update&version=1

Entropy 2023, 25, 924 2 of 29

We build a hybrid ML structure, starting from neural gradual descent, which cul-
minates in nearest-neighbor learning. We attempt to combine the best of both worlds:
accuracy of neural learning with explainability and meaningfulness of nearest neighbor
learning and reasoning, which validates and corrects DNN results. For a given prediction,
we first apply neural gradual descent, and then as we derive a candidate prediction, we
apply nearest neighbors to it to produce an exact, interpretable result. Hence, the prediction
sessions of shaped-charge ML ‘explode’ when the final stage is achieved and after a set or
sequence of relevant samples is applied.

We address not only such limitations of stand-alone DNN as a lack of explainability
and demonstration of explicit generalization, leveraging common sense, vulnerability to
adversarial attack, and a lack of introspection. Some of these limitations can be overcome by
wrapping a DNN with an explainable ML component [6], such as nearest neighbor learning
(kNN), and the other by meta-learning in the form of reasoning about the DNN + kNN
learning process.

One implementation of shaped-charge ML is question answering based on a neural
machine-learning subsystem followed by a syntactic match with the candidate answer (a
match is characterized by minimum entropy), which verifies and corrects it when needed.
A similar approach is used for summarization: the kNN verifies if, for each summary
phrase, there is a similar sentence in the text being summarized. Another architecture
included is a transformer-based content generation that is verified and corrected via a web
mining fact-checking component.

Combining symbolic reasoning and numeric processing is known to be a promis-
ing direction in AI and applications. Our hybrid architecture can be expressed as Meta-
learning/DNN→ kNN:kNN follows DNN, and learning configuration is controlled in the
metalanguage of inductive learning, such as inductive logic programing (ILP) or discourse
analysis as a meta-language for object-level semantics. One way to look at this research
is building a discourse theory around DNN learning as if all learning occurs in a text.
For other kinds of data, such as images, we consider discourse in a broader context at an
abstract meta-level.

In this work, instead of a classifier ensemble approach that would combine high-
performing DNN and lower-performing but explainable kNN, we apply kNN to an en-
riched DNN prediction instead of the original data being classified. We frame the results
by structural or process costs, where the least entropy expended is optimal [1], and by
effectiveness, where maximum entropy productivity is the most effective outcome, i.e., an
“ML explosion”.

DNNs are architectured to acquire a hierarchical set of representations of text or
images. These representations embed the input data in increasingly abstract spaces, which
gradually become abstract enough for the problem to be solved, such as classification
or generation, prior to being solved [7]. We ascend all the way to a meta-learning level
controlling the structure of DNN processors operating at the object level.

Hence, we extend DNN with kNN for explainability and accuracy verification, cover
it with meta-learning to control both learning and prediction processes, and enable the
overall system with reasoning capabilities. For applications in a text domain, we implement
meta-learning in the form of textual discourse. Syntax and semantics, together with DNN
recognition of syntax and semantics, constitute the object level, while the discourse forms
the meta-level, controlling this object level.

Our first section provides examples of failures of some human–machine teams which
motivate this study. Applications of shaped-charge learning are presented in the companion
paper of this volume (“Applications of shaped-charge learning”).

1.1. Examples of Failures of Human–Machine Teams

Team failures represent wasted maximum entropy structure costs and minimum
entropy productivity or effectiveness.

Entropy 2023, 25, 924 3 of 29

In November 2022, Meta (Facebook) gave access to its new language model (LM) called
Galactica, intended to help researchers. However, instead of earning the great success that
Meta was expecting, Galactica was shut down after three days of intense criticism. A main
flaw with Galactica is that it is not able to differentiate true from false facts. Users were
receiving fake papers attributed to real authors. For example, Galactica produced Wiki
articles about the history of animals in space. Users can identify misrepresentations when
they involve entities such as space bears while having difficulties with a subject they may
not be familiar with.

The exaggeration of DNN usability is a big problem in the self-driving auto domain.
Tesla has been criticized by the Department of Motor Vehicles in California, USA, when
it made claims about its autopilot and self-driving features (which are based on DNNs).
These claims are believed to be deceptive. Tesla is at risk of having its licenses to operate as
a vehicle manufacturer and auto dealer in California revoked. Tesla has also been criticized
for how it positions its Advanced Driver Assistance System. One of the main concerns has
been the actual names of the systems: Autopilot and Full Self-Driving Capability. Some
people believe the names suggest that the systems are autonomous, even though they are
only driver-assisted systems.

The field of DNN is especially subject to fake claims as the technology looks magical,
but it is hard for a general audience to understand how it works. Many businesses that
claim to have developed DNN algorithms for images or texts do not always disclose that
human agents are acting behind the scenes. This tradition of hiding human input in DN
systems is a known “secret” in the AI business community. MMC Ventures found in 2019
that almost half of all startups claiming to use AI technology are not actually using AI in
their products.

Another example of a failure of human–machine teams is in the CRM (customer
relationship management) domain, where a subpar performance of a business, such as a
call center, is due to faulty ML support. The concept of Distributed Incompetence (DI),
opposite to Distributed Knowledge, was discovered [8]. In a business overwhelmed with DI,
a team of customer support employees is managed in a way that, being rational, impresses
a customer but with total irrationality and incompetence and a lack of capability to get
things done. In most cases, the whole business or a particular team member gains from DI
by means of refusing monetary compensation to customers who received faulty products or
services. DI has been identified in a variety of organizations, and its commonality, together
with specific DI features, has been analyzed. A DI rate has been assessed in financial
organizations, and a solution to tackle it based on conversational AI has been proposed.

Distributed Incompetence is frequently connected with misrepresentations. When a team
is eager to achieve a goal, it can ignore rationality by dissembling and lying. In most cases, such
a team lacks competence in what they attempt to do. Nonetheless, team members intensely
try to convince their peers of the opposite. This is aggressive Distributed Incompetence.

There have always been impressive stories of lies and deceit, tales about founders
sharing partial truths about how their companies were founded and which products
were developed, and CEOs exaggerating the features of their products to mislead an
audience. Some CEOs misrepresent the number of users (such as Twitter); some provide
misrepresentations to Congress concerning privacy issues, assuring they have full control
over the personal data of their users (Facebook). One of the most striking stories is that of
Elizabeth Holmes, the founder of Theranos, who developed blood test technology [9].

Over the last half-decade, the first and second authors leveraged Theranos’ texts as a
dataset for argumentation analysis. Texts from the Wall Street Journal with claims that the
company’s conduct was fraudulent were subjected to discourse analysis. The authors were
developing argumentation mining and reasoning algorithms [10] witnessing the Theranos
story, and obtaining content from the Theranos website. A part of the audience believed
that the case was initiated by Theranos’ competitors, who felt threatened by the proposed
blood test technique of Theranos. However, our argumentation mining demonstrated that

Entropy 2023, 25, 924 4 of 29

Theranos’ claims were faulty. The SEC (2018) [11] states that Holmes raised a few hundred
million from investors while making false statements about Theranos technology.

We conclude this section with the statement that teams need better ML systems than
those that are currently available, especially with reasoning capabilities. In terms of entropy,
a maximal structural entropy indicates that energy has been wasted, meaning a minimum
entropy in effectiveness has been achieved. Our major direction of improvement is a
hybrid ML plus reasoning architecture. As a hybrid DNN plus reasoning architecture
being suggested, we analyze the shortcomings of a DNN first and then that of stand-alone
logic-based learning such as Inductive Logic Programming second.

1.2. Limitations of Stand-Alone DNN

AI in general and DNN in particular are important in our lives, having made a huge
impact in a broad range of domains, including medical imaging, process controls, naviga-
tion, and language modeling. Carefully designed feature engineering used in traditional
ML, such as classification and pattern recognition systems, is not always scalable for com-
plex problem domains and big data. In many domains, depending on how sophisticated
the task is, DNN can outperform shallow neural networks that prevented fast training and
building hierarchical models of complex training data [12]. However, DNNs have strong
limitations in human–machine environments in comparison with traditional logical AI.

In general, any task that requires reasoning (including software development pro-
gramming, leveraging the scientific method, or planning and algorithmic data processing)
is beyond the DNN skillset. Even learning a sorting algorithm is extremely difficult for
DNN since it is a chain of continuous topological transformations of one representation
space into another. DNNs are capable of mapping one data representation, D1, into another
data representation, D2, if a learnable continuous transformation from D1 to D2 exists and
if having the training data in D1–D2 format is available. Although a DNN model can be
viewed as a sequence of instructions, most programs cannot be encoded as DNNs. For
most problems, either a respective reasonably sized DNN that solves the task does not exist,
or even if it does exist, it may not be learnable, i.e., encoded topological transformations
may be overly complex, or there may be a lack of data to train it [13].

Boosting current DNN architectures by forming additional layers and involving a
higher amount of training data can only superficially alleviate some of these limitations.
Scaling up DNNs is not expected to solve the essential limitation of the DNNs that are
limited in what they can represent and that most of the algorithms that need to be learned
cannot be expressed as a continuous topological transformation. Although DNNs are
good at image recognition, machine translation, and malware detection, their use is often
critiqued for their lack of robustness in adversarial settings and a lack of capability to back
up their predictions.

One of the risks of neural AI is that of misinterpreting what DNN models do and
overestimating their abilities. A fundamental feature of the human mind is the “theory of
mind”, the human ability to reason about intentions, beliefs, and knowledge of subjects
in the real world and themselves (introspection). Applied to a DNN, this is interpreted
that when a model is trained to generate captions to describe pictures, we expect this
model to “understand” the contents of the pictures, as well as the captions it generates.
“Understanding” here is, in a sense, mapping the real world into a symbolic representation
of it. DNN users are then astonished when any deviation from the type of images in the
training dataset leads a DNN to yield meaningless text for images.

We now enumerate the limitations of DNN confirmed by an expert community [14]
and how the shaped-charge approach can overcome them:

Representation of the environment. An insufficient capability exists to form representa-
tions of the real world with a high level of generality to allow easy and efficient manip-
ulation of representations. We will apply Inductive Logic Programming when/if users
request an explicit generalization result. For question answering, we will show syntactic
and semantic generalizations as a measure of answer relevance.

Entropy 2023, 25, 924 5 of 29

Abstract concept formulation. A limited ability to comprehend, manipulate, and
formulate abstract concepts to reduce the high dimension of a stimulus or express the
meaning of an NL expression. The integration of a DNN with a formal concept analysis [15]
in chatbot dialogue management helped to alleviate this shortcoming.

Causal links. A limited ability to identify the causal direction in which features lead
to which other features and a lack of skill in the generalization of learned causal relations.
Combining induction and deduction is essential to reason causal relationships; these
relationships are also essential to team collaboration.

Meta-reasoning and meta-learning. Limited acquisition skills in how to learn and how
to introspect. These are reflected by difficulties in selecting which algorithmic adaptation
learns optimally in each domain-specific learning task, leveraging the meta-data about the
learning tasks.

DNN systems do not really “understand” their input, in any sense, from the human
standpoint. Human representation of images, sounds, and language, as well as tactile
feeling, is grounded in the sensory experience of humans [13]. ML is unable to rely on
“human sensor” experiences and thus cannot “understand” its inputs. By digesting large
numbers of training examples, DNNs learn a topological transformation that maps data to
human concepts for this specific set of examples. However, this topological mapping is just
an approximation of the original model in human minds, yielding from human experience
as embodied agents (Figure 1). Hence, it is necessary to wrap a DNN by some formalization
of human sense.

Entropy 2023, 25, x FOR PEER REVIEW 5 of 31

Representation of the environment. An insufficient capability exists to form representa-
tions of the real world with a high level of generality to allow easy and efficient manipu-
lation of representations. We will apply Inductive Logic Programming when/if users re-
quest an explicit generalization result. For question answering, we will show syntactic and
semantic generalizations as a measure of answer relevance.

Abstract concept formulation. A limited ability to comprehend, manipulate, and formu-
late abstract concepts to reduce the high dimension of a stimulus or express the meaning
of an NL expression. The integration of a DNN with a formal concept analysis [15] in
chatbot dialogue management helped to alleviate this shortcoming.

Causal links. A limited ability to identify the causal direction in which features lead to
which other features and a lack of skill in the generalization of learned causal relations.
Combining induction and deduction is essential to reason causal relationships; these rela-
tionships are also essential to team collaboration.

Meta-reasoning and meta-learning. Limited acquisition skills in how to learn and how
to introspect. These are reflected by difficulties in selecting which algorithmic adaptation
learns optimally in each domain-specific learning task, leveraging the meta-data about the
learning tasks.

DNN systems do not really “understand” their input, in any sense, from the human
standpoint. Human representation of images, sounds, and language, as well as tactile feel-
ing, is grounded in the sensory experience of humans [13]. ML is unable to rely on “human
sensor” experiences and thus cannot “understand” its inputs. By digesting large numbers
of training examples, DNNs learn a topological transformation that maps data to human
concepts for this specific set of examples. However, this topological mapping is just an
approximation of the original model in human minds, yielding from human experience
as embodied agents (Figure 1). Hence, it is necessary to wrap a DNN by some formaliza-
tion of human sense.

Figure 1. Approximation of the real world with DNN and human cognition.

DNNs are often criticized for their poor performance in adversarial settings and a
lack of skills to make predictions rationally. Papernot and McDaniel [16] leverage the
DNN structure to improve learning-based reasoning and achieve robust and interpretable
decision methodologies. The authors introduce the Deep k-Nearest Neighbors that com-
bine the kNN with data distribution learned by each DNN layer. A test input is matched
with its neighboring training samples with respect to the distance between these samples
in the DNN layer representations. Ref. [16] demonstrate that the confidence estimates of
the labels of these points obtained by kNN can be made outside the training set’s vicinity.
A kNN is used to estimate a lack of support for a prediction in the training data. Confi-
dence levels can also be computed for malicious inputs such as adversarial examples; this
assures stability in performance with respect to inputs that are outside the DNN “under-
standing”. A kNN component also supports human-interpretable explanations of predic-
tions. Papernot and McDaniel apply the Deep k-Nearest Neighbors algorithm to several

Figure 1. Approximation of the real world with DNN and human cognition.

