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Abstract: The utilization of databases such as IoT has progressed, and understanding how to protect
the privacy of data is an important issue. As pioneering work, in 1983, Yamamoto assumed the source
(database), which consists of public information and private information, and found theoretical
limits (first-order rate analysis) among the coding rate, utility and privacy for the decoder in two
special cases. In this paper, we consider a more general case based on the work by Shinohara and
Yagi in 2022. Introducing a measure of privacy for the encoder, we investigate the following two
problems: The first problem is the first-order rate analysis among the coding rate, utility, privacy for
the decoder, and privacy for the encoder, in which utility is measured by the expected distortion or
the excess-distortion probability. The second task is establishing the strong converse theorem for
utility–privacy trade-offs, in which utility is measured by the excess-distortion probability. These
results may lead to a more refined analysis such as the second-order rate analysis.

Keywords: utility–privacy trade-offs; source coding; Shannon theory; strong converse theorem

1. Introduction
1.1. Background

The utilization of database has progressed in our society and includes autonomous
cars and the congestion data service over the Internet. At the same time, the risk of
accidental or intentional leakage of private information has also increased rapidly. To
protect private information, coding with a privacy constraint has been analyzed via an
information-theoretic approach. In 1983, Yamamoto [1] introduced a framework to quantify
the utility of databases and the privacy of personal information and analyzed the trade-offs
between them. Decades later, in 2013, Sankar et al. [2] claimed the necessity of converting
databases to protect privacy while maintaining the utility of data. Then, Yamamoto’s
framework [1] was re-recognized by Sankar et al. and other researchers. Using the rate-
distortion theory in information theory, he revealed the optimal relationships (theoretical
limits) among coding rate, utility, and privacy in two cases; (i) public information that can
be open to the public and private information that should be protected from a third party
are encoded, and (ii) only public information is encoded. However, since a more general
case, i.e., where (iii) public information and a part of private information is encoded, had
not been clarified, Shinohara and Yagi [3] derived the theoretical limits in such a case
(see Figure 1). As a result, our characterization of the achievable region gives a “unified
expression” because it includes the characteristics given in [1] in cases (i) and (ii) as special
cases.

Figure 1. Privacy-constrained coding system.
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1.2. Motivation and Contributions

By investigating case (iii), one can compare the theoretical limits corresponding to
a variety of patterns of the encoded information. One can see that the achievable region
in case (i) is the largest among all patterns. However, this may not be the case if privacy
leakage for the encoder is constrained. Motivated by this observation, in this paper, we
characterize the optimal trade-offs among coding rate, utility, privacy for the decoder, and
privacy for the encoder in Section 3. The addressed problem corresponds to the case where
there are some aggregators between the source and the encoder and the aggregator controls
the data (source sequence) passing to the encoder. The obtained results indeed suggest
that the best-encoded information can be in case (iii) if some restriction is imposed on the
privacy leakage for the encoder.

One of the most important tasks in information-theoretic analysis for utility–privacy
trade-offs is second-order rate analysis (e.g., [4–6]). In general, in second-order rate anal-
ysis, the excess-distortion probability is used as a measure of utility [4–6]. However, in
the first-order rate analysis shown in [3], utility is measured by the expected distortion,
so for second-order rate analysis, we need first to conduct first-order rate analysis, which
replaces the expected distortion with the excess-distortion probability as the measure of
utility. In Section 4, the theoretical limits coincide with the one in which utility is measured
by expected distortion.

There is one more problem to solve before tackling second-order rate analysis: we need
to clarify whether the boundary of the achievable region may vary or not, depending on
the value of the excess-distortion probability. In Section 5, we establish the strong converse
theorem, provided that utility is measured by the probability of excess distortion. For the
sake of simplicity, we focus on the achievable region of utility and privacy for the decoder
or a third party, which reveals an aspect of utility–privacy trade-offs. In the proof, we adopt
a change in measure argument developed by Tyagi and Watanabe [7]. Contrary to the
standard rate-distortion problem, the alphabets of the encoder’s input and the decoder’s
output are different, so we extend the argument to incorporate this discrepancy. Although
the strong converse theorem is shown for the rate region of utility and privacy, we can also
derive the same result when the privacy of the encoder is involved.

For readers’ convenience, Figure 2 shows the road map to the most important task:
the second-order rate analysis. In summary, three contributions of this paper are as follows:

1. The rate analysis among the coding rate, utility, privacy for the decoder, and privacy
for the encoder in which utility is measured using the expected distortion (Section 3).

2. The rate analysis among the coding rate, utility, privacy for the decoder, and privacy
for the encoder in which utility is measured using the excess-distortion probability
(Section 4).

3. The strong converse theorem for utility–privacy trade-offs in which utility is measured
using the excess-distortion probability (Section 5).

1.3. Related Work

The analysis of the utility–privacy trade-offs using an information-theoretic approach
was initiated by [2], which translates the rate-distortion problem with an equivocation
constraint in [1] into the privacy and utility trade-off problem. In information-theoretic
studies on coding with privacy and utility constraints, several measures for privacy and
utility are adopted. One of the strong measures for privacy is differential privacy [8,9],
and an extension and relaxation of differential privacy have been proposed in [10,11]. A
weaker but useful privacy measure is the mutual information between the codeword and
private information [1,2,12–14], which guarantees the average amount of leaked private
information. Other examples of well-known privacy measures are maximal leakage [15],
maximal α-leakage [16–18], and total variation [19]. Relationships among several measures
for privacy have been revealed in [20]. On the other hand, well-known utility measures are
average distortion [1–25], hard distortion [16,17], and log-loss distortion [26].
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Figure 2. Road map for second-order rate analysis [1,3,8].

Coding systems in the utility–privacy problem are extended to the ones with the
encoder’s side information [2] and with the decoder’s side information [25]. In [14], a
related coding problem has been investigated, where both the encoder and the decoder
can access a uniform secret key and the decoder can also access side information. Utility–
privacy trade-off schemes are applied, for example, to the Internet of Energy [23] and to a
system with informational self-determination [24].

A closely related study to this paper was given by Basciftci et al. [13], in which several
release mechanisms of encoded information from the database were discussed. In particular,
utility–privacy trade-offs (without the coding rate) were compared when the encoded
information was (i) both private and public information, (ii) only public information, and
(iv) only private information (see also the three cases described in Section 1.1). A sufficient
condition under which the utility–privacy trade-offs coincide for cases (i) and (ii) was
given.

1.4. Organization

This paper is organized as follows: In Section 2, we begin by introducing the notation
and system model that are used in this paper. In Section 3, we give the first-order rate
analysis among the coding rate, utility, privacy for the decoder, and privacy for the encoder
in which utility is measured by the expected distortion. In Section 4, we tackle the first-
order rate analysis among the coding rate, utility, privacy for the decoder, and privacy for
the encoder in which utility is measured by the excess-distortion probability. Section 5
focuses on the strong converse theorem for utility–privacy trade-offs in which utility is
measured by the excess-distortion probability. In Section 6, we discuss the significance of
the encoded information with limited leakage for the encoder. Finally, in Section 7, the
conclusion and future work are stated.

2. Notation and System Model
2.1. Information Source

Database d is described by a K × n matrix whose rows represent K attributes and
columns represent n entries of data. LetK = {1, 2, . . . , K} be the set of indexes of K attributes.
The random variable for the lth attribute is denoted by Xl , which takes a value in a finite
alphabet Xl . For any subset B ⊆ K, the tuple of random variables (Xl)l∈B is abbreviated as
XB . Similarly, the Cartesian product of alphabets ∏l∈B Xl is abbreviated as XB .

The K attributes can be divided into two groups; one may be open to the public and
the other should be kept secret from a third party. Then, the set K is divided into disjoint
setsR andH. That is,

K = R∪H, R∩H = ∅, XK = XR ×XH, (1)
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where XR is the set of values that public (revealed) source symbols XR take and XH is the
set of values that private (hidden) source symbols XH take.

We assume that the source sequence Xn
K = (XK,1, XK,2, . . . , XK,n) is generated from a

stationary and memoryless source pXK . That is,

PXn
K
(xn
K) = Pr{Xn

K = xn
K} =

n

∏
i=1

PXK (xK,i), (2)

where xn
K = (xK,1, . . . , xK,n) ∈ X n

K. Taking the partition of attributes in (1) into account, the
source sequence Xn

K is described as

Xn
K = (Xn

R, Xn
H), (3)

where

Xn
R = (XR,1, XR,2, . . . , XR,n) ∈ X n

R, (4)

Xn
H = (XH,1, XH,2, . . . , XH,n) ∈ X n

H (5)

are referred to as the revealed source sequence and the hidden source sequence, respectively.
In the addressed coding system introduced in [22], the revealed symbols and a part of
the hidden symbols are input to the encoder, and thus the encoded alphabet E satisfies
R ⊆ E ⊆ K. Similar to (3), Xn

K is sometimes described as

Xn
K = (Xn

E , Xn
Ec), (6)

where Xn
E is the source sequence observed by the encoder and E c = K \ E .