DNNs are often criticized for their poor performance in adversarial settings and a
lack of skills to make predictions rationally. Papernot and McDaniel [16] leverage the
DNN structure to improve learning-based reasoning and achieve robust and interpretable
decision methodologies. The authors introduce the Deep k-Nearest Neighbors that combine
the kNN with data distribution learned by each DNN layer. A test input is matched
with its neighboring training samples with respect to the distance between these samples
in the DNN layer representations. Ref. [16] demonstrate that the confidence estimates
of the labels of these points obtained by kNN can be made outside the training set’s
vicinity. A kNN is used to estimate a lack of support for a prediction in the training data.
Confidence levels can also be computed for malicious inputs such as adversarial examples;
this assures stability in performance with respect to inputs that are outside the DNN
“understanding”. A kNN component also supports human-interpretable explanations of
predictions. Papernot and McDaniel apply the Deep k-Nearest Neighbors algorithm to
several datasets to demonstrate that the confidence estimates properly compute inputs
outside the training dataset. Explanations produced by a kNN are comprehensive and
assist in handling DNN failures.

Analogical reasoning is another domain essential for team support. DNN can imitate
it only when somewhat similar reasoning chains are available for training. As a result,
when asked the same ‘free fall’ or ‘ice in the water’ question, GPT-3 returns the wrong
answer: “The heavier object will fall faster”. Due to their lack of grounded reasoning,

Entropy 2023, 25, 924 6 of 29

current LMs also have issues with truthfulness [17] and factuality [18], which we addressed
in our earlier studies [19].

Having analyzed the limitations of a DNN, we now proceed to the analysis of short-
comings of an approach that is expected to be complementary: inductive logic program-
ming (ILP), which is designed for learning and reasoning (natural integration with other
reasoning components) at the same time.

1.3. Limitations of Stand-Alone Inductive Learning

In comparison to most ML approaches, Inductive Logic Programming has several ad-
vantages, primarily by being able to generalize from a small number of samples, sometimes
even from a single example. Given a set of clauses for a target predicate and background
knowledge, the ILP problem is formulated as an induction of a hypothesis that correctly
generalizes the available examples with the background knowledge. A key characteristic
of ILP is that it contains the samples, background knowledge, and hypotheses as logic
programs. These programs include sets of logical rules in the form of clauses. The feature
of an ML system to have team members review generalizations is essential for successful
applications. Because hypotheses are logic programs, they can be read by humans, which
is essential for explainable AI. Being symbolic systems, ILP naturally supports lifelong
transfer learning [20] and learning for team support.

The fundamental limitation of ILP is a slow search in the extended space of a hypothe-
sis. One possibility is to use a set covering algorithm to acquire the hypothesis one clause at
a time. Such algorithms are often efficient because they are based on examples [21]. How-
ever, these ILP approaches sometimes over-generalize; they learn overly specific solutions
and experience difficulties learning programs with nontrivial flows that are recursive [22].
An ILP would benefit from control at the meta-level of how deeply generalized clauses are
and which clause structures to maintain. In this study, we will apply such a meta-level
control to a DNN and a kNN/ILP working together.

Another approach is to encode the ILP as answer set programming. Such algorithms
frequently acquire optimal and recursive programs efficiently and serve as a basis for
state-of-the-art answer set programming solvers but are limited in performance in large
domains with extensive background knowledge [23].

1.4. A Promise of Hybrid Architecture

We now proceed to the approaches which inspired our hybrid Meta-learning/DNN→ kNN
architecture. We propose to rely on gradient descent to link a DNN and kNN (Section 3), and
we will have a DNN and kNN controlled by meta-learning further developed in Section 4. A
kNN can be potentially substituted by an ILP component: its hypotheses can be formed as
DNN predictions.

Due to the success of DNNs, one of the main integrated techniques is to combine them
with logical reasoning, which is called neuro-symbolic computation [24,25]. The main goal
is to establish a unified framework that can make flexible approximations using DNNs
and perform tractable and multi-hop reasoning using first-order logic. In this study, such a
framework is based on a sequential DNN→ kNN hybrid controlled in meta-language.

Inductive Logic Programming (ILP) [26] is a sound formalization for finding theories
from given examples using first-order logic as its language [27]. Ref. [28] introduce an
approach from the ILP family called “learning from failures” where a problem is split into
three separate stages: generate, verify, and constrain. In the generate stage, the learner
generates a hypothesis (a logic program) that satisfies a set of syntactic constraints. In the
verify stage, ILP verifies how training examples satisfy the hypothesis. A failure of the
hypothesis means that it does not yield all of the desired positive examples or it yields a
negative example. In the case of a hypothesis failure, at the constraint stage, ILP acquires
hypothesis constraints from the failed hypothesis to reduce the hypothesis space. Such a
reduction constrains the hypothesis to be generated in further iterations.

Entropy 2023, 25, 924 7 of 29

ILP algorithms use syntactic bias, which forces syntax constraints on hypotheses, such as
the number of variables allowed in a clause, and also semantic bias, which reduces the number
of hypotheses based on their semantics, such as whether they are irreflexive or functional.

Metarules control syntactic bias used by many ILP approaches [29], including Metagol
and ∂ILP [30]. A metarule is a higher-order clause that defines the exact form of clauses in
the hypothesis space in an ILP and defines the learning configuration for an arbitrary learner,
such as a DNN. For instance, the chain metarule is of the form l(A,B)←m(A,C),n(C,B), where
l, m, and n are predicates, A, B, and C denote predicate variables, and the result allows for
instantiated clauses such as final_processing_step(A,B):- reorder(A,C), first_processing_step(C,B).
A human team member must either supply a set of metarules or rely on a set of metarules
constrained to a specific fragment of logic, such as dyadic Datalog [31] for ILP.

One implementation of shaped-charge ML is question answering based on a neural
machine-learning subsystem, first followed by a syntactic match with a candidate answer.
Another architecture is a transformer-based content generation that is corrected by a web
mining fact-checking component.

A boost of performance in large language models can be facilitated by one of the
following approaches:

(1) Increasing the size of the models in both depth and width;
(2) Enlarging the number of tokens that the model was trained on;
(3) Building cleaner datasets from more diverse sources;
(4) Improving model capacity through sparsely activated modules.

These improvements include maintaining the size of a model and token set, corpus
consistency, and completeness, as well as sparse model activation, which can be assessed
and controlled from the meta-level. Instead of intervening by a team member, these
responsibilities are automated in the form of meta-rules.

Combining DNN and explainable ML approaches, which both implement gradient
descent [30], addresses a DNN’s lack of explainability of predictions and assures a “smooth”
transition from the former to the latter in the course of a prediction session. The knowl-
edge that deep networks are effectively path kernel machines can significantly improve
interpretability. The weights of synaptic connections in a DNN have a direct interpretation
as a superposition of the training samples in a gradient space, where each sample can
be mapped into the corresponding gradient of the model. Combining deep and nearest-
neighbor learning under the single gradient descent umbrella leverages both the high-level
performance of the former and the interpretability of the latter. Moreover, a meta-learning
control automates routines associated with feature and training datasets engineering.

Evans and Grefenstette [30] proposed Differentiable Inductive Logic Programming
(∂ILP), which is an environment for building logic programs from given samples relying
on differentiation. The ∂ILP framework reduces an ILP to an optimization process that can
be solved via gradient descent. Its differentiability establishes a promising merge of ILP
and neural networks to deal with sub-symbolic and noisy data.

There are the following bottlenecks for learning complex programs and structured data:

(1) The number of clauses grows;
(2) A high number of ground atoms can be generated with function symbols;
(3) As the search space grows, the computational costs and space required increase

quadratically.

Shindo et al. (2021) [32] resolve these issues by proposing a new differentiable algo-
rithm for acquiring logic programs that merge adaptive symbolic search and continuous
optimization methods.

Hence, shaped-charge learning functions as follows: a kNN completes an operational
DNN, and meta-reasoning controls them both by verifying and correcting. DNN models
and kNN cases are domain-specific, but meta-reasoning is not. Meta-reasoning controls
active learning, the current dataset, generalizes cases of failure of object level, decides
which ontologies to involve, and controls how the whole ML agent communicates with its

Entropy 2023, 25, 924 8 of 29

peers. Explanation chain rules are also parts of the meta-level, along with rules extracted
by an ILP.

The contribution of shaped-charge learning in comparison with other hybrid DNN + logical
architectures is as follows:

(1) We rely on kNN for explainability as it is the most simple and intuitive representation
of learning via similarity, applicable for both metric learning spaces and structures.
For structured learning, similarity is defined as a cardinality measure of maximum
common substructures such as subtrees (parse trees in linguistic representation).

(2) While a parallel kNN + DNN configuration has been explored [16], a consecutive
DNN → kNN architecture has not, providing a uniform framework for gradient
descent in large but unexplainable followed by reduced and explainable subspaces.
The gradient descent in the same space for multiple learning methods also assures
higher interpretability.

(3) While hybrid architectures combining unexplainable but efficient traits with ex-
plainable but reduced efficiency have been proposed, shaped-charge defines a clear
boundary between which method is applied to which part of the dataset at a certain
level of granularity.

(4) While meta-reasoning and meta-learning have been broadly used in ML, the meta-
level support of the gradient descent in DNN → kNN allows for better manual
feature engineering, handling unbalanced datasets, out-of-distribution data, and
guided active learning capabilities. Active learning supported by meta-learning then
facilitates fine-tuning.

1.5. Background Information

K-Nearest Neighbors [33] is a supervised machine learning algorithm used for classifi-
cation and regression problems. The aim is to find the K-Nearest data points in the training
dataset and classify new data points according to the labels of their nearest neighbors. KNN
is a non-parametric approach, which means that it does not make any assumptions about
the underlying data distribution. KNN is a popular choice for many classification tasks due
to its simplicity and ease of implementation. It is based on the assumption that similar data
points are more likely to belong to the same class. This assumption is based on the idea
of similarity measurement, which is performed using a distance metric such as Euclidean
distance. KNN is also a lazy learner, which means that it does not learn a discriminative
function from the training data but rather simply stores the training data and uses it as a
reference when a new data point is encountered. KNN has several advantages, such as its
simplicity and ability to handle large datasets. It is also robust to outliers since they have less
of an impact on the average of the k-Nearest Neighbors. In addition, it is non-parametric,
which means that it does not make any additional assumptions about the dataset.

Deep Neural Networks (DNNs) are a class of Artificial Neural Networks (ANNs) that
are composed of multiple layers of neurons and are used for a variety of applications such
as image recognition, speech recognition, natural language processing, and reinforcement
learning. DNNs have become increasingly popular due to their ability to model complex
nonlinear relationships between inputs and outputs. Unlike traditional ANNs, DNNs are
able to learn complex functions through the use of multiple layers of neurons, allowing
them to effectively represent complex data. Additionally, DNNs are capable of leveraging
large datasets to learn patterns and make predictions.

DNNs have become increasingly popular in the field of natural language processing
(NLP) due to their ability to learn complex relationships between words and phrases.
DNNs are able to learn word embeddings, which are representations of words that capture
their semantic and syntactic information. DNNs have been used in a variety of NLP tasks,
such as sentiment analysis, text classification, question answering, and machine translation.
DNNs have been shown to outperform traditional methods in these tasks due to their
ability to capture complex relationships in data. DNNs have also been used for language
modeling, which involves predicting the next word in a sentence. This has been applied

Entropy 2023, 25, 924 9 of 29

to speech recognition systems and has improved their accuracy significantly. In addition,
DNNs have been used for text generation, which involves generating new text from a given
input. This has been used for applications such as automated summarization, automatic
poetry generation, and conversation.

2. Extending Traditional DNN Architecture towards a kNN

DNNs learn a hierarchical set of representations, ascending to higher levels of gen-
eralizations. DNNs embed an input pattern into increasingly abstract spaces, at some
point, into a space where a prediction can be made using a baseline logistic regression. It is
usually implemented by a SoftMax layer which is the last one in most DNN architectures.

This layered representation allows DNNs to produce adequate generalizations on data
presented to the model at test time. However, phenomena such as adversarial examples
and, in particular, the ones produced by feature adversaries [34] show that language
representations learned by DNNs are not as reliable as the DNN community initially
estimated. This is also true for cases with a lack of invariance to translations [35]. Because
DNN training algorithms rely on the assumption that test data is obtained from a similar
distribution to the training data, they perform reasonably well in domains with similar
distributions. However, when a DNN is used in health or security domains where safety
and reliability are essential, it is necessary for a meta-learning agent to control overfitting.
It becomes important to apply machinery to identify when DNN relies too much on the
representations it has built from its training data, which cannot be transferred to the real
world. In particular, a kNN is expected to analyze these internal representations at test
time to detect contradictions with patterns extracted from the training data.

Papernot and McDaniel [16] exploit the DNN structure to enable new learning-based
inference and decision strategies that achieve robustness and interpretability, introduced
by Deep k-Nearest Neighbors (DkNN, Figure 2). In contrast to this study, we apply a kNN
after a DNN to zoom in on the space of possible predictions to improve accuracy and the
capability to integrate with various forms of reasoning.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 31

Figure 2. Parallel DNN and kNN architecture.

A popular method to interpret a DNN output involves looking for training samples
that are close to the query in Euclidean space [36]. Path kernels propose the exact space to
implement these comparisons and to relate them to the model’s predictions.

We combine a deep neural network (on the left in Figure 2), representation outputs
by each layer (in the middle), and the nearest neighbors found at each layer in the training
data (on the right). Topics of wildlife watching and transportation indicate training points.
Prediction accuracy is high when there is homogeneity among the nearest neighbor labels.
Explainability of the outcome of each layer is also provided. A boost in accuracy is assured
by identifying nonconformal predictions from the kNN results obtained for out-of-distri-
bution, adversarial text examples encoded by distinct network layers.

3. Consecutive DNN and kNN Architecture
DNNs trained by a gradient descent algorithm are similar to kernel machines in a

mathematical sense. Kernel machines store the data points and leverage them directly for
prediction via a distance-measure function. This nicely improves the explainability of
DNN weights, as they are essentially a superposition of the training set samples. What a
DNN structure does is embed knowledge of the target function into the kernel. Most ML
systems and DNNs, in particular, learn using certain versions of gradient descent (GD)
[37]. Starting with an initial parameter vector 𝑤 and a loss function 𝐿 = ∑ 𝐿(𝑦∗, 𝑦), GD
iteratively updates the DNN weights w by subtracting the loss’s gradient from them, nor-
malized by the learning rate є as follows: 𝑤 = 𝑤 − 𝜖∇ 𝐿(𝑤)

The iterations stop when the gradient is zero and the loss value is optimized. Learn-
ing via GD assures that its end result is almost always a kernel machine, and it is invariant
with respect to the number of network layers or neuron connection structures.

Kernel machines that implement GD rely on what we call a path kernel. If a learning
rate is minimized, the path kernel between a pair of data samples is the integral of the dot
product of the GD at the pair of respective points over the path traveled by the learning
parameters as follows: 𝐾(𝑥, 𝑥) = ∇ 𝑦(𝑥) ∙ ∇ 𝑦(𝑥)𝑑𝑡()

where c(t) is the path. Informally, the path kernel indicates the distance between the pair
of data points as it varies from iteration to iteration. The lower the distance between the
variation for x and x0 is, the higher the weight of x0 in predicting y.

The path kernel is intended to measure the similarity between examples (Figure 3).
In the 2D training case, as the weights travel through a path, the model’s GD vectors on

Figure 2. Parallel DNN and kNN architecture.

A popular method to interpret a DNN output involves looking for training samples
that are close to the query in Euclidean space [36]. Path kernels propose the exact space to
implement these comparisons and to relate them to the model’s predictions.

We combine a deep neural network (on the left in Figure 2), representation outputs by
each layer (in the middle), and the nearest neighbors found at each layer in the training
data (on the right). Topics of wildlife watching and transportation indicate training points.
Prediction accuracy is high when there is homogeneity among the nearest neighbor labels.
Explainability of the outcome of each layer is also provided. A boost in accuracy is
assured by identifying nonconformal predictions from the kNN results obtained for out-of-
distribution, adversarial text examples encoded by distinct network layers.

Entropy 2023, 25, 924 10 of 29

3. Consecutive DNN and kNN Architecture

DNNs trained by a gradient descent algorithm are similar to kernel machines in a
mathematical sense. Kernel machines store the data points and leverage them directly for
prediction via a distance-measure function. This nicely improves the explainability of DNN
weights, as they are essentially a superposition of the training set samples. What a DNN
structure does is embed knowledge of the target function into the kernel. Most ML systems
and DNNs, in particular, learn using certain versions of gradient descent (GD) [37]. Starting
with an initial parameter vector w0 and a loss function L = ∑i L

(
y∗i , yi

)
, GD iteratively

updates the DNN weights w by subtracting the loss’s gradient from them, normalized by
the learning rate ε as follows:

ws+1 = ws − ε∇wL(ws)

The iterations stop when the gradient is zero and the loss value is optimized. Learning
via GD assures that its end result is almost always a kernel machine, and it is invariant
with respect to the number of network layers or neuron connection structures.

Kernel machines that implement GD rely on what we call a path kernel. If a learning
rate is minimized, the path kernel between a pair of data samples is the integral of the dot
product of the GD at the pair of respective points over the path traveled by the learning
parameters as follows:

K
(

x, x
′)

=
∫

c(t)
∇wy(x)·∇wy

(
x
′)

dt

where c(t) is the path. Informally, the path kernel indicates the distance between the pair
of data points as it varies from iteration to iteration. The lower the distance between the
variation for x and x0 is, the higher the weight of x0 in predicting y.

The path kernel is intended to measure the similarity between examples (Figure 3).
In the 2D training case, as the weights travel through a path, the model’s GD vectors on
the weight plane for x, x1, and x2 are updated. The kernel K(x, x1) and K(x, x2) are then the
integral of the dot product of the gradients∇wy(x) and∇wy(x1) traveling through the path.
Since ∇wy(x) · ∇wy(x1) is greater than ∇wy(x) · ∇wy(x2) on average traveling through the
weighted path, y1 is more important than y2 in predicting y, all things being equal.

3.1. A Gradient Descent in Linguistic Space

We visualize the gradient descent in the linguistic space as getting closer and closer to
the linguistic expression, which makes it complete and truthful (see Figure 4). The question
“gradually descends” to the answer so that the similarity between them increases. We start
with the sentence in a certain vicinity of the question, but not close enough; the verb is
somewhat similar, but the entity is different. We then navigate through other incorrect
entities until we converge on entity = Lermontov and predicate = killed. The role of verb (x1)
and noun (x2) in matching a question by its answer is different. As we navigate the space
of embedding a DNN, the facts are not necessarily true, but they support a monotonic
convergence. Transitioning to a kNN space is an abrupt change as we now navigate through
factually correct answers but not as smoothly organized as under a DNN.

3.2. A Gradient Descent for kNN

A regression is usually defined as an unknown function f : RD → R that is predicted
from the training data {(x1, y1), (x2, y2), . . . , (xN, yN)}, where xj is a data point, and y is the
corresponding target value. The predicted function f̂ is chosen to be the one that minimizes
some loss function. For a classification task having T classes, this loss function is as follows:

MSE(ŷ) =
T

∑
t=1

N

∑
i=1

(
yti − ŷti)

2

Entropy 2023, 25, 924 11 of 29

where ŷ denotes the predicted probability of point xi, and yi denotes the true label (either 0
or 1) of a point xi. For any query point xi, kNN methods produce a prediction of the value
ŷ by relying on the labels of its k nearest neighbors. In order to have a smooth boundary,
each neighbor votes for the query label based on its distance from the query point.

Entropy 2023, 25, x FOR PEER REVIEW 11 of 31

the weight plane for x, x1, and x2 are updated. The kernel K(x, x1) and K(x, x2) are then the
integral of the dot product of the gradients ∇wy(x) and ∇wy(x1) traveling through the path.
Since ∇wy(x) · ∇wy(x1) is greater than ∇wy(x) · ∇wy(x2) on average traveling through the
weighted path, y1 is more important than y2 in predicting y, all things being equal.

Figure 3. A path kernel first for a DNN and then for a kNN.

3.1. A Gradient Descent in Linguistic Space
We visualize the gradient descent in the linguistic space as getting closer and closer

to the linguistic expression, which makes it complete and truthful (see Figure 4). The ques-
tion “gradually descends” to the answer so that the similarity between them increases. We
start with the sentence in a certain vicinity of the question, but not close enough; the verb
is somewhat similar, but the entity is different. We then navigate through other incorrect
entities until we converge on entity = Lermontov and predicate = killed. The role of verb (x1)
and noun (x2) in matching a question by its answer is different. As we navigate the space
of embedding a DNN, the facts are not necessarily true, but they support a monotonic
convergence. Transitioning to a kNN space is an abrupt change as we now navigate
through factually correct answers but not as smoothly organized as under a DNN.

Figure 3. A path kernel first for a DNN and then for a kNN.

Entropy 2023, 25, x FOR PEER REVIEW 12 of 31

Figure 4. Linguistic interpretation of a path kernel in finding an answer to a question.

3.2. A Gradient Descent for kNN
A regression is usually defined as an unknown function f: RD → R that is predicted

from the training data {(x1, y1), (x2, y2), …(xN, yN)}, where xj is a data point, and y is the
corresponding target value. The predicted function 𝑓 is chosen to be the one that mini-
mizes some loss function. For a classification task having T classes, this loss function is as
follows:

𝑀𝑆𝐸(𝑦) = (𝑦 − 𝑦)

where 𝑦 denotes the predicted probability of point xi, and yi denotes the true label (either
0 or 1) of a point xi. For any query point xi, kNN methods produce a prediction of the value 𝑦 by relying on the labels of its k nearest neighbors. In order to have a smooth boundary,
each neighbor votes for the query label based on its distance from the query point.

The Nadaraya–Watson kernel for regression is expressed as follows:

𝑦(𝑥) = ∑ 𝑦 𝑉∑ 𝑉

The vote Vj cast by each label around the query point x is usually chosen to be a func-
tion that decays exponentially as the distance from the query point increases, for example,
a Gaussian kernel, which is expressed as follows: 𝑉 = 𝑒𝑥𝑝 −𝑑(𝑥, 𝑥)2𝜎

Determining votes Vj would rely on a well-defined distance measure, which is mostly
unavailable, especially in the NLP domain.

A kNN requires feature scaling; however, scaling all of the data to the same range is
not sufficient, and when the number of features is large, it is impossible to scale the data

Figure 4. Linguistic interpretation of a path kernel in finding an answer to a question.

The Nadaraya–Watson kernel for regression is expressed as follows:

ŷ(x) =
∑j yjVj

∑j Vj

Entropy 2023, 25, 924 12 of 29

The vote Vj cast by each label around the query point x is usually chosen to be a
function that decays exponentially as the distance from the query point increases, for
example, a Gaussian kernel, which is expressed as follows:

Vj = exp

(
−d
(
x, xj

)
2σ2

)

Determining votes Vj would rely on a well-defined distance measure, which is mostly
unavailable, especially in the NLP domain.

A kNN requires feature scaling; however, scaling all of the data to the same range is
not sufficient, and when the number of features is large, it is impossible to scale the data
manually. In a traditional kNN, the distance between the query object and the j-th object in
dataset d(xq, xj) could be described as d

(
Xq, Xj

)
=
∥∥Xq − Xj

∥∥2
2.

For its feature matrix X, the feature can be scaled using a vector A, thus turning the
distance function d2(xq, xj) as follows:

d
(
Xq, Xj

)
=
∥∥AXq − AX j

∥∥2
2

where d(x, xj) should be replaced by a more general metric: dL(x,xj). If L = AT A, then dL
(x,xj) = (Ax − Axj)T (Ax − Axj). Since mean square error (MSE) is a function of ŷ and ŷ
depends on ||x − xj||2 L, MSE can be minimized by selecting an optimal value of L.

Votes, Vj, can be replaced by Wj as Wj = exp
(
−‖AXq−AX j‖2

2
2σ2

)
.

Finally, the GD of the error function EA with respect to the matrix A, which is mini-
mized to get an optimal A, can be expressed as:

∂E
∂A

= 2A(yi − ŷi)
1

∑j Wj
∑j
(
yj − ŷj

)
Wj

(
x− xj)

T

3.3. From Path Kernel to kNN

Definition 1. The tangent kernel formed for function f w(x) and the parameter vector v with the
gradients taken at v is Kgf,v(x, x’) =∇wf w(x) ·∇wf w(x′).

The path kernel associated with function fw(x) and curve c(t) in parameter space is
expressed as follows:

Kp
f ,c(x, x′) =

∫
c(t)

Kg
f ,w(t)

(
x, x′

)
dt

Domingos [38] proved that lim
ε→0

y = ∑m
i=1 aiK(x, xi) + b if the model y = fw(x), where f is

a differentiable function of w, is acquired from a training set {(xi, yi*)}mi = 1 via GD with a
differentiable loss function L = ∑I L(yi*, yi); learning rate ε and b is the initial model. K(x, xi) is
the path kernel for fw(x) and the path obtained by the parameters during GD, and ai is the
average negative ∂L/∂yi traveled through the path weighted by the respective tangent kernel.

This is different from typical kernel machines since ai and b depend on x. At the same
time, ai acts similarly to the example weights in the usual Support Vector Machines (SVMs)
and the perceptrons, i.e., the samples for which the loss is affected by a higher degree have
a greater weight. b is just the existing model, and the final model is computed as the sum
of the existing model and the one learned via GD. The query point occurs in GD only via
kernels. Since the Domingos theorem applies to every yi as a query in the course of GD, the
training samples also occur in the model only through kernels outside of the existing model.

In the conclusion of this section, we repeat that since both a DNN and a kNN imple-
ment versions of GD, it is natural to link them in our consecutive architecture.

Entropy 2023, 25, 924 13 of 29

4. Meta-Reasoning, Meta-Learning, and Introspection

The meaning of the term “meta-reasoning” is to “reason about reasoning”. Analo-
gously, meta-learning is learning how to learn, how to perform generalization properly,
how to construct training datasets, and so on. ML system should be capable of reasoning
about its own operation (this is different from performing object-level reasoning). A sys-
tem capable of meta-reasoning may be able to reflect and introspect, transitioning from
meta-reasoning to object-level reasoning and vice versa [39].

Meta-learning helps ML developers identify algorithms that generate optimal pre-
dictions from datasets. Meta-learning refers to learning algorithms that learn from other
learning algorithms. Meta-learning algorithms use learning algorithm metadata as input.
They then make predictions and provide information about the performance of these learn-
ing algorithms as output. Meta-learning, in particular, discovers how to best combine the
predictions from other machine-learning algorithms in the field of ensemble learning.