2.2. Encoder and Decoder

The coding system consists of encoder fn and decoder gn as in Figure 1. When the
source sequence Xn

K = (Xn
E , Xn

Ec) is generated from the stationary and memoryless source
pXK , the codeword Jn = fn(Xn

E ) is generated by the encoder

fn : X n
E → {1, 2, . . . , Mn} (7)

and the reproduced sequence X̂n
R = gn(Jn) is produced by decoder

gn : {1, 2, . . . , Mn} → X̂ n
R, (8)

where Mn denotes the number of codewords.

3. First-Order Rate Analysis with Expected Distortion
3.1. Performance Measures

In this section, we mention the measure of the coding rate, utility, privacy for the
decoder, and privacy for the encoder. Hereafter, let a pair of the encoder and decoder
( fn, gn) be fixed.

For a given Mn, the coding rate is defined as

rn :=
1
n

log Mn. (9)

Let d : XR × X̂R → [0, ∞) be a distortion function between xR ∈ XR and x̂R ∈ X̂R.
The distortion between sequences xn

R ∈ X n
R and x̂n

R ∈ X̂ n
R is defined as

d(xn
R, x̂n

R) :=
n

∑
i=1

d(xR,i, x̂R,i). (10)
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Then, the measure of utility is defined as

un := E
[

1
n

d(Xn
R, X̂n

R)

]
, (11)

where E represents the expectation by the joint distribution of (Xn
R, X̂n

R).
In this system, the privacy of the hidden source sequence Xn

H should be protected
when the codeword Jn is observed by decoder gn. The measure of privacy for the decoder
is defined as

ln =:
1
n

I(Xn
H; Jn), (12)

where I(Xn
H; Jn) is the mutual information between Xn

H and Jn.
The privacy of the hidden source sequence Xn

H should be protected when the encoded
information XE is observed by encoder fn. The measurement of privacy for the encoder is
defined as

en :=
1
n

I(Xn
H; Xn

E ), (13)

where I(Xn
H; Xn

E ) is the mutual information between Xn
H and Xn

E .

3.2. Achievable Region and Theorem

We define the achievable region for the first-order rate analysis with the expected
distortion and state the obtained results.

Definition 1. A tuple (R, D, L, E) is said to be ε-achievable (with respect to the expected distor-
tion measure) if, for any given ε > 0, there exists a sequence of codes ( fn, gn) satisfying

rn ≤ R + ε, (14)

un ≤ D + ε, (15)

ln ≤ L + ε, (16)

en ≤ E + ε (17)

for all sufficiently large n.

The technical meanings of each constraint in Definition 1 can be interpreted as follows:
Equation (14) evaluates how much the source sequence is compressed, so this rate should
be decreased. Equation (15) is the constraint corresponding to distortion being less than
D + ε. The smaller the distortion is, the better the utility is, so this condition should also
be decreased. Equation (16) constrains the amount of leaked private information to the
decoder. Since private information should be kept secret for the receiver, this quantity
should be decreased as well. Equation (17) constrains the amount of private information
leaked to the encoder. For the same reason as (16), this quantity should also be decreased.

Remark 1. The minimum coding rate R for a fixed D corresponds to the rate-distortion function
(Section 10 in [27]). Thus, in the proof of achievability, we evaluate the coding rate and the distortion
with the argument in rate-distortion theory. This view is also important to correctly understand the
numerical results in Section 6.1.

Definition 2. The closure of the set of ε-achievable tuples (R, D, L, E) is referred to as the ε-
achievable region and is denoted by CE (ε|PXK ) and defines
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CE (PXK ) :=
⋂

0<ε<1

CE (ε|PXK ). (18)

To characterize the achievable region, we define the following informational region.

Definition 3. For any E such thatR ⊆ E ⊆ K, SE (PXK ) is defined as

SE (PXK ) = {(R, D, L, E) : R ≥ I(XE ; X̂R),

D ≥ E[d(XR, X̂R)],

L ≥ I(XH; X̂R),

E ≥ I(XH; XE )

for some PXE ,XEc · PX̂R |XE }. (19)

We establish the next theorem. For the proof of this theorem, please refer to
Sections 3.3–3.5.

Theorem 1. For any E such thatR ⊆ E ⊆ K, the achievable region of the coding system is given by

CE (PXK ) = SE (PXK ). (20)

To clarify the relationship with the conventional result of Shinohara and Yagi [3], we
mention the achievable region among the coding rate, utility, and privacy, which is derived
by projecting the result of Theorem 1 onto the R-D-L hyperplane.

Definition 4. For any E such thatR ⊆ E ⊆ K, we define

CRDL
E (ε|PXK ) := {(R, D, L) : (R, D, L, E) ∈ CE (ε|PXK )} (21)

and

CRDL
E (PXK ) :=

⋂
0<ε<1

CRDL
E (ε|PXK ). (22)

Definition 5. For any E such thatR ⊆ E ⊆ K, we define

SRDL
E (PXK ) = {(R, D, L) : R ≥ I(XE ; X̂R),

D ≥ E[d(XR, X̂R)],

L ≥ I(XH; X̂R)

for some PXE ,XEc · PX̂R |XE }. (23)

Corollary 1. For any E such thatR ⊆ E ⊆ K, the region CRDL
E (PXK ) is given by

CRDL
E (PXK ) = S

RDL
E (PXK ). (24)

Remark 2. Corollary 1 suggests that the conventional result [3] can be obtained from CE (PXK ).

Remark 3. The derived characterization in (24) reduces to the characterization given in [1]
when the encoded attribute E is either K orR. Thus, (24) gives its generalization forR ⊆ E ⊆ K.

Examples to illustrate this result are shown in Section 6.1.
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3.3. Proof Preliminaries for First-Order Rate Analysis

For preliminaries for coding theorems by the first-order rate analysis, we define
strongly typical sequences that are necessary for the proof and show some properties.
These proof preliminaries are also used in Section 4.

Definition 6 (Definition 2.1, [28]). The type of a sequence xn ∈ X n of length n is the distribution
Pxn on X defined by

Pxn(a) :=
1
n

N(a|xn), (25)

where N(a|xn) represents the number of occurrences of symbol a ∈ X in xn. Likewise, the joint
type of xn ∈ X n and yn ∈ Yn is the distribution Pxnyn on X ×Y defined by

Pxnyn :=
1
n

N(a, b|xn, yn), (26)

where N(a, b|xn, yn) represents the number of the occurrences of (a, b) ∈ X × Y in the pair of
sequences (xn, yn).

Definition 7 ((Conditional Type), [28], Definition 2.2). We define the conditional type of yn

given xn as a stochastic matrix V : X → Y satisfying

N(a, b|xn, yn) = N(a|xn)V(b|a). (27)

In particular, the conditional type of yn given xn is uniquely determined and given by

V(b|a) = N(a, b|xn, yn)

N(a|xn)
(28)

if N(a|xn) > 0 for any a ∈ X .

Definition 8 ((Strongly Typical Sequences), [29], Definition 1.2.8). For any distribution P on
X , a sequence xn ∈ X n is said to be P-typical with constant δ > 0 if∣∣∣∣ 1n N(a|xn)− P(a)

∣∣∣∣ ≤ δ for every a ∈ X (29)

and, in addition, no a ∈ X with P(a) = 0 occurs in xn. The set of such sequences is denoted by
Tn

δ (P). If X is a random variable with values in X , we also refer to P-typical sequences as X-typical
sequences and write Tn

δ (X).

Definition 9 ((Conditional Strongly Typical Sequences), [29], Definition 1.2.9). For a stochas-
tic matrix W: X → Y , a sequence yn ∈ Yn is said to be W-typical given xn ∈ X n with constant
δ > 0 if ∣∣∣∣ 1n N(a, b|xn, yn)− 1

n
N(a|xn)W(b|a)

∣∣∣∣ ≤ δ (30)

for every a ∈ X , b ∈ Y ,

and, in addition, N(a, b|xn, yn) = 0 whenever W(b|a) = 0. The set of such sequences yn is denoted
by Tn

δ (W|xn). Further, if X and Y are random variables with values in X and Y , respectively, and
PY|X = W, then they are also said to be Y|X-typical and written as Tn

δ (Y|X|xn).
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Hereafter, the set of conditional strongly typical sequences Tn
δ (Y|X|xn) is abbreviated

as Tn
δ (Y|xn).
We state some lemmas that are used in this proof.