A split of processing into two levels has been broadly used in a Theory-of-Mind (ToM)
system so that a machine can reason about itself, control itself, and actively learn. ToM
is essential where some members of the human–machine team reason and learn about
reasoning and learning about other team members. ToM has mainly been leveraged for
the control of deduction; meta-knowledge allows navigation of a solution space leveraging
heuristic rules. Meta-learning has been used to design introspective systems [40,41] which
are capable of updating their own processing capabilities by tracking their status and their
own internal maps of processing. DNNs cannot introspect over themselves, but their meta-
reasoning components can. Meta-learning drives the design of ToM processing, where
active learning and introspection occur within a unified framework [41]. In a meta-learning
approach, a team member or an ML agent is represented in a meta-theory and a set of
base-level (or object-level) theories, which represent the team member’s own knowledge,
intentions, and beliefs, and possibly, that of the other team members. In the meta-theory,
a team member or an ML agent asserts facts about the object-level theories and often
performs deductions on the basis of knowledge represented in them. This requires the
definition of symbols that represent, in the meta-theory, the objects of the theories.

Meta-predicates are employed to define similarity for ML in a more general form,
combining the similarity of numerical expressions and the similarity of logical structures.
For certain objects, if their similarity cannot be expressed in the language object (by neither
a DNN nor a kNN), such a similarity can be expressed in meta-language.

The NL can be encoded by a logical language at two levels. The object level is the level
of semantics. The meta-level is the level of discourse [8]. Discourse meta-expressions such
as discourse or rhetorical relations take as arguments the descriptions of the description of
the object-level semantic formulas. An example of such may be expressed as follows:

discourse_relation (meaning_representation(text1), discourse _relations (meaning_representation (text2)),

where discourse_relation is a meta-predicate whose arguments range over the semantic
expressions. Meta-level rules, such as the discourse rule of text organization, manipulate
a representation of object-level knowledge, such as chunks of semantic knowledge, in
particular, encoded by Abstract Meaning Representation [42].

If a DNN transformer acts on an object level, handling syntax and attempting to
represent semantics, its discourse acts at the meta-level, interfacing with the users of its
transformer model.

There is a simple example of object level and meta-level for the syntax of natural
language. A word in a language, such as a dataset, is different from a name _dataset_; the
word serves the purpose of denoting an entity, and a name denotes the word as a symbol so
that we can say that “_dataset_” is composed of seven characters, is expressed in English,
and its translation into Spanish is ‘conjunto de datos’. Meta-level discourse tackles the
names of predicates, their arguments, and their values to formulate the rules for how text
fragments can be manipulated to logically construct a plot. This construction is essentially
a theory of discourse.

Entropy 2023, 25, 924 14 of 29

4.1. Meta-Reasoning and Introspection

Meta-learning is valuable for improving learning performed at the semantic level,
suggesting that these two levels should be interconnected. Semantic (DNN and kNN)
and discourse levels interact by passing the control to each other. At the object level,
the operation of referentiation converts a semantic expression into a name, and this name
is processed by the discourse component. The inverse operation is called introspection;
the semantic component gives control back to the meta-level discourse component. Lots
of errors are made by a DNN because it lacks this introspection feature, for example,
in managing dialogues. Analogously, human team members become conscious (at the
meta-level of mind) of the mental states that they are currently in (at the object level). To
write texts, human team members proceed from the local content (semantics) to the overall
document structure and back. Analogously, ML systems with peer human users must be
conscious of their success in training, active learning, selection of training methods, and
self-evaluation.

4.2. Linguistic Meta-Interpeter

We formally define the predicate possible_to_predict whose first argument is the repre-
sentation (name) of an object-level semantic theory, AMR, and the second argument is a
goal A. possible_to_predict(“DNN”, “A”) tells us that the goal A is expressible (provable) in
theory DNN as the set of all possible DNN predictions.

Reasoning about knowledge expressed in a document can be performed at the met-
alevel of discourse with a call to possible_to_predict, and the DNN object level is simulated by
providing possible_to_predict with a suitable description “DNN” of a semantic knowledge
representation “theory” DNN.

The rules for upward and downward reflection are as follows:

T |−DNN A
−−−−−−−−−−−−−−−−
Pr |−Discourse possible_to_predict(“DNN”, “A”)

Pr |−Discourse possible_to_predict(“DNN”, “A”)
−−−−−−−−−−−−−−−−
T |−DNN A

where |—Discourse is read as provability (an ability to express) at the metalevel of learning
discourse, and |—DNN means provability at the object level of a DNN (what is called a
neural network inference).

A metalevel clause to reason about ontological is_a relation is needed: possible_to_predict
(“is_a”(A, “B”)|— possible_to_predict(A(B)).

If we have an ontology mammal (“wolf”), animal(“wolf”), mammal(“dog_fido”) and a user
issues a query ‘is dog_fido a mammal?’, it can be represented as is_a(“dog_fido”, “mammal”).

We may also rely on metaprogramming at the discourse level to define properties of
semantic relations as follows:

possible_to_predict(A(B,C))|— symmetric(A), possible_to_predict(A(C,B)).
possible_to_predict(A(B,C))|— transitive(A), possible_to_predict(A(B,W)), possible_to_predict

(A(W, C)). possible_to_predict_not(A(B,B)) |— irreflexive(A).
Synonyms for predicates and for their arguments can also be written as follows:
possible_to_predict (A(B,C))|— symmetric(A), possible_to_predict (A(C,B)).
possible_to_predict (A(B))|— synonym(A,A1), express(A1(B)).
possible_to_predict (A(B))|— synonym(B,B1), possible_to_predict (A(B1)).
possible_to_predict_not(A(B)) |— antonym(A,A1), possible_to_predict (A1(B)).
symmetric(“synonym”). symmetric(“antonym”).

Hence, the knowledge base contains the following:
synonym (“big”, “large”). synonym(“dog”, “wolf”). big(dog).

Entropy 2023, 25, 924 15 of 29

antonym(“angry”, “kind”). kind(wolf).
We can infer large(wolf). not angry(wolf).
The definition of similarity can be rewritten for the following pairs:
possible_to_predict (A(B,C))|— symmetric(A), possible_to_predict (A(C,B)).
possible_to_predict (A(B,C))|— equivalent_pair ((B,C), (B1,C1)), possible_to_predict (A(B1,C1)).
equivalent _pair ((A,B), (A1,B))|— equivalent (A,A1).
equivalent _pair ((A,B), (A,B1))|— equivalent (B,B1). symmetric (“same”).

Then, the knowledge base can be expressed as follows:
equivalent(”cloud_run”, “cloud(process1)”). run_time(cloud_run, 70s).

?-run_time(cloud(process1), A) gives A = 70s.
Meta-learning helps in building embeddings relying on defining similarities at the

meta-level. If the predicate q is defined similarly to a predicate p, then the system may
derive the passage that includes p when an association of any answer with the requested
predicate q is not available.
possible_to_predict(A) |— attenuate (A,B), possible_to_predict(B).
attenuate (A(W),B(W)) |— super_entity(A,C), super_entity(B,C).
Then, if super_entity(“misspelling”, ”misrepresentation”), we obtain the following:

super_entity(“homonym”, ”misrepresentation”). misspelling(Word, ‘real-reel’).
?-homonym(Word, Q) gives Q = ‘real-reel’.
Such a similarity can also be used for transfer learning at the object level.
Meta-learning allows for a convenient formulation of common abstract queries about

learning session executions without knowing exactly what this ontology is or without know-
ing which kind of information is available in an ontology. For an ontology that includes
properties of an individual (job applicant) man(Peter), engineer(Peter), master_degree(Peter),
beginner(Peter)... as well as desired properties from a job description beginner, one can
formulate these into a query in the meta-language as follows:

possible_to_predict(A(“Andrew)), job_description(beginner(man, A)).
Analogical meta-reasoning can be implemented for reasoning about human–machine

teams using the meta-predicate has_property as follows:
possible_to_predict(“has_property”(“x”, B)|— similar (x,z), possible_to_predict(“has_property”

(“z”, B).
For a clause has_property(Perri, “music_background”), similar(Perri, Mary), we can arrive

at the fact has_property(Mary, “music_background”).
Analogical reasoning may also occur as a transfer of properties by determination rules

as follows:
possible_to_predict(A(C,L))|— determine (B, A), possible_to_predict(B(C,N)), possible_to_predict

(B(P,N)), possible_to_predict(B(P,L)),
possible_to_predict(A(B,C))|— equivalent_pair ((B,C), (B1,C1)), possible_to_predict(A(B1,C1)).

4.3. Meta-Learning Controls Active Learning

Scholarly studies on human metacognition [43] and active learning [44] have delved
into various facets of human cognition that are pertinent to meta-reasoning. These studies
have examined how individuals possess an understanding of their internal states, such as
the accuracy of their memories or the confidence in their judgments, and how they can make
intelligent decisions on acquiring additional data samples to extend the training dataset on
demand. However, supporting ML, meta-reasoning goes beyond these specific areas and
encompasses the broader process of selecting or discovering the cognitive procedures that
will be employed to solve a given task.

A notion of ‘metalevel rationality’ [45] can be leveraged by the meta-level to actively
learn. Meta-level rationality is assessed by how well the algorithm follows shaped-charge
learning in order to select the best dataset expansion and other learning actions trading
off expected utility with the costs of taking more time and expending more computation
before acting. From this perspective, rationality is not just about making good decisions
and drawing good inferences but also about employing efficient cognitive strategies.

Entropy 2023, 25, 924 16 of 29

Figure 5 illustrates a meta-level Markov decision process. The initial meta-level
rewards capture the cost of computation, and the final meta-level reward captures the
benefits of computation by the expected object-level reward for choosing a cognitive action
based on the final belief state.

Entropy 2023, 25, x FOR PEER REVIEW 17 of 31

Figure 5 illustrates a meta-level Markov decision process. The initial meta-level re-
wards capture the cost of computation, and the final meta-level reward captures the ben-
efits of computation by the expected object-level reward for choosing a cognitive action
based on the final belief state.

Figure 5. Beliefs, computations, and optimization of the meta-learning architecture.

We introduce the meta-reasoning value of computation and acquiring a new data
sample (VOCADS) based on current beliefs as follows: 𝑉𝑂𝐶𝐴𝐷𝑆 = 𝐸 (| ,) 𝑚𝑎𝑥 𝐸 𝑈(𝑎)|𝑏 − 𝑚𝑎𝑥 𝐸 𝑈(𝑎)|𝑏 − 𝑐𝑜𝑠𝑡(𝑐),

where c is a computation (running a DNN session with a currently available dataset that
matches the current belief), b is the overall system’s current belief, b’ is the updated belief
resulting from executing a DNN learning session (computation) c, and 𝑈(𝑎)|𝑏 is the
expected gain of taking action an over the distribution of outcomes corresponding to belief
b.

Meta-learning over (DNN → kNN) is expected to perform the learning session with
the highest VOCADS, or, if no learning session has positive VOCADS, give up any expec-
tation of prediction accuracy improvement at all. The limitation here is that computing
the VOCADS itself is computationally expensive as it requires executing each computa-
tion to select the optimal cognitive action.

Ackerman and Thompson’s (2017) [46] framework of monitoring and controlling rea-
soning adapted to shaped charge architecture is shown in Figure 6 for the case of the ques-
tion-answering system.

Figure 5. Beliefs, computations, and optimization of the meta-learning architecture.

We introduce the meta-reasoning value of computation and acquiring a new data
sample (VOCADS) based on current beliefs as follows:

VOCADS = Ep(b′ |b,c)

[
maxa′ E

[
U
(

a
′)∣∣∣b′]−maxaE[U(a)|b]

]
− cost(c),

where c is a computation (running a DNN session with a currently available dataset that
matches the current belief), b is the overall system’s current belief, b’ is the updated belief re-
sulting from executing a DNN learning session (computation) c, and [U(a)|b] is the expected
gain of taking action an over the distribution of outcomes corresponding to belief b.

Meta-learning over (DNN→ kNN) is expected to perform the learning session with the
highest VOCADS, or, if no learning session has positive VOCADS, give up any expectation
of prediction accuracy improvement at all. The limitation here is that computing the
VOCADS itself is computationally expensive as it requires executing each computation to
select the optimal cognitive action.

Ackerman and Thompson’s (2017) [46] framework of monitoring and controlling
reasoning adapted to shaped charge architecture is shown in Figure 6 for the case of the
question-answering system.

The left side represents the object-level processes involved in reasoning, considering
that various reasoning theories make different assumptions about the timing and nature of
those processes. The middle area specifies the reasoning and learning monitoring processes,
and the right side provides the associated control functions, including VOCADS-based
cognitive action selection. All monitoring processes reflect the shaped-charge system’s
assessment of the probability of success or failure in each task before, during, or after
engaging in the task. These assessments trigger a variety of control decisions, including
taking cognitive action, allocating time and effort to a task, and choosing a strategy to
complete the task.

A reasoner is first expected to make an initial Judgment of Solvability [47], which
contains the reasoner’s assessment that the problem is solvable. This Initial Judgment of
Solvability decides whether to attempt a solution, give up, seek external help, and so on. In
terms of question answering, the system needs to decide if an answer for a given question
exists and needs to be retrieved or has to be formed via a generative model.

According to [47], the ‘Metacognitive Reasoning Theory’ elucidates the connection
between the monitoring and control of reasoning. This theory specifically addresses
situations in which the problem’s context triggers an immediate, initial response. This
initial response is believed to encompass two aspects: the answer itself and a subjective
Feeling of Rightness associated with it. When the Feeling of Rightness is intense, it serves
as a signal that additional reconsideration is unnecessary. As a result, reasoners dedicate
minimal time to re-evaluating their answers and are unlikely to alter their initial stance [48].

Entropy 2023, 25, 924 17 of 29

Opposingly, a weak Feeling of Rightness is accompanied by longer periods of recon-
sideration and a higher probability of changing answers. Importantly, because Feelings
of Rightness are derived from cues that may be poorly correlated with accuracy (see
next section), reasoners may be led to wrongly accept their initial intuitions with little
reconsideration.

Entropy 2023, 25, x FOR PEER REVIEW 18 of 31

Figure 6. A framework for monitoring object-level learning and reasoning.

The left side represents the object-level processes involved in reasoning, considering
that various reasoning theories make different assumptions about the timing and nature
of those processes. The middle area specifies the reasoning and learning monitoring pro-
cesses, and the right side provides the associated control functions, including VOCADS-
based cognitive action selection. All monitoring processes reflect the shaped-charge sys-
tem’s assessment of the probability of success or failure in each task before, during, or
after engaging in the task. These assessments trigger a variety of control decisions, includ-
ing taking cognitive action, allocating time and effort to a task, and choosing a strategy to
complete the task.

A reasoner is first expected to make an initial Judgment of Solvability [47], which
contains the reasoner’s assessment that the problem is solvable. This Initial Judgment of
Solvability decides whether to attempt a solution, give up, seek external help, and so on.
In terms of question answering, the system needs to decide if an answer for a given ques-
tion exists and needs to be retrieved or has to be formed via a generative model.

According to [47], the ‘Metacognitive Reasoning Theory’ elucidates the connection
between the monitoring and control of reasoning. This theory specifically addresses situ-
ations in which the problem’s context triggers an immediate, initial response. This initial
response is believed to encompass two aspects: the answer itself and a subjective Feeling
of Rightness associated with it. When the Feeling of Rightness is intense, it serves as a
signal that additional reconsideration is unnecessary. As a result, reasoners dedicate min-
imal time to re-evaluating their answers and are unlikely to alter their initial stance [48].

Opposingly, a weak Feeling of Rightness is accompanied by longer periods of recon-
sideration and a higher probability of changing answers. Importantly, because Feelings of
Rightness are derived from cues that may be poorly correlated with accuracy (see next
section), reasoners may be led to wrongly accept their initial intuitions with little recon-
sideration.

Under meta-control, we rely on an uncertainty sampling approach to active learning,
where we acquire data samples for which the current model is least confident in its pre-
dicted label. The outputs of the model M are defined as a probability distribution over

Figure 6. A framework for monitoring object-level learning and reasoning.

Under meta-control, we rely on an uncertainty sampling approach to active learning,
where we acquire data samples for which the current model is least confident in its predicted
label. The outputs of the model M are defined as a probability distribution over possible
labels p(y | x; M), and the cognitive action for data sample selection is defined as follows:

a(x; M) = −maxi p(yi|x; M)

We illustrate the capability of meta-controlled active learning with the following
example (Figure 7). Here, the available initial training data does not provide the model
with a clear set of key features: is it the shape or the color of the object? Pretraining
enables models to identify and weigh various rich features, eliciting labels from informative
examples such as green squares that clarify the user’s intention.

4.4. Obtaining Meta-Learning Structure of DNN Engines

Traditionally, discourse-level analysis controls the overall structure and flow of infor-
mation being communicated in a text. If a text is subject to analysis via an ML system, then
a control level similar to discourse organizes and controls processing units for this text. For
example, answering a question might include the following tasks:

1. Entity extraction from a question and answer;
2. Sentiment analysis of occurrences of these entities in answer;
3. Entity occurrence coordination between a question and an answer.

The overall structure of these tasks follows the directed acyclic graph or tree. It turns
out that the structure of processing tasks can be viewed analogously to the overall thought
structure being communicated by a text. While a discourse tree of text is a well-established
formalism, a discourse tree of processing/extraction units is an abstraction for the meta-
learning of text we propose in this study. Forming a high-level representation of text, we
try to abstract away from whether humans understand a sequence of elementary discourse

Entropy 2023, 25, 924 18 of 29

units or whether a machine applies processing units to this text. Text organization is
expected to be invariant with respect to whether humans or machines process it; the overall
structure of cognition is what matters.

Entropy 2023, 25, x FOR PEER REVIEW 19 of 31

possible labels p(y | x; M), and the cognitive action for data sample selection is defined as
follows: 𝑎(𝑥; 𝑀) = −𝑚𝑎𝑥 𝑝(𝑦 |𝑥; 𝑀)

We illustrate the capability of meta-controlled active learning with the following ex-
ample (Figure 7). Here, the available initial training data does not provide the model with
a clear set of key features: is it the shape or the color of the object? Pretraining enables
models to identify and weigh various rich features, eliciting labels from informative ex-
amples such as green squares that clarify the user’s intention.

Figure 7. Active learning under meta-control can resolve feature selection ambiguity in a dataset.

4.4. Obtaining Meta-Learning Structure of DNN Engines
Traditionally, discourse-level analysis controls the overall structure and flow of in-

formation being communicated in a text. If a text is subject to analysis via an ML system,
then a control level similar to discourse organizes and controls processing units for this
text. For example, answering a question might include the following tasks:
1. Entity extraction from a question and answer;
2. Sentiment analysis of occurrences of these entities in answer;
3. Entity occurrence coordination between a question and an answer.

The overall structure of these tasks follows the directed acyclic graph or tree. It turns
out that the structure of processing tasks can be viewed analogously to the overall thought
structure being communicated by a text. While a discourse tree of text is a well-established
formalism, a discourse tree of processing/extraction units is an abstraction for the meta-
learning of text we propose in this study. Forming a high-level representation of text, we
try to abstract away from whether humans understand a sequence of elementary dis-
course units or whether a machine applies processing units to this text. Text organization
is expected to be invariant with respect to whether humans or machines process it; the
overall structure of cognition is what matters.

Let us try to form a meta-learning structure for text generation in a biography do-
main. We ask ChatGPT to generate a fragment (answer a question) about Alexander Push-
kin’s father (the father of a famous Russian poet of the 19th century) as an entity. An in-
stance of ChatGPT results in what may look like the following:

Q: Where and when was Pushkin’s father born?
A: Alexander Pushkin’s father, Sergei Lvovich Pushkin, was born on 26 May 1767, in

Moscow, Russia. He was a member of the Russian nobility and served as a colonel in the
Imperial Russian Army. Sergei Pushkin married Natalia Alexandrovna Goncharova, Al-
exander Pushkin’s mother, in 1795. Alexander Pushkin was the oldest of their six children.
Sergei Pushkin died in 1848, at the age of 81.

Figure 7. Active learning under meta-control can resolve feature selection ambiguity in a dataset.

Let us try to form a meta-learning structure for text generation in a biography domain.
We ask ChatGPT to generate a fragment (answer a question) about Alexander Pushkin’s
father (the father of a famous Russian poet of the 19th century) as an entity. An instance of
ChatGPT results in what may look like the following:

Q: Where and when was Pushkin’s father born?
A: Alexander Pushkin’s father, Sergei Lvovich Pushkin, was born on 26 May 1767,

in Moscow, Russia. He was a member of the Russian nobility and served as a colonel in
the Imperial Russian Army. Sergei Pushkin married Natalia Alexandrovna Goncharova,
Alexander Pushkin’s mother, in 1795. Alexander Pushkin was the oldest of their six children.
Sergei Pushkin died in 1848, at the age of 81.

The fact is Natalia Goncharova is Pushkin’s wife, not his mother. How can we sys-
tematically avoid this error? We need a kNN-based verification to perform a fact check of
each sentence by finding the nearest neighbor on the web. For a sentence where Pushkin’s
mother and wife are confused, our fact checking can identify and correct the failure by
looking up the sentence’s neighbor on the web (Figure 8).

Entropy 2023, 25, x FOR PEER REVIEW 20 of 31

The fact is Natalia Goncharova is Pushkin’s wife, not his mother. How can we sys-
tematically avoid this error? We need a kNN-based verification to perform a fact check of
each sentence by finding the nearest neighbor on the web. For a sentence where Pushkin’s
mother and wife are confused, our fact checking can identify and correct the failure by
looking up the sentence’s neighbor on the web (Figure 8).

Figure 8. kNN for fact-checking of generated text.

It is explicitly expressed by the nearest identified neighbor that Natalia Alexan-
drovna Goncharova is the wife, not the mother of Alexander Pushkin. So, the sentence
“Sergei Pushkin married Natalia Alexandrovna Goncharova, Alexander Pushkin’s
mother, in 1795” either needs to be removed or updated. In both cases, a discourse struc-
ture can be damaged, so we need to identify entities and relationships between them to
decide on which entity or relation to substitute to maintain the truth.

We will automatically form the text analysis structure from the discourse representa-
tion of biography sketches. In this particular case of biographical texts, rhetorical relations
are trivial (Elaboration and Joint) as there is neither contradiction, causal links, nor other
nontrivial relationships between discourse units. However, there are interesting relation-
ships between entities that need to be identified (Figure 9).

Figure 9. Entity graph on a parse tree for a text being fact checked.

Now, we establish a structure for DNN detectors which are required to perform fact-
checking. We need entity extractors and relation extractors for that, and the above entity
structure yields a meta-learning structure for these DNN detectors.

Figure 10 establishes a meta-learning structure for this individual text. For multiple
texts of the same genre, we generalize across multiple meta-learning structures for indi-
vidual texts and obtain a set of configurations of DNN engines. As a result, we obtain a
meta-learning structure suitable to process text of a specific genre. A meta-learning struc-
ture can be implemented as a directed acyclic graph of processes, such as with [49]. In our
previous studies, we described graph generalization in detail for syntactic, semantic, and

Figure 8. kNN for fact-checking of generated text.

It is explicitly expressed by the nearest identified neighbor that Natalia Alexandrovna
Goncharova is the wife, not the mother of Alexander Pushkin. So, the sentence “Sergei
Pushkin married Natalia Alexandrovna Goncharova, Alexander Pushkin’s mother, in 1795”
either needs to be removed or updated. In both cases, a discourse structure can be damaged,
so we need to identify entities and relationships between them to decide on which entity or
relation to substitute to maintain the truth.

We will automatically form the text analysis structure from the discourse representa-
tion of biography sketches. In this particular case of biographical texts, rhetorical relations
are trivial (Elaboration and Joint) as there is neither contradiction, causal links, nor other non-

Entropy 2023, 25, 924 19 of 29

trivial relationships between discourse units. However, there are interesting relationships
between entities that need to be identified (Figure 9).

Entropy 2023, 25, x FOR PEER REVIEW 20 of 31

The fact is Natalia Goncharova is Pushkin’s wife, not his mother. How can we sys-
tematically avoid this error? We need a kNN-based verification to perform a fact check of
each sentence by finding the nearest neighbor on the web. For a sentence where Pushkin’s
mother and wife are confused, our fact checking can identify and correct the failure by
looking up the sentence’s neighbor on the web (Figure 8).

Figure 8. kNN for fact-checking of generated text.

It is explicitly expressed by the nearest identified neighbor that Natalia Alexan-
drovna Goncharova is the wife, not the mother of Alexander Pushkin. So, the sentence
“Sergei Pushkin married Natalia Alexandrovna Goncharova, Alexander Pushkin’s
mother, in 1795” either needs to be removed or updated. In both cases, a discourse struc-
ture can be damaged, so we need to identify entities and relationships between them to
decide on which entity or relation to substitute to maintain the truth.

We will automatically form the text analysis structure from the discourse representa-
tion of biography sketches. In this particular case of biographical texts, rhetorical relations
are trivial (Elaboration and Joint) as there is neither contradiction, causal links, nor other
nontrivial relationships between discourse units. However, there are interesting relation-
ships between entities that need to be identified (Figure 9).

Figure 9. Entity graph on a parse tree for a text being fact checked.

Now, we establish a structure for DNN detectors which are required to perform fact-
checking. We need entity extractors and relation extractors for that, and the above entity
structure yields a meta-learning structure for these DNN detectors.

Figure 10 establishes a meta-learning structure for this individual text. For multiple
texts of the same genre, we generalize across multiple meta-learning structures for indi-
vidual texts and obtain a set of configurations of DNN engines. As a result, we obtain a
meta-learning structure suitable to process text of a specific genre. A meta-learning struc-
ture can be implemented as a directed acyclic graph of processes, such as with [49]. In our
previous studies, we described graph generalization in detail for syntactic, semantic, and

Figure 9. Entity graph on a parse tree for a text being fact checked.

Now, we establish a structure for DNN detectors which are required to perform fact-
checking. We need entity extractors and relation extractors for that, and the above entity
structure yields a meta-learning structure for these DNN detectors.

Figure 10 establishes a meta-learning structure for this individual text. For multiple
texts of the same genre, we generalize across multiple meta-learning structures for indi-
vidual texts and obtain a set of configurations of DNN engines. As a result, we obtain
a meta-learning structure suitable to process text of a specific genre. A meta-learning
structure can be implemented as a directed acyclic graph of processes, such as with [49]. In
our previous studies, we described graph generalization in detail for syntactic, semantic,
and discourse representations. For the meta-learning structure, we leverage discourse
representation in the form of a discourse tree [50] or entity occurrence graph [51,52].

Entropy 2023, 25, x FOR PEER REVIEW 21 of 31

discourse representations. For the meta-learning structure, we leverage discourse repre-
sentation in the form of a discourse tree [50] or entity occurrence graph [51,52].

Figure 10. Entity graph yields the processing graph for DNN processors of entity extraction and
relation extraction.

Apache Airflow is an open-source platform used to programmatically author, sched-
ule, and monitor workflows [53]. Developed by the Apache Software Foundation, Airflow
has become an increasingly popular tool for managing and automating data engineering
pipelines. Airflow is composed of two components: (1) a web interface used to configure
and monitor workflows and (2) an underlying execution engine that runs the workflows.
Airflow is highly extensible and allows users to customize workflows with Python code.
This allows complex logic to be incorporated into workflows and helps to automate com-
plex tasks such as data transformation and machine learning model training. Airflow also
provides powerful features such as task scheduling, logging, and exception handling. Air-
flow is used by many organizations to manage and automate data engineering workflows.
Its powerful features make it a popular choice for managing complex data pipelines. Air-
flow is also easy to use and can be quickly set up and deployed. Additionally, Airflow can
be integrated with other popular software, such as Hadoop, Spark, and Kubernetes, mak-
ing it a very versatile tool. Overall, Apache Airflow is a powerful and versatile platform
for data engineering and automation.