Lemma 1 ([29], Lemma 1.2.13). For any positive sequences {δn}∞
n=1 and {δ′n}∞

n=1 such that
δn → 0 and δ′ → 0 as n→ 0, there exists a sequence εn = εn(|X ,Y|, δn, δ′n)→ 0 (n→ ∞) such
that for every distribution P on X and stochastic matrix W: X → Y ,∣∣∣∣ 1n log |Tn

δn
(P)| − H(P)

∣∣∣∣ ≤ εn, (31)∣∣∣∣ 1n log |Tn
δ′n
(W|xn)| − H(W|P)

∣∣∣∣ ≤ εn. (32)

Lemma 2 ([29], Lemma 1.2.7). Let the variational distance between two distributions P and Q on
X be defined as

dv(P, Q) := ∑
x∈X
|P(x)−Q(x)|. (33)

If dv(P, Q) < 1
2 , then

|H(P)− H(Q)| ≤ −dv(P, Q) · log
dv(P, Q)

|X | . (34)

Lemma 3 ([29], Lemma 1.2.10). If xn ∈ Tn
δ (X) and yn ∈ Tn

δ′(Y|x
n), then (xn, yn) ∈ Tn

δ+δ′(X, Y)
and, consequently, yn ∈ Tδ′′(Y) for δ′′ := (δ + δ′) · |X |.

Lemma 4. If (xn, yn) ∈ Tn
δ (X, Y), then xn ∈ Tn

δ1
(X) and, consequently, yn ∈ Tn

δ2
(Y|xn) for

δ1 := |Y| · δ and δ2 := (|Y|+ 1) · δ.

Lemma 5. If yn ∈ Tn
δ (Y) and (xn, yn) /∈ Tn

2δ(X, Y), then xn /∈ Tn
δ (X|yn).

Lemma 6 ([29], Lemma 1.2.12 and Remark). For arbitrarily fixed δ > 0 and every distribution
P on X and stochastic matrix W: X → Y

Pr{Xn ∈ Tn
δ (P)} ≥ 1− 2|X |e−2δ2n, (35)

Pr{Yn ∈ Tn
δ (W|xn)|Xn = xn} ≥ 1− 2|X | · |Y|e−2δ2n

for every xn ∈ X n. (36)

3.4. Proof of Converse Part

In this part, we shall prove CE (PXK ) ⊆ SE (PXK ).
Let a tuple (R, D, L, E) ∈ CE (PXK ) be arbitrarily fixed. Then, there exists an (n, 2n(R+ε),

D + ε, L + ε, E + ε) code that satisfies (14)–(17). Let Q be a uniform random variable
over {1, 2, . . . , n} and let pi(xE ,i, xEc,i, x̂R,i) be the conditional distribution given Q = i.
Evaluating the inequalities for R, we obtain
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R + ε
(a)
≥ 1

n
log Mn

(b)
≥ 1

n
H(Jn)

≥ 1
n

I(Jn; Xn
E )

(c)
=

1
n
{H(Xn

E )− H(Xn
E |Jn, X̂n

R)}

(d)
=

1
n

n

∑
i=1

H(XE ,i)−
1
n

n

∑
i=1

H(XE ,i|Xi−1
E , Jn, X̂n

R)

(e)
≥ 1

n

n

∑
i=1

H(XE ,i)−
1
n

n

∑
i=1

H(XE ,i|X̂R,i)

(f)
=

n

∑
i=1

Pr{Q = i}H(XE ,i|Q = i)

−
n

∑
i=1

Pr{Q = i}H(XE ,i|X̂R,i, Q = i)

= H(XE ,Q|Q)− H(XE ,Q|X̂R,Q, Q)

(g)
= H(XE )− H(XE ,Q|X̂R,Q, Q)

(h)
≥ H(XE )− H(XE |X̂R)
= I(XE ; X̂R), (37)

(a) follows from (14),
(b) follows because H(Jn) ≤ log |Jn| = log Mn,
(c) is due to the fact that X̂n

R = g(Jn),
(d) follows because each XK,i is independent and X̂n

R is a function of Jn,
(e) follows because conditioning reduces entropy,
(f) is due to the definition of Q,
(g) follows because XE ⊥ Q, and
(h) follows because conditioning reduces entropy, where (XE , X̂R) ∼ ∑n

i=1 Pr{Q =
i}pi(xE ,i, x̂R,i) = p(xE , x̂R).

Similarly, evaluating D, L, and E, respectively, we obtain
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D + ε
(i)
≥ E

[
1
n

n

∑
i=1

d(XR,i, X̂R,i)

]

=
1
n

n

∑
i=1

E[d(XR,i, X̂R,i)]

(j)
= EQ[E[d(XR,i, X̂R,i)|Q]]

(k)
= E[d(XR, X̂R)], (38)

L + ε
(l)
≥ 1

n
I(Xn
H; Jn)

=
1
n

H(Xn
H)−

1
n

H(Xn
H|Jn)

(m)
= H(XH)−

1
n

n

∑
i=1

H(XH,i|Xi−1
H , Jn)

(n)
= H(XH)−

1
n

n

∑
i=1

H(XH,i|Xi−1
H , Jn, X̂R,i)

(o)
≥ H(XH)−

1
n

n

∑
i=1

H(XH,i|X̂R,i)

(p)
= H(XH)−

n

∑
i=1

Pr{Q = i}H(XH,i|X̂R,i, Q = i)

= H(XH)− H(XH,Q|X̂R,Q, Q)

(q)
≥ H(XH)− H(XH|X̂R)
= I(XH; X̂R), (39)

E + ε ≥ 1
n

I(Xn
H; Xn

E )

(r)
=

1
n

n

∑
i=1

I(XH,i; Xn
E |Xi−1

H )

(s)
=

1
n

n

∑
i=1

I(XH,i; XE ,i)

(t)
= I(XH; XE ), (40)

where

(i) is due to (15),
(j) is derived from the definition of Q,
(k) follows because (XR, X̂R) ∼ ∑n

i=1 Pr{Q = i}pi(xR,i, x̂R,i) = p(xR, x̂R),
(l) is due to (16),
(m) follows because i.i.d. PXn

K
,

(n) follows because X̂n
R = g(Jn),

(o) follows from the fact that conditioning reduces entropy,
(p) is derived from the definition of Q, and
(q) follows because conditioning reduces entropy, where (XH, X̂R) ∼ ∑n

i=1 Pr{Q =
i}pi(xH,i, x̂R,i) = p(xH, x̂R),

(r) is due to chain rule for mutual information,
(s), (t) follow because i.i.d. PXn

K
.

It is readily shown that the Markov chain XEc–XE–X̂R holds (cf. Appendix A). We
complete the proof of the converse part.
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3.5. Proof of Direct Part

In this part, we provide a sketch of the proof of SE (PXK ) ⊆ CE (PXK ).
Under an arbitrarily fixed distribution PXE ,XEc · PX̂R |XE , any tuple (R, D, L, E) ∈

SE (PXK ) is chosen such that

R > I(XE ; X̂R), (41)

D > E[d(XR, X̂R)], (42)

L > I(XH; X̂R), (43)

E > I(XH; XE ). (44)

From (42) and (43), we can choose a sufficiently small ε > 0 such that

D > E[d(XR, X̂R)] + ε, (45)

L > I(XH; X̂R) + ε. (46)

In addition, with this ε, some constant 0 < τ < 1
2 is fixed such that

τ(log |XH|+ 5) + 4τ log
|XH| · 2R

2τ
< ε. (47)

We can also choose positive numbers δ(:= δ(n)) such that

(δ(n) + δ1(n))|XR|·|X̂R|Dmax + τ < ε, (48)

2δ2(n) ≤ R− I(XE ; X̂R)−
1
n
− τ, (49)

δ(n)→ 0, (50)
√

n · δ(n)→ ∞ (51)

as n→ ∞, where δ1 := (|XE | − |XR|) · δ and Dmax := max
a∈XR ,b∈X̂R

d(a, b). Let δ(n) = c√
n log n

where c is a constant, and obviously (50) and (51) are satisfied.
Generation of codebook: Randomly generate x̂n

R(j) from the strongly typical se-
quences Tn

δ (X̂R) for j = 1, 2, . . . , Mn := 2nR. Reveal the codebook C = {x̂n
R(1), . . . , x̂n

R(Mn)}
to the encoder and decoder.

Encoding: If a sequence xn
E ∈ X n

E satisfies xn
K = (xn

E , xn
Ec) with some xn

Ec ∈ X n
Ec ,

we write xn
E ≺ xn

K. Given xn
K, the encoder finds j such that xn

E ∈ Tn
δ (XE |x̂R(j)) and sets

fn(xn
E ) = j where Tn

δ (XE |x̂R(j)) is the conditional strongly typical sequences. If there exist
multiple such j, fn(xn

E ) is set as the minimum one. If there are no such j, then fn(xn
E ) = Mn.

Decoding: When j is observed, the decoder sets the reproduced sequence as X̂n
R =

x̂n
R(j).

Evaluation: We define A(j), B(j), and Ã(j) as

A(j) := {xn
E : fn(xn

E ) = j}, (52)

B(j) := {xn
K : xn

E ≺ xn
K, fn(xn

E ) = j}, (53)

Ã(j) :=


{xn
K : xn

E ≺ xn
K, fn(xn

E ) = j, xn
K ∈ Tn

2δ(XK|x̂n
R(j))}

(j = 1, 2, . . . , Mn − 1)
{xn
K : xn

K ∈ X n
K \

⋃Mn−1
j=1 Ã(j)} (j = Mn).

(54)

It is easily verified that A(j) for j = 1, 2, . . . , Mn (also, B(j) and Ã(j)) is disjoint. From the
definitions of Jn, A(j), and B(j),

Pr{Jn = j} = Pr{Xn
E ∈ A(j)} = Pr{Xn

K ∈ B(j)} (55)

for j = 1, 2, . . . , Mn.
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For sufficiently large n, we can prove (cf. Appendix B)

|Pr{Xn
K ∈ B(j)} − Pr{Xn

K ∈ Ã(j)}| ≤ 2|XK| · |X̂R|e−2δ2n (56)

for j = 1, 2, . . . , Mn − 1.

For sufficiently large n, we can show that there exists a code ( fn, gn) such that (cf.
Appendix C)

rn ≤ R, (57)

un ≤ E[d(XR, X̂R)] + (δ + δ1)|XR| · |X̂R|Dmax + τ, (58)

en ≤ I(XH; XE ), (59)

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 ≤ (2|XE |+ 1)e−2δ2n, (60)

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ τ, (61)

|Ã(j)| ≥ 2n{H(XK |X̂R)−τ}. (62)

For this code ( fn, gn), we evaluate the privacy leakage against the decoder as

ln :=
1
n

I(Xn
H; Jn)

=
1
n

H(Xn
H)−

1
n

H(Xn
H|Jn)

(a)
= H(XH)−

1
n

Mn

∑
j=1

H(Xn
H|Xn

K ∈ B(j))Pr{Xn
K ∈ B(j)}

(b)
≤ H(XH)−

1
n

Mn

∑
j=1

H(Xn
H|Xn

K ∈ Ã(j))Pr{Xn
K ∈ Ã(j)}

+ 4τ log
|XH| · 2R

2τ
(63)

(c)
≤ H(XH)−

1
n

Mn−1

∑
j=1

H(Xn
H|Xn

K ∈ Ã(j))Pr{Xn
K ∈ Ã(j)}

+ 4τ log
|XH| · 2R

2τ

= H(XH)−
1
n

Mn−1

∑
j=1

[
−∑

xn
H

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}·

log Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}

]
· Pr{Xn

K ∈ Ã(j)}+ 4τ log
|XH| · 2R

2τ
, (64)

where

(a) follows because of i.i.d. PXn
K

,
(b) is due to the inequality proved in Appendix D,
(c) follows by removing the term for j = Mn.
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Here, for any xn
H satisfying xn

K = (xn
R, xn

H) ∈ Ã(j) with some xn
R, we can show that

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}

=
Pr{Xn

K ∈ Ã(j)|Xn
H = xn

H}Pr{Xn
H = xn

H}
Pr{Xn

K ∈ Ã(j)}

=
∑xn
R: (xn

R ,xn
H)∈Ã(j) Pr{Xn

R = xn
R, Xn

H = xn
H|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H}

(d)
=

∑xn
R: (xn

R ,xn
H)∈Ã(j) Pr{Xn

R = xn
R|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H}

(e)
≤

∑xn
R∈Tn

δ3
(XR |xn

H ,x̂n
R(j)) Pr{Xn

R = xn
R|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H} (65)

(f)
≤ 2n{H(XR |XH ,X̂R)+τ} · 2−n{H(XR |XH)−τ}

2n{H(XK |X̂R)−τ} · 2−n{H(XK)+τ}
· 2−n{H(XH)−τ}

= 2−n{H(XH |X̂R)−5τ}, (66)

where

(d) follows from the fact that

Pr{Xn
R = xn

R, Xn
H = xn

H|Xn
H = xn

H} = Pr{Xn
R = xn

R|Xn
H = xn

H},

(e) is due to the inequality proved in Appendix E, and
(f) follows because of the number of strongly typical sequences.

Therefore, from Equations (61), (64) and (66) we can obtain

ln ≤ H(XH)−
1
n

Mn−1

∑
j=1

[
n ∑

xn
H

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}·

{H(XH|X̂R)− 5τ}
]
· Pr{Xn

K ∈ Ã(j)}+ 4τ log
|XH| · 2R

2τ

= H(XH)− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)

 · {H(XH|X̂R)− 5τ}+ 4τ log
|XH| · 2R

2τ

≤ H(XH)− (1− τ){H(XH|X̂R)− 5τ}+ 4τ log
|XH| · 2R

2τ

≤ I(XH; X̂R) + τ(log |XH|+ 5) + 4τ log
|XH| · 2R

2τ
. (67)

Since constants ε, τ, and δ are fixed to satisfy (45)–(48), from (44), (57)–(59) and (67), we obtain

rn ≤ R, (68)

un ≤ E[d(XR, X̂R)] + ε < D, (69)

ln < I(XH; X̂R) + ε < L, (70)

en ≤ I(XH; XE ) < E. (71)

Therefore, for the fixed distribution PXE ,XEc · PX̂R |XE any tuple
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(R, D, L, E) ∈ {(R, D, L, E) : R > I(XE ; X̂R),

D > E[d(XR, X̂R)],

L > I(XH; X̂R),

E > I(XH; XE )} =: S∗E (PXK ) (72)

is achievable. Consequently, S∗E (PXK ) ⊆ CE (PXK ). Taking the closure for the left-hand
side (l.h.s.), we obtain Cl(S∗E (PXK )) ⊆ CE (PXK ) because CE (PXK ) is a closed set. We
conclude that SE (PXK ) =

⋃
p Cl(S∗E (PXK )) ⊆ CE (PXK ) because the distribution PXK =

PXE ,XEc · PX̂R |XE is fixed arbitrarily. We complete the proof of the direct part.

4. First-Order Rate Analysis with Excess-Distortion Probability
4.1. Performance Measures

Hereafter, let the pair of the encoder and decoder ( fn, gn) be fixed.
For a given Mn, the coding rate is defined as

rn :=
1
n

log Mn. (73)

Let d : XR × X̂R → [0, ∞) be a distortion function between xR ∈ XR and x̂R ∈ X̂R.
The distortion between sequences xn

R ∈ X n
R and x̂n

R ∈ X̂ n
R is defined as

d(xn
R, x̂n

R) :=
n

∑
i=1

d(xR,i, x̂R,i). (74)

Then, the measure of utility is defined as

un := Pr
{

1
n

d(Xn
R, X̂n

R) > D
}

. (75)

This measurement is called excess-distortion probability for D ≥ 0.
In this system, the privacy of the hidden source sequence Xn

H should be protected
when the codeword Jn is observed by decoder gn. The measure of privacy for the decoder
is defined as

ln :=
1
n

I(Xn
H; Jn), (76)

where I(Xn
H; Jn) is the mutual information between Xn

H and Jn.
The privacy of the hidden source sequence Xn

H should be protected when the encoded
information XE is observed by encoder fn. The measurement of privacy for the encoder is
defined as

en :=
1
n

I(Xn
H; Xn

E ), (77)

where I(Xn
H; Xn

E ) is the mutual information between Xn
H and Xn

E .

4.2. Achievable Region and Theorem

We define the achievable region for the first-order rate analysis with the excess-
distortion probability and state the obtained results.

Definition 10. A tuple (R, D, L, E) is said to be ε-achievable (with respect to the excess-distortion
probability) if, for any given ε > 0, there exists a sequence of codes ( fn, gn) satisfying
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rn ≤ R + ε, (78)

un ≤ ε, (79)

ln ≤ L + ε, (80)

en ≤ E + ε (81)

for all sufficiently large n.

The technical meanings of each constraint in Definition 10 can be interpreted as follows:
Equation (78) evaluates how much the source sequence is compressed, so this rate should be
decreased. Equation (79) is the constraint corresponding to the excess-distortion probability
being less than ε, so this condition should also be decreased. Equation (80) constrains the
amount of leaked private information to the decoder. Since private information should
be kept secret for the receiver, this quantity should be decreased as well. Equation (81)
constrains the amount of leaked private information to the encoder. For the same reason as
(80), this quantity should also be decreased.