We now outline a meta-learning DNN engine structure construction algorithm (Al-
gorithm 1):

Algorithm 1 Meta-learning structure construction
Input: (1) A corpus of texts
(2) Initial chain of processing components
Output: A set of optimal meta-learning structures (a task pipeline graph)

(1) Build a syntactic parse tree, entity graph with coreference, discourse tree for
each text in corpus;

(2) Select a path in each such tree which better matches the Initial chain of pro-
cessing components:

(a) Find a mapping between each rhetorical relation and entity-entity rela-
tion
→ task result propagation; and,

(b) Form a reduction of an elementary discourse unit into an input text frag-
ment for each processing component.

(3) Expand the chain of processing components to other paths in each tree; and,

Figure 10. Entity graph yields the processing graph for DNN processors of entity extraction and
relation extraction.

Apache Airflow is an open-source platform used to programmatically author, sched-
ule, and monitor workflows [53]. Developed by the Apache Software Foundation, Airflow
has become an increasingly popular tool for managing and automating data engineering
pipelines. Airflow is composed of two components: (1) a web interface used to configure
and monitor workflows and (2) an underlying execution engine that runs the workflows.
Airflow is highly extensible and allows users to customize workflows with Python code.
This allows complex logic to be incorporated into workflows and helps to automate complex

Entropy 2023, 25, 924 20 of 29

tasks such as data transformation and machine learning model training. Airflow also pro-
vides powerful features such as task scheduling, logging, and exception handling. Airflow
is used by many organizations to manage and automate data engineering workflows. Its
powerful features make it a popular choice for managing complex data pipelines. Airflow
is also easy to use and can be quickly set up and deployed. Additionally, Airflow can be
integrated with other popular software, such as Hadoop, Spark, and Kubernetes, making it
a very versatile tool. Overall, Apache Airflow is a powerful and versatile platform for data
engineering and automation.

We now outline a meta-learning DNN engine structure construction algorithm
(Algorithm 1):

Algorithm 1 Meta-learning structure construction

Input: (1) A corpus of texts
(2) Initial chain of processing components
Output: A set of optimal meta-learning structures (a task pipeline graph)

(1) Build a syntactic parse tree, entity graph with coreference, discourse tree for each
text in corpus;

(2) Select a path in each such tree which better matches the Initial chain of processing
components:

(a) Find a mapping between each rhetorical relation and entity-entity relation
→ task result propagation; and,

(b) Form a reduction of an elementary discourse unit into an input text
fragment for each processing component.

(3) Expand the chain of processing components to other paths in each tree; and,
(4) Align all trees and obtain the set of the most representative trees (cluster centers of

trees).

As to the algorithm to apply the meta-learning structure to a given text:
Input: (1) A text
(2) A set of meta-learning structures
Output: A prediction based on the chosen meta-learning structure

(1) Iterate through each structure and obtain the prediction;
(2) Identify processing structure with the highest confidence for prediction;
(3) Apply reinforcement learning to this selected fixed processing structure to optimize the

weight for each participating predictor (such as in an ensemble classifier), if applicable.

Figure 11 gives an example of processing components that are the subjects of the above
algorithm.

Entropy 2023, 25, x FOR PEER REVIEW 22 of 31

(4) Align all trees and obtain the set of the most representative trees (cluster
centers of trees).

As to the algorithm to apply the meta-learning structure to a given text:
Input: (1) A text
(2) A set of meta-learning structures
Output: A prediction based on the chosen meta-learning structure

(1) Iterate through each structure and obtain the prediction;
(2) Identify processing structure with the highest confidence for prediction;
(3) Apply reinforcement learning to this selected fixed processing structure to optimize

the weight for each participating predictor (such as in an ensemble classifier), if ap-
plicable.

Figure 11 gives an example of processing components that are the subjects of the
above algorithm.

Figure 11. Some NLP processing components that can be used for the meta-learning DNN engine
structure construction algorithm.

5. Shaped-Charge Architecture
5.1. From Fine Tuning to a kNN Extension to Simulate Low Structural Entropy

Even though pre-trained language models are more robust in terms of out-of-distri-
bution generalizations than previous models [54], they are still not performing well in
domains significantly different from the ones they have been pre-trained on. Adaptive
fine-tuning helps to tackle such a shift in distribution by employing meta-learning to force
fine tuning the model on data that is closer to the distribution of data in the target domain.
In particular, meta-learning makes sure the model is fine-tuned on additional data prior
to fine-tuning the specific problem to be solved, which can be seen below. Adaptive fine
tuning only requires unlabeled data. A masked-language model (MLM) is used for pre-
training. Our DNN component can be fine tuned, for example, as depicted in Figure 12.

Figure 11. Some NLP processing components that can be used for the meta-learning DNN engine
structure construction algorithm.

Entropy 2023, 25, 924 21 of 29

5. Shaped-Charge Architecture
5.1. From Fine Tuning to a kNN Extension to Simulate Low Structural Entropy

Even though pre-trained language models are more robust in terms of out-of-distribution
generalizations than previous models [54], they are still not performing well in domains
significantly different from the ones they have been pre-trained on. Adaptive fine-tuning
helps to tackle such a shift in distribution by employing meta-learning to force fine tuning
the model on data that is closer to the distribution of data in the target domain. In particular,
meta-learning makes sure the model is fine-tuned on additional data prior to fine-tuning
the specific problem to be solved, which can be seen below. Adaptive fine tuning only
requires unlabeled data. A masked-language model (MLM) is used for pre-training. Our
DNN component can be fine tuned, for example, as depicted in Figure 12.

Entropy 2023, 25, x FOR PEER REVIEW 23 of 31

Figure 12. Adaptive fine-tuning architecture to simulate low structural entropy costs for the DNN
component of the meta-learning framework.

5.2. Meta-Learning Over (DNN → kNN)
We finally approach the overall architecture for wrapping a DNN. At training time,

training datasets are selected and maintained via a meta-learning component. Based on
the current prediction results, meta-learning decides which additional data samples to
involve (active learning). From the discourse structure of sample texts, meta-learning au-
tomatically discovers how to combine individual DNN processing components. Meta-
learning also transfers the trained model to a similar problem domain if its evaluation is
successful in it (see Figure 13).

Figure 13. Proposed shaped charge learning architecture simulates maximum entropy production.

In the inference time, a prediction made by a DNN is confirmed or rejected by a kNN
component. Meta-learning verifies the prediction made by the DNN by maintaining a cur-
rent set for a kNN and maintaining a threshold. Even if the current prediction is not mod-
ified by the kNN, the identified neighbor is used for an explanation of why the input be-
longs to a certain class. The final prediction is computed as meta-learning assesses the
confidence level, given the results of the DNN and kNN.

In the following section, we apply this architecture to the domains of question an-
swering, summarization, and content generation, instantiating each component of the
proposed architecture.

Figure 12. Adaptive fine-tuning architecture to simulate low structural entropy costs for the DNN
component of the meta-learning framework.

5.2. Meta-Learning over (DNN→ kNN)

We finally approach the overall architecture for wrapping a DNN. At training time,
training datasets are selected and maintained via a meta-learning component. Based on the
current prediction results, meta-learning decides which additional data samples to involve
(active learning). From the discourse structure of sample texts, meta-learning automatically
discovers how to combine individual DNN processing components. Meta-learning also
transfers the trained model to a similar problem domain if its evaluation is successful in it
(see Figure 13).

Entropy 2023, 25, x FOR PEER REVIEW 23 of 31

Figure 12. Adaptive fine-tuning architecture to simulate low structural entropy costs for the DNN
component of the meta-learning framework.

5.2. Meta-Learning Over (DNN → kNN)
We finally approach the overall architecture for wrapping a DNN. At training time,

training datasets are selected and maintained via a meta-learning component. Based on
the current prediction results, meta-learning decides which additional data samples to
involve (active learning). From the discourse structure of sample texts, meta-learning au-
tomatically discovers how to combine individual DNN processing components. Meta-
learning also transfers the trained model to a similar problem domain if its evaluation is
successful in it (see Figure 13).

Figure 13. Proposed shaped charge learning architecture simulates maximum entropy production.

In the inference time, a prediction made by a DNN is confirmed or rejected by a kNN
component. Meta-learning verifies the prediction made by the DNN by maintaining a cur-
rent set for a kNN and maintaining a threshold. Even if the current prediction is not mod-
ified by the kNN, the identified neighbor is used for an explanation of why the input be-
longs to a certain class. The final prediction is computed as meta-learning assesses the
confidence level, given the results of the DNN and kNN.

In the following section, we apply this architecture to the domains of question an-
swering, summarization, and content generation, instantiating each component of the
proposed architecture.

Figure 13. Proposed shaped charge learning architecture simulates maximum entropy production.

In the inference time, a prediction made by a DNN is confirmed or rejected by a kNN
component. Meta-learning verifies the prediction made by the DNN by maintaining a

Entropy 2023, 25, 924 22 of 29

current set for a kNN and maintaining a threshold. Even if the current prediction is not
modified by the kNN, the identified neighbor is used for an explanation of why the input
belongs to a certain class. The final prediction is computed as meta-learning assesses the
confidence level, given the results of the DNN and kNN.

In the following section, we apply this architecture to the domains of question
answering, summarization, and content generation, instantiating each component of the
proposed architecture.

6. Discussion

We linked a DNN with a kNN via GD, inspired by the path kernel formalism. For
linear DNNs, the path kernel reduces to the dot product of data samples. It has been
understood five decades ago that a single-layer perceptron is a kernel machine, with the
dot product as the kernel [55]. This result can be interpreted as a generalization of this
to multilayer perceptrons and other models. It is also related to [56] proof that Hopfield
networks, a predecessor of many DNN architectures, are equivalent to a kNN, a predecessor
of kernel machines, with Hamming distance as the distance function.

The employed path kernel representation assumes that the learning rate is sufficiently
low for the trajectory of the weights during GD to be well interpolated by a smooth
curve. This is a typical assumption in the GD analysis and usually works well in practical
applications since the learning rate should be low to avoid a divergence situation [57]. It
is not very clear to what extent GD models can still be approximated by kernel machines
under a high learning rate.

Bakhtin et al. (2022) [58] describe Cicero as an AI agent that is close to human-level
performance in Diplomacy, a strategy game that is based on cooperation and competition with
a focus on NL negotiation and tactical coordination. Cicero integrates an NL with planning
and reinforcement learning algorithms by reasoning about players’ beliefs and intentions from
their conversations and then generating dialogue supporting the goals of players.

Cicero predicts the most probable human actions for each player given the board’s
state and the conversation between players, using both as the starting point for a planning
algorithm using reinforcement learning. The output of planning is an action for the
agent as well as intentions and beliefs concerning other players’ actions. This output
is a basis for intent selection for the conversation support component to be conditioned
on. Generated messages are subject to multiple filtering steps before a final message is
produced (Figure 14).

Deep learning pioneer Schmidhuber (2022) [59] votes for an increased focus on meta-
learning, an automated combination of multiple learning mechanisms with different ap-
titudes across different tasks. Clune (2020) [60] also advocates for meta-learning, with a
more evolutionary twist expressed by concerns about how bad actors might use artificial
general intelligence and by arguing that addressing such potential misuse was among the
most important questions facing humanity.

Modern AI models are intended to be run on computers but are used in human-
driven team-based applications. This creates an explicit mismatch between AI forms of
processing and human ways of discovering and managing knowledge. Dudyrev et al.
(2022) [61] introduce a new concept of “Human Knowledge Models” designed to focus on
the computational abilities of human team members. Relying on an extensive corpus of
cognitive research, the authors formalized the definition of Human Knowledge Models
into a special form of ML. Then, by training the models with human processing capabilities,
it became viable to acquire human-like knowledge that human team members can not only
understand but also process.

Many AI scientists believe that when artificial general intelligence becomes plausible,
large language models such as GPT-4 may be considered only as a part of the solution.
Scaling up a DNN alone until they absorb the entire internet is useful only to a degree [62].
Trustworthy, general artificial intelligence for team collaboration is expected to come from
architectures that rely on more structured components with more internal knowledge,

Entropy 2023, 25, 924 23 of 29

including tools for reasoning and planning. Meta-learning over (DNN→ kNN) is expected to
be a step in this direction, integrating large LMs with a broad spectrum of other techniques.

Entropy 2023, 25, x FOR PEER REVIEW 24 of 31

6. Discussion
We linked a DNN with a kNN via GD, inspired by the path kernel formalism. For

linear DNNs, the path kernel reduces to the dot product of data samples. It has been un-
derstood five decades ago that a single-layer perceptron is a kernel machine, with the dot
product as the kernel [55]. This result can be interpreted as a generalization of this to mul-
tilayer perceptrons and other models. It is also related to [56] proof that Hopfield net-
works, a predecessor of many DNN architectures, are equivalent to a kNN, a predecessor
of kernel machines, with Hamming distance as the distance function.

The employed path kernel representation assumes that the learning rate is suffi-
ciently low for the trajectory of the weights during GD to be well interpolated by a smooth
curve. This is a typical assumption in the GD analysis and usually works well in practical
applications since the learning rate should be low to avoid a divergence situation [57]. It
is not very clear to what extent GD models can still be approximated by kernel machines
under a high learning rate.

Bakhtin et al. (2022) [58] describe Cicero as an AI agent that is close to human-level
performance in Diplomacy, a strategy game that is based on cooperation and competition
with a focus on NL negotiation and tactical coordination. Cicero integrates an NL with
planning and reinforcement learning algorithms by reasoning about players’ beliefs and
intentions from their conversations and then generating dialogue supporting the goals of
players.

Cicero predicts the most probable human actions for each player given the board’s
state and the conversation between players, using both as the starting point for a planning
algorithm using reinforcement learning. The output of planning is an action for the agent
as well as intentions and beliefs concerning other players’ actions. This output is a basis
for intent selection for the conversation support component to be conditioned on. Gener-
ated messages are subject to multiple filtering steps before a final message is produced
(Figure 14).