Definition 11. The closure of the set of ε-achievable tuples (R, D, L, E) is referred to as the ε-
achievable region and is denoted by LE (ε|PXK ) and define

LE (PXK ) :=
⋂

0<ε<1

LE (ε|PXK ). (82)

We establish the following theorem. For the proof of this theorem, please refer to
Sections 4.3 and 4.4.

Theorem 2. For any E such thatR ⊆ E ⊆ K, the achievable region of the coding system is given by

LE (PXK ) = SE (PXK ). (83)

Remark 4. From Theorems 1 and 2, we find that the achievable region in which utility is measured by
the expected distortion is equal to the one in which utility is measured by the excess-distortion probability.

Because in Section 6 we discuss the achievable region among coding rate, utility, and
privacy, a characterization of the achievable region is derived by projecting the characteri-
zation in Theorem 2 onto the R-D-L hyperplane.

Definition 12. For any E such thatR ⊆ E ⊆ K, we define

LRDL
E (ε|PXK ) := {(R, D, L) : (R, D, L, E) ∈ LE (ε|PXK )} (84)

and

LRDL
E (PXK ) :=

⋂
0<ε<1

LRDL
E (ε|PXK ). (85)

Definition 13. For any E such thatR ⊆ E ⊆ K, we define

SRDL
E (PXK ) = {(R, D, L) : R ≥ I(XE ; X̂R),

D ≥ E[d(XR, X̂R)],

L ≥ I(XH; X̂R)

for some PXE ,XEc · PX̂R |XE }. (86)
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Corollary 2. For any E such thatR ⊆ E ⊆ K, the region LRDL
E (PXK ) is given by

LRDL
E (PXK ) = S

RDL
E (PXK ). (87)

Examples of numerical calculation of this result are shown in Section 6.1.
Since we focus on the achievable region between utility and privacy in the next section,

a characterization of the achievable region is derived by further projecting the result of
Theorem 2 onto the D-L plane.

Definition 14. For any E such thatR ⊆ E ⊆ K, we define

LDL
E (ε|PXK ) := {(D, L) : (R, D, L, E) ∈ LE (ε|PXK )} (88)

and

LDL
E (PXK ) :=

⋂
0<ε<1

LDL
E (ε|PXK ). (89)

Definition 15. For any E such thatR ⊆ E ⊆ K, we define

SDL
E (PXK ) = {(D, L) : D ≥ E[d(XR, X̂R)],

L ≥ I(XH; X̂R)

for some PXE ,XEc · PX̂R |XE }. (90)

Corollary 3. For any E such thatR ⊆ E ⊆ K, the region LDL
E (PXK ) is given by

LDL
E (PXK ) = S

DL
E (PXK ). (91)

4.3. Proof of Converse Part

From Section 3.4 (proof of the converse part), we have

CE (PXK ) ⊆ SE (PXK ). (92)

Let a tuple (R, D, L, E) ∈ LE (PXK ) be arbitrarily fixed and ε > 0 and ε′ > 0 be
given. From the argument of the method of types, the sequences xn

R are divided into two
categories: distortion-typical or non-distortion-typical with some x̂n

R. The sequences of the
former categories satisfy 1

n d(xn
R, x̂n

R) < D + ε and the sequences of the latter one satisfy
1
n d(xn

R, x̂n
R) < dmax where dmax := max

xR∈XR , x̂R∈X̂R
d(xR, x̂R). Then, the expected distortion

is bounded from above as

E
[

1
n

d(Xn
R, X̂n

R)

]
≤ D + ε + Pr

{
1
n

d(xn
R, x̂n

R) > D + ε

}
· dmax

≤ D + ε + Pr
{

1
n

d(xn
R, x̂n

R) > D
}
· dmax

(a)
≤ D + ε + ε′dmax, (93)

where (a) follows from (79) of ε-achievable in which utility is measured by the excess-
distortion probability. Since ε + ε′dmax can be arbitrarily small with proper choices of ε and
ε′, (15) can be derived. This means

LE (PXK ) ⊆ CE (PXK ). (94)
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From both inclusion relations,

LE (PXK ) ⊆ CE (PXK ) ⊆ SE (PXK ) (95)

is evidently satisfied.

4.4. Proof of the Direct Part

In this part, we provide a sketch of the proof of SE (PXK ) ⊆ LE (ε|PXK ).
Under an arbitrarily fixed distribution PXE ,XEc · PX̂R |XE , any tuple (R, D, L, E) ∈

SE (PXK ) is chosen such that

R > I(XE ; X̂R), (96)

D > E[d(XR, X̂R)], (97)

L > I(XH; X̂R), (98)

E > I(XH; XE ). (99)

From (97) and (98), we can choose a sufficiently small ε > 0 such that

D > E[d(XR, X̂R)] + ε, (100)

L > I(XH; X̂R) + ε. (101)

In addition, with this ε, some constant 0 < τ < 1
2 is fixed such that

τ(log |XH|+ 5) + 4τ log
|XH| · 2R

2τ
< ε. (102)

We can also choose positive numbers δ(:= δ(n)) such that

2δ2(n) ≤ R− I(XE ; X̂R)−
1
n
− τ, (103)

δ(n)→ 0, (104)
√

n · δ(n)→ ∞ (105)

as n → ∞. Let δ(n) = c√
n log n where c is a constant, and obviously (104) and (105) are

satisfied.
Generation of codebook: Randomly generate x̂n

R(j) from the strongly typical se-
quences Tn

δ (X̂R) for j = 1, 2, . . . , Mn := 2nR. Reveal the codebook C = {x̂n
R(1), . . . , x̂n

R(Mn)}
to the encoder and decoder.

Encoding: If a sequence xn
E ∈ X n

E satisfies xn
K = (xn

E , xn
Ec) with some xn

Ec ∈ X n
Ec ,

we write xn
E ≺ xn

K. Given xn
K, the encoder finds j such that xn

E ∈ Tn
δ (XE |x̂n

R(j)) and sets
fn(xn

E ) = j where Tn
δ (XE |x̂n

R(j)) is the conditional strongly typical sequences. If there exist
multiple such j, fn(xn

E ) is set as the minimum one. If there are no such j, then fn(xn
E ) = Mn.

Decoding: When j is observed, the decoder sets the reproduced sequence as X̂n
R =

x̂n
R(j).

Evaluation: We define A(j), B(j), and Ã(j) as

A(j) := {xn
E : fn(xn

E ) = j}, (106)

B(j) := {xn
K : xn

E ≺ xn
K, fn(xn

E ) = j}, (107)

Ã(j) :=


{xn
K : xn

E ≺ xn
K, fn(xn

E ) = j, xn
K ∈ Tn

2δ(XK|x̂n
R(j))}

(j = 1, 2, . . . , Mn − 1)
{xn
K : xn

K ∈ X n
K \

⋃Mn−1
j=1 Ã(j)} (j = Mn).

(108)
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It is easily verified that A(j) for j = 1, 2, . . . , Mn (and also B(j) and Ã(j)) is disjoint. From
the definitions of Jn, A(j), and B(j),

Pr{Jn = j} = Pr{Xn
E ∈ A(j)} = Pr{Xn

K ∈ B(j)} (109)

for j = 1, 2, . . . , Mn.

For sufficiently large n, we can prove (cf. Appendix B)

|Pr{Xn
K ∈ B(j)} − Pr{Xn

K ∈ Ã(j)}| ≤ 2|XK| · |X̂R|e−2δ2n (110)

for j = 1, 2, . . . , Mn − 1.

For sufficiently large n, we can show that there exists a code ( fn, gn) such that (cf.
Appendix F)

rn ≤ R, (111)

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 ≤ (2|XE |+ 1)e−2δ2n, (112)

un ≤ (2|XE |+ 1)e−2δ2n, (113)

en ≤ I(XH; XE ), (114)

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ τ, (115)

|Ã(j)| ≥ 2n{H(XK |X̂R)−τ}. (116)

For this code ( fn, gn), we evaluate the privacy leakage against the decoder as

ln :=
1
n

I(Xn
H; Jn) (117)

=
1
n

H(Xn
H)−

1
n

H(Xn
H|Jn)

(a)
= H(XH)−

1
n

H(Xn
H|Jn)

= H(XH)−
1
n

Mn

∑
j=1

H(Xn
H|Xn

K ∈ B(j))Pr{Xn
K ∈ B(j)}

(b)
≤ H(XH)−

1
n

Mn

∑
j=1

H(Xn
H|Xn

K ∈ Ã(j))Pr{Xn
K ∈ Ã(j)}

+ 4τ log
|XH| · 2R

2τ
(118)

(c)
≤ H(XH)−

1
n

Mn−1

∑
j=1

H(Xn
H|Xn

K ∈ Ã(j))Pr{Xn
K ∈ Ã(j)}

+ 4τ log
|XH| · 2R

2τ

= H(XH)−
1
n

Mn−1

∑
j=1

[
−∑

xn
H

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)} · log Pr{Xn

H = xn
H|Xn

K ∈ Ã(j)}
]
·

Pr{Xn
K ∈ Ã(j)}+ 4τ log

|XH| · 2R

2τ
, (119)

where

(a) follows because of i.i.d. PXn
K

,
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(b) is due to the inequality proved in Appendix D, and
(c) follows by removing the term for j = Mn.

Here, for any xn
H satisfying xn

K = (xn
R, xn

H) ∈ Ã(j) with some xn
R, we can show that

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}

=
Pr{Xn

K ∈ Ã(j)|Xn
H = xn

H}Pr{Xn
H = xn

H}
Pr{Xn

K ∈ Ã(j)}

=
∑xn
R: (xn

R ,xn
H)∈Ã(j) Pr{Xn

R = xn
R, Xn

H = xn
H|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H}

(d)
=

∑xn
R: (xn

R ,xn
H)∈Ã(j) Pr{Xn

R = xn
R|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H}

(e)
≤

∑xn
R∈Tn

δ3
(XR |xn

H ,x̂n
R(j)) Pr{Xn

R = xn
R|Xn

H = xn
H}

∑(x̃n
R ,x̃n
H)∈Ã(j) Pr{Xn

R = x̃n
R, Xn

H = x̃n
H}

· Pr{Xn
H = xn

H} (120)

(f)
≤ 2n{H(XR |XH ,X̂R)+τ} · 2−n{H(XR |XH)−τ}

2n{H(XK |X̂R)−τ} · 2−n{H(XK)+τ}
· 2−n{H(XH)−τ}

= 2−n{H(XH |X̂R)−5τ}, (121)

where

(d) follows from the fact that

Pr{Xn
R = xn

R, Xn
H = xn

H|Xn
H = xn

H} = Pr{Xn
R = xn

R|Xn
H = xn

H},

(e) is due to the inequality proved in Appendix E, and
(f) follows because of the number of strongly typical sequences.

Therefore, from Equations (115), (119), and (121), we can obtain

ln ≤ H(XH)−
1
n

Mn−1

∑
j=1

[
n ∑

xn
H

Pr{Xn
H = xn

H|Xn
K ∈ Ã(j)}·

{H(XH|X̂R)− 5τ}
]
· Pr{Xn

K ∈ Ã(j)}+ 4τ log
|XH| · 2R

2τ

= H(XH)− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)

 · {H(XH|X̂R)− 5τ}+ 4τ log
|XH| · 2R

2τ

≤ H(XH)− (1− τ){H(XH|X̂R)− 5τ}+ 4τ log
|XH| · 2R

2τ

≤ I(XH; X̂R) + τ{H(XH|X̂R) + 5}+ 4τ log
|XH| · 2R

2τ
. (122)

Since constants ε, τ, and δ are fixed to satisfy (100)–(102), from (111), (113), and (122), we obtain

rn ≤ R, (123)

un ≤ ε, (124)

ln < I(XH; X̂R) + ε < L, (125)

en ≤ I(XH; XE ) < E. (126)

Therefore, for the fixed distribution PXE ,XEc · PX̂R |XE , any tuple
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(R, D, L, E) ∈ {(R, D, L, E) : R > I(XE ; X̂R),

D > E[d(XR, X̂R)],

L > I(XH; X̂R),

E > I(XH; XE )} =: S∗E (PXK ) (127)

is achievable. Consequently, S∗E (PXK ) ⊆ LE (ε|PXK ). Taking the closure for the l.h.s., we
obtain Cl(S∗E (PXK )) ⊆ LE (ε|PXK ) because LE (ε|PXK ) is a closed set. We conclude that
SE (PXK ) =

⋃
p Cl(S∗E (PXK )) ⊆ LE (ε|PXK ) because the distribution PXK ,X̂R

= PXE ,XEc ·
PX̂R |XE is fixed arbitrarily. We complete the proof of the direct part.

5. Strong Converse Theorem for Utility–Privacy Trade-Offs
5.1. Another Expression of the Achievable Region

In Section 5.1, we clarify that the achievable region LDL
E (PXK ) defined in (89) coincides

with the region expressed with a tangent plane.

Definition 16. For any E such thatR ⊆ E ⊆ K, the region T µ
E (PXK ) is defined as

Tµ
E (PXK ) := min{I(XH; X̂R) + µE[d(XR, X̂R)] for some PX̂R |XE · PXEc XE },

where

T DL
E (PXK ) :=

⋂
µ≥0
{(L, D) : L + µD ≥ Tµ

E (PXK )}.

Theorem 3. For any E such thatR ⊆ E ⊆ K, the region SDL
E (PXK ) defined in (90) is given by

SDL
E (PXK ) = T

DL
E (PXK ), (128)

and the achievable regionLDL
E (PXK ), which is the projection region of the achievable regionLE (PXK )

onto the D-L plane, is given by

LDL
E (PXK ) = T

DL
E (PXK ). (129)

Proof. Figure 3 illustrates the proof image using a graph. Let a constance µ ≥ 0 be fixed
arbitrarily. Like in Figure 3, there exists a boundary point (Dµ, Lµ) of SDL

E tangent to the
line with slope −µ. The intercept of this tangent line is Lµ + µDµ.

Figure 3. The region expressed with a tangent plane using the Legendre transformation.
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The minimum I(XH; X̂R)+µE[d(XR, X̂R)] characterized by some distribution PX̂R |XE
coincides with Lµ + µDµ. Therefore,

Lµ + µDµ = min{I(XH; X̂R) + µE[d(XR, X̂R)] for some PX̂R |XE · PXEc XE }. (130)

From (130), we obtain

{(L, D) : L + µD ≥ Lµ + µDµ} = {(L, D) : L + µD ≥ min{I(XH; X̂R)

+ µE[d(XR, X̂R)] for some PX̂R |XE · PXEc XE }}. (131)

Taking the intersection by µ ≥ 0 on the both sides of (131),⋂
µ≥0
{(L, D) : L + µD ≥ Lµ + µDµ} =

⋂
µ≥0
{(L, D) : L + µD ≥ Tµ

E (PXK )}. (132)

The l.h.s. of (131) shows the upper-right region in the first quadrant drawn by the tangent
line with a slope −µ for SDL

E (PXK ). Since the l.h.s. of (132) is the intersection of the l.h.s.
of (131), the l.h.s. of (132) represents SDL

E (PXK ). From Definition 16, the right-hand side
(r.h.s.) of (132) is T DL

E (PXK ). As a result, (128) holds. Since LDL
E (PXK ) = SDL

E (PXK ) from
Corollary 3, likewise, (129) holds.

5.2. Proof Preliminaries

In Section 5.2, we derive two fundamental properties of the minimization about two
values and the inequalities about entropy and divergence to prove the strong converse
theorem. In Proposition 1, we change the objective function Tµ

E (PXK ) of the region expressed
with the tangent plane introduced in Section 5.1 onto the region expressed with divergence.

Proposition 1. Let µ ≤ 0 be fixed arbitrarily. For any E such thatR ⊆ E ⊆ K,

Tµ
E (PXK ) = sup

α>0
Tµ,α
E (PXK ), (133)

where

Tµ,α
E (PXK ) := min

P
X̃Ec X̃E

˜̂XR

[I(X̃H; ˜̂XR) + µE[d(X̃R, ˜̂XR)]

+ αD(PX̃Ec X̃E
˜̂XR
‖ QXEc XE

˜̂XR
) + D(PX̃Ec X̃E

‖ PXEc XE )]

= min
P

X̃Ec X̃E
˜̂XR

[I(X̃H; ˜̂XR) + µE[d(X̃R, ˜̂XR)]]

+ (α + 1)D(PX̃Ec X̃E
‖ PXEc XE ) + αI(X̃Ec ; ˜̂XR|X̃E )], (134)

and QXEc XE
˜̂XR

is the distribution induced from each PX̃Ec X̃E
˜̂XR

.

Proof. First, it is clear that Tµ
E (PXK ) ≥ Tµ,α

E (PXK ) for all α > 0. To prove Tµ
E (PXK ) ≤

Tµ,α
E (PXK ) for some α > 0, for α > 0, let Pα

X̃Ec X̃E
˜̂XR

be the distribution that minimizes

the r.h.s. of (134) and Qα

XEc XE
˜̂XR

= P ˜̂XR |X̃E
PXEc XE be the estimated distribution. Since

G(Pα

X̃Ec X̃E
˜̂XR
) := I(X̃H; ˜̂XR) + E[d(X̃R, ˜̂XR)] is non-negative and is bounded above, by

setting a = log |XH|+ Dmax, it must hold that

αD(Pα

X̃Ec X̃E
˜̂XR
‖ Qα

XEc XE
˜̂XR
) ≤ a

and thus

D(Pα

X̃Ec X̃E
˜̂XR
‖ Qα

XEc XE
˜̂XR
) ≤ (a/α).