Figure 14. An example of hybrid reinforcement learning (RL) and reasoning (for planning) architecture.

We believe that our approach is not only a theoretical investigation but also a practical
ML tool. Its efficiency and computational cost are critical points of modern DNN archi-
tectures since they require a lot of resources to train and even to run on a single machine.
However, a lot of effort is put into making DNN components more accessible and easy to
integrate. Meta-learning over (DNN→ kNN) is targeting the same goal because it does not
increase the overall DNN learning cost but instead gives human users reasonable insights
about the overall system quality.

Modern DNN methods for NLP tasks have become increasingly popular due to their
cost and scalability. With powerful GPUs becoming more readily available, it has become
easier to train complex deep-learning models with large datasets. Moreover, deep-learning
libraries such as TensorFlow, Pytorch, and Keras have made it simpler for users to apply
deep learning to their projects. This, combined with the lack of computational overhead
that comes with deep-learning methods compared to traditional methods, has helped to
make deep learning more cost-efficient.

These cost savings also extend to scalability. The same deep-learning models can be
used to process large amounts of data with relative ease. This makes it a powerful solution
for dealing with large datasets while also providing greater accuracy and faster training
time than traditional methods. Additionally, modern deep-learning models are easily able
to leverage parallel computing to speed up training and inference time.

Shaped-charge learning captures the idea that generalization should occur at multiple
levels of abstraction. This idea has been widely used in Bayesian models of cognition.
For example, hierarchical Bayesian inference can be used to learn about the properties of
objects that words tend to label (such as shape) at the same time as learning the meaning of
individual words [63] and to learn about the kinds of causal relationships that exist at the
same time as learning those relationships. While Bayesian inference generically indicates

Entropy 2023, 25, 924 24 of 29

how a learner should combine data with a prior distribution over hypotheses, a hierarchical
Bayesian model learns the prior distribution through experience.

One of the novelties of shaped-charge learning is that its meta-learning controls its
active learning. Ref. [64] discovered that better active learning is an emergent property
of the pretraining process; pretrained models require up to five times fewer labels when
using uncertainty-based active learning, while non-pretrained models see no or even
negative benefits. These boosts in performance come from an ability to select examples
with attributes that disambiguate the intended behavior, such as rare product categories or
atypical backgrounds. These attributes are far more linearly separable in the pretrained
model’s representation spaces vs. non-pretrained models, suggesting a possible mechanism
for this behavior. Meta-learning facilitates finding these atypical data samples.

kNN allows us to stay as close to the foundation of ML as possible. A British philoso-
pher John Stuart Mill presented and analyzed five techniques of experimental investigation
in his notable work, the System of Logic [65]. These approaches, known as the method of
agreement, the method of difference, the joint method of agreement and difference, the
method of residues, and the method of concomitant variation, were extensively deliberated
upon by Mill. He asserted that these methodologies serve as the means to uncover and
establish causal connections, playing a crucial role in scientific exploration. Mill referred to
these approaches as the “eliminative methods of induction”. Methods of agreement can be
expressed via kNN operations.

To illustrate the fundamental nature of Mill’s experimental inquiry techniques, we can
examine the two simplest methods: the method of agreement and the method of difference.
Mill’s principle for the method of agreement is as follows: “When multiple instances of the
phenomenon being studied share only one common factor, that particular factor is the cause
(or effect) of the observed phenomenon”. ‘Sharing one common factor’ can be expressed as
being neighbors, where similarity includes a representation of this common factor.

For example, if a number of people who are suffering from a certain disease have
all spent significant time without sunlight but have, in other respects, had quite different
diets, lived in different conditions, belong to different races, and so on, so that the lack of
sunlight is the only feature common to all of them, then we can conclude that the lack of
sunlight is the cause of this particular disease. The similarity between instances of health
data is expressed by possessing a ‘lack of sunlight’ feature. Hence, kNN can express this
method of agreement proposed by Mill (as well as the method of disagreement and other
ML foundational methods).

Multiple projects have demonstrated that transformers are fairly robust to pruning.
However, it has been discovered [66] that pre-trained transformer encoders are very sensi-
tive to the removal of a very small number of features in the layer outputs (below 1/10,000%
of model weights). In the case of BERT and other pre-trained encoder transformers, the
affected component is the scaling factors and biases in the LayerNorm. This observation is
due to an interaction of high-magnitude scaling factors and biases in the same dimension
throughout the model rather than magnitude alone. It emerges early in the training and
systematically distorts the embedding space.

To adjust BERT for out-of-distribution data where a set of specific features unseen in
the test data can ruin the performance, shaped-charge comes to the rescue by identifying
such cases, actively learning them, and/or overwriting predictions made by stand-alone
DNN. The meta-level of a shaped charge can identify cases and features of wrong prediction
and perform disabling on outlier weights, which is essential to address the pruning issue.

Disabling LayerNorm weights, facilitated by the meta-level, sets the outlier weights a
and b of the output LayerNorm to zeroes (Figure 15). This results in the masking of the
corresponding features in the output vectors. This operation is repeated for all transformer
layers of the encoder.

Entropy 2023, 25, 924 25 of 29Entropy 2023, 25, x FOR PEER REVIEW 27 of 31

Figure 15. Illustration for the disabling of LayerNorm weights.

The shaped charge can also control model compression. As BERT’s largest weights
form subnetworks of a network of all weights, it can be retrained alone to reach a perfor-
mance close to that of the full model.

The use of machine-learning models in human–machine teams has the potential to
increase the efficiency and accuracy of certain tasks. However, this technology also brings
a number of limitations and potential ethical implications that should be considered be-
fore its implementation. One of the primary limitations of machine-learning models is
their lack of interpretability. This means that, while they can produce accurate results, it
is often difficult to understand why they came to a particular conclusion. This lack of in-
terpretability can lead to errors and potentially lead to a lack of trust in the model or its
outcomes. In addition, machine-learning models may also be limited in their ability to
adapt to changing circumstances, making them unsuitable for certain tasks or environ-
ments. For example, a model trained to recognize objects in a certain environment may
not be able to perform properly when faced with a different environment. Finally, the use
of machine-learning models in human–machine teams raises potential ethical implica-
tions. For example, if a machine-learning model produces results that could harm people,
it could be seen as unethical. Another potential ethical implication of using machine-learn-
ing models in human–machine teams is the potential for privacy violations. Machine-
learning models are often trained on large datasets that contain personal data. One of the
most pressing ethical issues is the potential for machine-learning models to result in bi-
ased decisions, especially when used in decision-making roles. If a machine-learning
model is trained on data that is biased in terms of race, gender, or any other protected
characteristic, it is likely to make biased decisions. This could lead to serious ethical issues,
such as unfair treatment of individuals or groups. As such, it is essential to ensure that
machine-learning models are trained on unbiased data and that any potential biases are
identified and addressed.

7. Conclusions and Future Work
We conclude that extending a DNN with a kNN and performing meta-learning over

this extension significantly is expected to significantly improve the overall accuracy and
explainability of ML as well as human–machine team support. An improvement in per-
formance is demonstrated in question answering, summarization, and content generation
work in the second paper of this series. In all of these domains, the ML component will
need to become a supporting part of human–machine teams, be integrated into the team-
work seamlessly, with low structural entropy, and efficiently (low wasted energy), and
help the team to achieve producing maximum entropy production.

There are the following advantages of shaped-charge learning in comparison with
other hybrid DNN + statistical/logical ML architectures:

Figure 15. Illustration for the disabling of LayerNorm weights.

The shaped charge can also control model compression. As BERT’s largest weights
form subnetworks of a network of all weights, it can be retrained alone to reach a perfor-
mance close to that of the full model.

The use of machine-learning models in human–machine teams has the potential to
increase the efficiency and accuracy of certain tasks. However, this technology also brings a
number of limitations and potential ethical implications that should be considered before its
implementation. One of the primary limitations of machine-learning models is their lack of
interpretability. This means that, while they can produce accurate results, it is often difficult
to understand why they came to a particular conclusion. This lack of interpretability
can lead to errors and potentially lead to a lack of trust in the model or its outcomes. In
addition, machine-learning models may also be limited in their ability to adapt to changing
circumstances, making them unsuitable for certain tasks or environments. For example, a
model trained to recognize objects in a certain environment may not be able to perform
properly when faced with a different environment. Finally, the use of machine-learning
models in human–machine teams raises potential ethical implications. For example, if
a machine-learning model produces results that could harm people, it could be seen as
unethical. Another potential ethical implication of using machine-learning models in
human–machine teams is the potential for privacy violations. Machine-learning models
are often trained on large datasets that contain personal data. One of the most pressing
ethical issues is the potential for machine-learning models to result in biased decisions,
especially when used in decision-making roles. If a machine-learning model is trained on
data that is biased in terms of race, gender, or any other protected characteristic, it is likely
to make biased decisions. This could lead to serious ethical issues, such as unfair treatment
of individuals or groups. As such, it is essential to ensure that machine-learning models
are trained on unbiased data and that any potential biases are identified and addressed.

7. Conclusions and Future Work

We conclude that extending a DNN with a kNN and performing meta-learning over
this extension significantly is expected to significantly improve the overall accuracy and
explainability of ML as well as human–machine team support. An improvement in per-
formance is demonstrated in question answering, summarization, and content generation
work in the second paper of this series. In all of these domains, the ML component will need
to become a supporting part of human–machine teams, be integrated into the teamwork
seamlessly, with low structural entropy, and efficiently (low wasted energy), and help the
team to achieve producing maximum entropy production.

There are the following advantages of shaped-charge learning in comparison with
other hybrid DNN + statistical/logical ML architectures:

Entropy 2023, 25, 924 26 of 29

(1) kNN’s role is superior for explainability as it is the closest to the logical foundation
of induction as a basis of learning. Such advantages of stand-alone kNN include
computational efficiency, simplicity to interpret, usability for both regression and
classification, and high accuracy—these are all leveraged by shaped-charge learning.

(2) A consecutive DNN→ kNN approach leads a learning session via step-by-step zoom-
ing in on a correct prediction in a search space which is initially huge. It allows for
overcoming the limitations of stand-alone DNN and stand-alone kNN.

(3) The meta-support of the shaped charge implements full control over which method is
applied to which kind of data at each decision step. The meta-level support of gradi-
ent descent in DNN→ kNN assures an effective combination of manually selected
features for kNN with auto-feature engineering via DNN. A fine-tuning of DNN is
implemented by meta-learning controlling active learning.

(4) Shaped charge learning can be naturally integrated with rule-based systems and
classical object-level reasoning components such as reasoning about space and time,
mental states, physical processes, and other domains which can be encoded as axions.
These reasoning systems can complement kNN or fully substitute it.

As mentioned earlier, in our second paper, we will describe particular applications
of our architecture to the domains of question answering, summarization, and content
generation. For future work, we plan to explore several different directions of the pro-
posed approach and extensions of shaped-charge architecture. We suppose that it can be
implemented for some other NLP tasks such as dialogue generation and planning, machine
translation, information extraction, and fact checking. Another promising direction is related
to moving beyond English to low-resource languages such as Slavic [67]. The bottleneck
here is DNN since our kNN component is almost language independent. However, over
the last few years, DNN demonstrate spectacular results in the adaptation to the different
languages working in the zero-shot or a few-shot manner [68,69]. Therefore, we believe that
shaped-charge learning would be useful for a high variety of tasks and languages.

However, some limitations of the DNN still remain. Firstly, deep-learning models
tend to be highly dependent on or biased toward the specific dataset used. As a result,
models trained on one dataset may have little utility in transitioning beyond that dataset
into more general-use applications. Additionally, deep-learning models require a very large
amount of labeled data for training, which makes them difficult to use in certain settings
where labeled data is limited. For example, it has been reported in certain cases that their
performance decreased compared to shallow learning models in settings where labeled
data is scarce. Furthermore, a related limitation is the computational cost associated with
deep-learning models. This can be prohibitively difficult when the models are extremely
complex, particularly in settings with limited resources.

Author Contributions: Conceptualization, B.G. and D.I.; methodology, B.G. and S.G.; writing, B.G.
and D.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first author acknowledges support from Relyance AI while working on this
project. This research was supported in part through computational resources of HPC facilities at
HSE University. Results provided by the second author were prepared within the framework of the
HSE University Basic Research Program.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2023, 25, 924 27 of 29

References
1. Lawless, W.F. The Physics of Teams: Interdependence, Measurable Entropy, and Computational Emotion. Front. Phys. 2017, 5, 30.

[CrossRef]
2. Galitsky, B.; Goldberg, S. Explainable machine learning for chatbots. In Developing Enterprise Chatbots; Springer: Cham, Switzer-

land, 2019; pp. 53–83.
3. Galitsky, B. Assuring Chatbot Relevance at Syntactic Level, in Developing Enterprise Chatbots; Springer: Cham, Switzerland, 2019.
4. Lawless, W.; Mittu, R.; Sofge, D. (Eds.) Human-Machine Shared Contexts; Elsevier: Amsterdam, The Netherlands, 2020.
5. Lawless, W.F.; Mittu, R.; Sofge, D.; Hiatt, L. Artificial intelligence, Autonomy, and Human-Machine Teams—Interdependence,

Context, and Explainable AI. AI Mag. 2019, 40, 5–13. [CrossRef]
6. Goldberg, S.; Pinsky, E.; Galitsky, B. A bi-directional adversarial explainability for decision support. Hum. Intell. Syst. Integr. 2021,

3, 1–14. [CrossRef]
7. Hinton, G.E. Learning multiple layers of representation. Trends Cogn. Sci. 2007, 11, 428–434. [CrossRef]
8. Galitsky, B. Identifying distributed incompetence in an organization. In Human-Machine Shared Contexts; Lawless, W.F., Mittu, R.,

Sofge, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2020.
9. Bilton, N. She Absolutely Has Sociopathic. VanityFair. Tendencies. 2018. Available online: https://www.vanityfair.com/news/

2018/06/elizabeth-holmes-is-trying-to-start-a-new-company (accessed on 1 December 2022).
10. Galitsky, B. Employing abstract meaning representation to lay the last-mile toward reading comprehension. In Artificial Intelligence

for Customer Relationship Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 57–86.
11. SEC. US Securities and Exchange Commission. Theranos, CEO Holmes, and Former President Balwani Charged with Massive

Fraud. 2018. Available online: https://www.sec.gov/news/press-release/2018-41 (accessed on 1 December 2022).
12. Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures; IEEE: Piscataway, NJ, USA, 2019; Volume 7, pp.