Entropy 2023, 25, 921 22 of 47

Notice that any set of probability distributions on a finite alphabet forms a compact set.
Because G(Pα

X̃Ec X̃E
˜̂XR
) is a continuous function over a compact set, it is also uniformly

continuous. Then, there exists a function ∆(t) satisfying ∆(t)→ 0 as t→ 0 such that

Tµ,α
E (PXK ) ≥ G(Pα

X̃Ec X̃E
˜̂XR
)

≥ G(Qα

XEc XE
˜̂XR
)− ∆(a/α)

≥ Tµ
E (PXK )− ∆(a/α).

Consequently, we obtain the desired inequality Tµ
E (PXK ) ≤ lim

α→∞
Tµ,α
E (PXK ) by taking α→ ∞.

In the following proposition, we show the inequalities satisfied between i.i.d. source
PXn
Ec Xn

E
and arbitrary source PX̃n

Ec X̃n
E
.

Proposition 2. For i.i.d. source PXn
Ec Xn

E
, which has the common distribution PXEc XE and arbitrary

distribution PX̃n
Ec X̃n

E
, it holds that

H(X̃n
Ec |X̃n

E ) + D(PX̃n
Ec X̃n

E
‖ PXn

Ec Xn
E
) ≥ n[H(X̃Ec,J |X̃E ,J) + D(PX̃Ec,J X̃E ,J

‖ PXEc XE )], (135)

H(X̃n
H) + D(PX̃n

H X̃n
R
‖ PXn

HXn
R
) ≥ n[H(X̃H,J) + D(PX̃H,J X̃R,J

‖ PXHXR)], (136)

where J ∼ unif(1, · · · , n) is the uniformly random variable over the set {1, 2, · · · , n} for time-
sharing and is assumed to be independent of all the other random variables involved.

Proof. The l.h.s. of (135) can be represented as

H(X̃n
Ec |X̃n

E ) + D(PX̃n
Ec |X̃n

E
‖ PXn

Ec |Xn
E
|PX̃n

E
) + D(PX̃n

E
‖ PXn

E
).

The sum of the first and second terms satisfies the following equation:

H(X̃n
Ec |X̃n

E ) + D(PX̃n
Ec |X̃n

E
‖ PXn

Ec |Xn
E
|PX̃n

E
)

= ∑
xn
Ec ,xn

E

PX̃n
Ec X̃n

E
(xn
Ec , xn

E )

·
{

log
1

PX̃n
Ec |X̃n

E
(xn
Ec |xn

E )
+ log

PX̃n
Ec |X̃n

E
(xn
Ec |xn

E )

PXn
Ec |Xn

E
(xn
Ec |xn

E )

}

= ∑
xn
Ec ,xn

E

PX̃n
Ec X̃n

E
(xn
Ec , xn

E ) log
1

PXn
Ec |Xn

E
(xn
Ec |xn

E )

(a)
= ∑

xn
Ec ,xn

E

PX̃n
Ec X̃n

E
(xn
Ec , xn

E ) ·
{

n

∑
j=1

log
1

PXEc |XE (xEc,j|xE ,j)

}
(b)
= n ∑

xEc ,xE
PX̃Ec,J X̃E ,J

(xEc , xE ) log
1

PXEc |XE (xEc |xE )

= n ∑
xEc ,xE

PX̃Ec,J X̃E ,J
(xEc , xE )

·
{

log
1

PX̃Ec,J |X̃E ,J
(xEc |xE )

+ log
PX̃Ec,J |X̃E ,J

(xEc |xE )
PXEc |XE (xEc |xE )

}
= n{H(X̃Ec,J |X̃E ,J) + D(PX̃Ec,J |X̃E ,J

‖ PXEc |XE |PX̃E ,J
)}, (137)

where

(a) follows from the memoryless property of i.i.d. source PXn
Ec Xn

E
;

(b) holds because 1
n ∑n

j=1 PX̃Ec,jX̃E ,j
(xEc , xE ) = PX̃Ec,J X̃E ,J

(xEc , xE ).
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The third term can be bounded from below as

D(PX̃n
E
‖ PXn

E
) =

n

∑
j=1

D(P
X̃E ,j|X̃ j−1

E
‖ PXE |PX̃ j−1

E
)

(c)
≥

n

∑
j=1

D(PX̃E ,j ‖ PXE )

(d)
≥ nD(PX̃E ,J ‖ PXE ), (138)

where

(c) follows from the data processing inequality and
(d) holds because of Jensen’s inequality.

From (137) and (138), (135) can be derived.
Likewise, the l.h.s. of (136) can be represented as

H(X̃n
H) + D(PX̃n

H
‖ PXn

H
) + D(PX̃n

R |X̃
n
H
‖ PXn

R |X
n
H
|PX̃n

H
),

The sum of the first and second terms satisfies

H(X̃n
H) + D(PX̃n

H
‖ PXn

H
)

= ∑
xn
H

PX̃n
H
(xn
H)

{
log

1
PX̃n
H
(xn
H)

+ log
PX̃n
H
(xn
H)

PXn
H
(xn
H)

}

= ∑
xn
H

PX̃n
H
(xn
H) log

1
PXn
H
(xn
H)

= ∑
xn
H

PX̃n
H
(xn
H) ·

{
n

∑
j=1

log
1

PXH (xH,j)

}
(e)
= n ∑

xH
PX̃H ,J(xH) log

1
PXH (xH)

= n ∑
xH

PX̃H ,J(xH)

{
log

1
PX̃H ,J(xH)

+ log
PX̃H ,J(xH)
PXH (xH)

}
= n{H(X̃H,J) + D(PX̃H,J

‖ PXH )}, (139)

where

(e) holds because 1
n ∑n

j=1 PX̃H,j
(xH) = PX̃H,J

(xH).

For the third term, it holds that

D(PX̃n
R |X̃

n
H
‖ PXn

R |X
n
H
|PX̃n

H
) =

n

∑
j=1

D(P
X̃R,j |X̃n

H X̃ j−1
R
‖ PXR |XH |PX̃n

H X̃ j−1
R

)

(f)
≥

n

∑
j=1

D(PX̃R,j |X̃H,j
‖ PXR |XH |PX̃H,j

)

≥ nD(PX̃R,J |X̃H,J
‖ PXR |XH |PX̃H ,J), (140)

where

(f) follows from the log sum inequality.

From (139) and (140), we obtain (136).
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5.3. Strong Converse Theorem

We shall establish the strong converse theorem, which is the main result of this section.
Before proving the theorem, we state the lemma of the key tool in the proof about a
single-letterized Tµ,α

E (PXK ) and a Tµ,α
E (Pn

XK
), which are introduced in Proposition 1.

Lemma 7. For any E such thatR ⊆ E ⊆ K, all n ∈ N, µ ≥ 0 and α > 0, it holds that

Tµ,α
E (Pn

XK ) ≥ nTµ,α
E (PXK ).

As the main theorem of this section, we show the strong converse theorem for the
utility–privacy trade-offs.

Theorem 4. Strong converse theorem: For any E such that R ⊆ E ⊆ K and all 0 < ε < 1, it
holds that

LDL
E (ε|PXK ) = L

DL
E (PXK ).

Remark 5. Theorem 4 suggests that regardless of the value of ε, the region LDL
E (ε|PXK ) is equal

to LDL
E (PXK ).

5.4. Proof of Lemma 7

Lemma 7 indicates that the function Tµ,α
E (Pn

XK
), whose argument Pn

XK
is a probability

distribution over X n
K, can be lower-bounded by the n-fold of a single-letterized function

Tµ,α
E (PXK ). Before describing the detailed proof, we state the outline of the proof: (i) We first

express the function Tµ,α
E (Pn

XK
) as the maximum of the difference of two functions denoted

by G1 and G2 as in (142). (ii) Then, we show that the first function G1 can be lower-bounded
by the n-fold of its single-letterized function as in (143), while the second function G2 can
be upper-bounded by the n-fold of its single-letterized function as in (147). This outline of
the proof is similar to the Proof of Theorem 4, 16 with a slight modification of the function
G2.