53040–53065.
13. Chollet, F. The Limitations of Deep Learning. The Keras Blog. 2017. Available online: https://blog.keras.io/the-limitations-of-

deep-learning.html (accessed on 1 December 2022).
14. Cremer, C.Z. Deep limitations? Examining expert disagreement over deep learning. Prog. Artif. Intell. 2021, 10, 449–464.

[CrossRef]
15. Galitsky, B. Finding a lattice of needles in a haystack: Forming a query from a set of items of interest. In FCA4AI@ IJCAI; HAL

(Open Archive): Lyon, France, 2015; pp. 99–106.
16. Papernot, N.; Mcdaniel, P. Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning. arXiv 2018,

arXiv:1803.04765.
17. Lin, S.; Hilton, J.; Evans, O. TruthfulQA: Measuring how models mimic human falsehoods. arXiv 2021, arXiv:2109.07958.
18. Petroni, F.; Lewis, P.; Piktus, A.; Rockta, T.; Wu, Y.; Alexander; Miller, H.; Riedel, S. How Context Affects Language Models’ Factual

Predictions. In Automated Knowledge Base Construction. 2020. Available online: https://openreview.net/forum?id=025X0zPfn
(accessed on 1 December 2022).

19. Galitsky, B. Improving open domain content generation by text mining and alignment. In Artificial Intelligence for Healthcare
Applications and Management; Galitsky, B., Golberg, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022.

20. Lake, B.M.; Ullman, T.D.; Tenenbaum, J.B.; Gershman, S.J. Building machines that earn and think like people. Behav. Brain Sci.
2016, 40, e253. [CrossRef]

21. Ahlgren, J.; Yuen, S.Y. Efficient program synthesis using constraint satisfaction in inductive logic programming. J. Mach. Learn.
Res. 2013, 14, 3649–3682.

22. Cropper, A.; Dumančić, S.; Muggleton, S.H. Turning30: New ideas in inductive logic programming. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, Yokohama, Japan, 11–17 July 2020; pp. 4833–4839.

23. Kaminski, T.; Eiter, T.; Inoue, K. Exploiting answer set programming with external sources for meta-interpretive learning. Theory
Pract. Log. Program. 2018, 18, 571–588. [CrossRef]

24. De Raedt, L.; Dumancic, S.; Manhaeve, R.; Marra, G. From Statistical Relational to Neuro-Symbolic Artificial Intelligence. In
Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), Yokohama, Japan, 11–17 July 2020;
pp. 4943–4950.

25. d’Garcez, A.S.; Lamban, L.C.; Gabbay, D.M. Neural-Symbolic Cognitive Reasoning; Cognitive Technologies, Springer:
Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-73245-7. [CrossRef]

26. Muggleton, S. (Ed.) Inductive Logic Programming; Academic Press: Cambridge, MA, USA, 1992.
27. Nienhuys-Cheng, S.-H.; Wolf, R.d.; Siekmann, J.; Carbonell, J.G. Foundations of Inductive Logic Programming; Springer:

Berlin/Heidelberg, Germany, 1997.
28. Cropper, A.; Morel, R. Learning programs by learning from failures. Mach. Learn. 2021, 110, 801–856. [CrossRef]
29. Wang, W.Y.; Mazaitis, K.; William; Cohen, W. Structure learning via parameter learning. In Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge Management, CIKM 2014, Shanghai, China, 3–7
November 2014; pp. 1199–1208.

30. Evans, R.; Grefenstette, E. Learning Explanatory Rules from Noisy Data. IJCAI 2018, 5598–5602. [CrossRef]
31. Cropper, A.; Tourret, S. Logical reduction of metarules. Mach. Learn. 2020, 109, 1323–1369. [CrossRef]

https://doi.org/10.3389/fphy.2017.00030
https://doi.org/10.1609/aimag.v40i3.2866
https://doi.org/10.1007/s42454-021-00031-5
https://doi.org/10.1016/j.tics.2007.09.004
https://www.vanityfair.com/news/2018/06/elizabeth-holmes-is-trying-to-start-a-new-company
https://www.vanityfair.com/news/2018/06/elizabeth-holmes-is-trying-to-start-a-new-company
https://www.sec.gov/news/press-release/2018-41
https://blog.keras.io/the-limitations-of-deep-learning.html
https://blog.keras.io/the-limitations-of-deep-learning.html
https://doi.org/10.1007/s13748-021-00239-1
https://openreview.net/forum?id=025X0zPfn
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S1471068418000261
https://doi.org/10.1007/978-3-540-73246-4
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1613/jair.5714
https://doi.org/10.1007/s10994-019-05834-x

Entropy 2023, 25, 924 28 of 29

32. Shindo, H.; Nishino, M.; Yamamoto, A. Differentiable Inductive Logic Programming for Structured Examples. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021.

33. Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties (PDF) (Report); USAF School of
Aviation Medicine: Randolph Field, TX, USA, 1951.

34. Sabour, S.; Cao, Y.; Faghri, F.; Fleet, D.J. Adversarial Manipulation of Deep Representations; Cornell University: Ithaca, NY, USA, 2016.
35. Engstrom, L.; Tsipras, D.; Schmidt, L.; Madry, A. A rotation and a translation suffice: Fooling cnns with simple transformations.

arXiv 2017, arXiv:1712.02779.
36. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

37. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back- propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

38. Domingos, P. Every Model Learned by Gradient Descent Is Approximately a Kernel Machine. arXiv 2020, arXiv:1905.10985.
39. Goel, A.K.; Fitzgerald, T.; Parashar, P. Analogy and metareasoning: Cognitive strategies for robot learning. In Human-Machine

Shared Contexts; Lawless, W.F., Mittu, R., Sofge, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2020.
40. Batali, J. Computational Introspection MIT; AI Memo: Cambride, MA, USA, 1983.
41. Giunchiglia, F.; Weyhrauch, R.W. A multi-context monotonic axiomatization of inessential nonmonotonicity. In Meta-Level

Architectures and Reflections; Maes, P., Nardi, D., Eds.; North- Holland: Amsterdam, The Netherlands, 1988; pp. 271–285.
42. Banarescu, L.; Bonial, C.; Cai, S.; Georgescu, M.; Griffitt, K.; Hermjakob, U.; Knight, K.; Koehn, P.; Palmer, M.; Schneider, N.

Abstract meaning representation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, Sofia, Bulgaria, 8–9 August 2013.

43. Griffiths, T.L.; Callaway, F.; Chang, M.B.; Grant, E.; Krueger, P.M.; Lieder, F. Doing more with less: Meta-reasoning and
meta-learning in humans and machines. Curr. Opin. Behav. Sci. 2019, 29, 24–30. [CrossRef]

44. Oaksford, M.; Chater, N. A Rational Analysis of the Selection Task as Optimal Data Selection. Psychol. Rev. 1994, 101, 608–631.
[CrossRef]

45. Russell, J. Rationality and intelligence. Artif. Intell. 1997, 94, 57–77. [CrossRef]
46. Ackerman, R.; Thompson, V.A. Meta-Reasoning: Monitoring and Control of Thinking and Reasoning. Trends Cogn. Sci. 2017, 21,

607–617. [CrossRef]
47. Thompson, V.A. Dual-process theories: A metacognitive perspective. In Two Minds: Dual Processes and Beyond; Evans, J., Frankish,

K., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 171–195.
48. Thompson, V.A.; Johnson, S.C. Conflict, metacognition, and analytic thinking. Think. Reason. 2014, 20, 215–244. [CrossRef]
49. Apache Airflow. 2022. Available online: https://airflow.apache.org (accessed on 1 December 2022).
50. Galitsky, B. Summarized Logical Forms Based on Abstract Meaning Representation and Discourse Trees. In Artificial Intelligence

for Customer Relationship Management; Springer: Cham, Switzerland, 2021.
51. Mohiuddin, T.; Joty, S.; Nguyen, D.T. Coherence Modeling of Asynchronous Conversations: A Neural Entity Grid Approach; Cornell

University: Ithaca, NY, USA, 2018.
52. Nguyen, T.D.; Joty, S. A Neural Local Coherence Model. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers); Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 1320–1330.
53. Qubole. The Ultimate Guide to Apache Airflow. 2023. Available online: https://www.qubole.com/the-ultimate-guide-to-

apache-airflow (accessed on 1 December 2022).
54. Hendrycks, D.; Liu, X.; Wallace, E.; Dziedzic, A.; Krishnan, R.; Song, D. Pretrained Transformers Improve Out-of-Distribution

Robustness. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 13 April 2020;
pp. 2744–2751.

55. Aizerman, M.A.; Braverman, E.; Rozonoer, L.I. Theoretical foundations of the potential function method in pattern recognition
learning. Autom. Remote Contr. 1964, 25, 821–837.

56. Lippmann, R.; Gold, B.; Malpass, M. A comparison of Hamming and Hopfield neural networks for pattern classification. In
Technical Report 769; MIT Lincoln Lab: Lexington, MA, USA, 1987.

57. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
58. Meta Fundamental AI Research Diplomacy Team (FAIR); Bakhtin, A.; Brown, N.; Dinan, E.; Farina, G.; Flaherty, C.; Fried, D.; Goff,

A.; Gray, J.; Hu, H.; et al. Human-level play in the game of Diplomacy by combining language models with strategic reasoning.
Science 2022, 378, 1067–1074. [PubMed]

59. Schmidhuber, J. Annotated History of Modern AI and Deep Learning. arXiv 2022, arXiv:2212.11279.
60. Clune, J. AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence. arXiv 2020,

arXiv:1905.10985.
61. Dudyrev, E.; Semenkov, I.; Kuznetsov, S.O.; Gusev, G.; Sharp, A.; Pianykh, O.S. Human knowledge models: Learning applied

knowledge from the data. PLoS ONE 2022, 17, e0275814. [CrossRef]
62. Marcus, G. What to Expect When You’re Expecting; Workman Publishing Company: New York, NY, USA, 2023.
63. Kemp, C.; Perfors, A.; Tenenbaum, J.B. Learning overhypotheses with hierarchical Bayesian models. Dev. Sci. 2007, 10, 307–321.

[CrossRef]

https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.cobeha.2019.01.005
https://doi.org/10.1037/0033-295X.101.4.608
https://doi.org/10.1016/S0004-3702(97)00026-X
https://doi.org/10.1016/j.tics.2017.05.004
https://doi.org/10.1080/13546783.2013.869763
https://airflow.apache.org
https://www.qubole.com/the-ultimate-guide-to-apache-airflow
https://www.qubole.com/the-ultimate-guide-to-apache-airflow
https://www.ncbi.nlm.nih.gov/pubmed/36413172
https://doi.org/10.1371/journal.pone.0275814
https://doi.org/10.1111/j.1467-7687.2007.00585.x

Entropy 2023, 25, 924 29 of 29

64. Tamkin, A.; Nguyen, D.; Deshpande, S.; Goodman, N. Active Learning Helps Pretrained Models Learn the Intended Task. 2022.
Available online: https://arxiv.org/abs/2204.08491 (accessed on 1 December 2022).

65. Mill, J.S. System of Logic. 1843. Available online: https://en.wikipedia.org/wiki/A_System_of_Logic (accessed on 1 December
2022).

66. Kovaleva, O.; Kulshreshtha, S.; Rogers, A.; Rumshisky, A. BERT Busters: Outlier Dimensions that Disrupt Transformers; Cornell
University: Ithaca, NY, USA, 2021.

67. Vasishth, S.; Velickovski, S.; Stoyanchev, M.; Frank, S. Training GPT-2 for SlavicLanguage Tasks. In Proceedings of the 27th
International Conference on Computational Linguistics (COLING 2020), Barcelona, Spain, 8–13 December 2020; University of
Stuttgart: Stuttgart, Germany, 2021; pp. 53–64. [CrossRef]

68. Gast, A.; Anderson, N.; Technical, R. Language Models are Few-Shot Learners. arXiv 2019, arXiv:1905.02244.
69. Huck, M.; Mandt, S.; Sønderby, C.K. Language Models are Zero-Shot Learners. arXiv 2020, arXiv:2005.14165.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/2204.08491
https://en.wikipedia.org/wiki/A_System_of_Logic
https://doi.org/10.18653/v1/2020.coling-main.7

	Introduction
	Examples of Failures of Human–Machine Teams
	Limitations of Stand-Alone DNN
	Limitations of Stand-Alone Inductive Learning
	A Promise of Hybrid Architecture
	Background Information

	Extending Traditional DNN Architecture towards a kNN
	Consecutive DNN and kNN Architecture
	A Gradient Descent in Linguistic Space
	A Gradient Descent for kNN
	From Path Kernel to kNN

	Meta-Reasoning, Meta-Learning, and Introspection
	Meta-Reasoning and Introspection
	Linguistic Meta-Interpeter
	Meta-Learning Controls Active Learning
	Obtaining Meta-Learning Structure of DNN Engines

	Shaped-Charge Architecture
	From Fine Tuning to a kNN Extension to Simulate Low Structural Entropy
	Meta-Learning over (DNN kNN)

	Discussion
	Conclusions and Future Work
	References