For a given distribution PX̃n
Ec X̃n

E
˜̂Xn
R

, let functions G1(PX̃n
Ec X̃n

E
) and G2(PX̃n

Ec X̃n
E

˜̂Xn
R
) be

defined as

G1(PX̃n
Ec X̃n

E
) := H(X̃n

H) + αH(X̃n
Ec |X̃n

E ) + (α + 1)D(PX̃n
Ec X̃n

E
‖ Pn

XEc XE ),

G2(PX̃n
Ec X̃n

E
˜̂Xn
R
) := H(X̃n

H|
˜̂Xn
R)− µE[d(X̃n

R, ˜̂Xn
R)] + αH(X̃n

E |X̃n
E , ˜̂Xn

R). (141)

Using these functions, and in view of (134), Tµ,α
E (Pn

XEc XE
) can be written as

Tµ,α
E (Pn

XEc XE ) = min
P

X̃n
Ec X̃n
E

˜̂Xn
R

[
G1(PX̃n

Ec X̃n
E
)− G2(PX̃n

Ec X̃n
E

˜̂Xn
R
)

]
. (142)

For fixed PX̃n
Ec X̃n

E
˜̂Xn
R

, from Proposition 2, it holds that

G1(PX̃n
Ec X̃n

E
) ≥ nG1(PX̃Ec,J X̃E ,J

). (143)

Next, we consider the function G2(PX̃n
Ec X̃n

E
˜̂Xn
R
). For the first term on the r.h.s. of (141),

it holds that
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H(X̃n
H|

˜̂Xn
R) =

n

∑
j=1

H(X̃H,j|X̃
j−1
H , ˜̂Xn

R)

≤
n

∑
j=1

H(X̃H,j| ˜̂XR,j)

= n · 1
n

n

∑
j=1

H(X̃H,j| ˜̂XR,j)

= nH(X̃H,J | ˜̂XR,J , J)

≤ nH(X̃H,J | ˜̂XR,J). (144)

The second term of (141) can be expressed as follows:

E[d(X̃n
R, ˜̂Xn

R)] = ∑
xn
R ,x̂n
R

PX̃n
R

˜̂Xn
R
(xn
R, x̂n

R) ·
{

n

∑
j=1

d(xR,j, x̂R,j)

}

=
n

∑
j=1

∑
xR ,x̂R

PX̃R,j
˜̂XR,j

(xR, x̂R)d(xR, x̂R)

(a)
= n ∑

xR ,x̂R

PX̃R,J
˜̂XR,J

(xR, x̂R)d(xR, x̂R)

= nE[d(X̃R,J ,
˜̂XR,J)], (145)

where

(a) follows from 1
n ∑n

j=1 PX̃R,j
˜̂XR,j

(xR, x̂R) = PX̃R,J
˜̂XR,J

(xR, x̂R).

Moreover, for the third term of (141), it holds that

H(X̃n
Ec |X̃n

E , ˜̂Xn
R) =

n

∑
j=1

H(X̃Ec,j|X̃
j−1
Ec , X̃n

E , ˜̂Xn
R)

≤
n

∑
j=1

H(X̃Ec,j|X̃E ,j,
˜̂XR,j)

= n · 1
n

n

∑
j=1

H(X̃Ec,j|X̃E ,j,
˜̂XR,j)

= nH(X̃Ec,J |X̃E ,J ,
˜̂XR,J , J)

≤ nH(X̃Ec,J |X̃E ,J ,
˜̂XR,J). (146)

From (144)–(146), we obtain

G2(PX̃n
Ec X̃n

E
˜̂Xn
R
) ≤ nG2(PX̃Ec,J X̃E ,J

˜̂XR,J
). (147)

Consequently, since (143) and (147) are satisfied for an arbitrary PX̃n
Ec X̃n

E
˜̂Xn
R

, the proof is

completed.

5.5. Proof of Strong Converse Theorem

For any given ε > 0, fix the rate pair (D, L) ∈ LDL
E (ε|PXK ) arbitrarily. Then, by definition,

there exists a code ( fn, gn) satisfying (79) and (80). For this code ( fn, gn), a set D is defined as

D := {(xn
Ec , xn

E ) : d(xn
R, gn( fn(xn

E ))) ≤ nD}.
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We derive a distribution PX̃n
Ec X̃n

E
as

PX̃n
Ec X̃n

E
(xn
Ec , xn

E ) :=
Pn

XEc XE
(xn
Ec , xn

E )1l[(xn
Ec , xn

E ) ∈ D]
Pn

XEcXE
(D) .

It is obvious that the excess-distortion probability measured by PX̃n
Ec X̃n

E
is 0; that is, X̃n

R and
˜̂Xn
R = gn( fn(X̃n

E )) satisfy E[d(X̃n
R, ˜̂Xn

R)] ≤ nD. Thus, by imitating the proof approach of
the standard weak converse theorem, it holds that

n(L + µD) ≥ I(X̃n
H; ˜̂Xn

R) + µE[d(X̃n
R, ˜̂Xn

R)], (148)

D(PX̃n
Ec X̃n

E
‖ Pn

XEc XE ) = log
1

Pn
XEc XE

(D) ≤ log
1

1− ε
. (149)

From (148), the following equation is obtained:

n(L + µD)
(a)
≥ I(X̃n

H; ˜̂Xn
R) + µE[d(X̃n

R, ˜̂Xn
R)]

+ ((α + 1)D(PX̃n
Ec X̃n

E
‖ Pn

XEc XE ) + αI(X̃n
Ec ; ˜̂Xn

R|X̃n
E ))

− (α + 1) log
1

1− ε
(b)
≥ Tµ,α

E (Pn
XK )− (α + 1) log

1
1− ε

,

where

(a) follows from (149) and I(X̃n
Ec ; ˜̂Xn

R|X̃n
E ) = 0,

(b) is due to (134).

Since Tµ,α
E (Pn

XK
) ≥ nTµ,α

E (PXK ) from Lemma 7, we have

L + µD ≥ Tµ,α
E (PXK )−

(α + 1)
n

log
1

1− ε
,

and therefore

sup
α>0

(L + µD) ≥ sup
α>0

[
Tµ,α

ε (PXK )−
(α + 1)

n
log

1
1− ε

]
.

Because Tµ
E (PXK ) = supα>0 Tµ,α

E (PXK ) from Proposition 1, it holds that for an arbitrary
α > 0,

L + µD ≥ Tµ
E (PXK )−

(α + 1)
n

log
1

1− ε
.

Hence, it holds that

L + µD ≥ lim
n→∞

(
Tµ
E (PXK )−

(α + 1)
n

log
1

1− ε

)
= Tµ

E (PXK ) for every µ ≥ 0. (150)

For the set of (D, L) satisfying (150), varying µ ≥ 0 arbitrarily and taking the intersection,
we have

(D, L) ∈
⋂

µ≥0
{(D, L) : L + µD ≥ Tµ

E (PXK )}. (151)

From Theorem 3, the r.h.s. of (151) is equal to LDL
E (PXK ). This proof is completed.
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6. Discussion
6.1. Numerical Calculation of Coding Rate, Utility, and Privacy for Decoder

In this section, we show some numerical calculations of the achievable region
CRDL
E (PXK ) and LRDL

E (PXK ) in Corollaries 1 and 2, respectively. In general, it is diffi-
cult to compute the achievable region CRDL

E (PXK ) and LRDL
E (PXK ). Nevertheless, to obtain

some insight, let us consider the three tractable but essential cases. In these calculations,
the number of public attributes is one (|R| = 1) and the number of private attributes is
two (|H| = 2). We assume that each of the attributes is binary. Here, note again that the
coding rate R acts like the rate-distortion function in rate-distortion theory (cf. (Section 10
in [27], )). For fixed D and L, a smaller coding rate is better.

In the first example, we calculated the L-D graph of theoretical limits in case (i) E = K,
case (ii) E = R, and case (iii) R ⊂ E ⊂ K (Figure 4). As a result, the achievable privacy
leakage L becomes small as D becomes large if we do not impose any restrictions on the
value of R. For a given D, the privacy leakage for the decoder in case (i) E = K is the
smallest, and the one in case (ii) E = R is the largest in all cases. The second example
calculated the R-D graph of theoretical limits in cases (i), (ii), and (iii) (Figure 5). We
can see that the minimum coding rates for a given D coincide in all cases if we do not
impose any restrictions on the value of L. In the third example, we calculated the optimal
privacy leakage L for fixed D and the corresponding coding rates R in cases (i), (ii), and
(iii) (Tables 1–3). As a result, the optimal privacy leakage in cases (i) and (iii) is smaller than
the one in case (ii), whereas for the optimal privacy leakage, the achievable coding rates in
cases (i) and (iii) is larger than the one in case (ii).

Figure 4. Utility–privacy trade-off region in cases (i), (ii), and (iii).

Figure 5. Utility–coding-rate trade-off region in cases (i), (ii), and (iii). The curves coincide in all cases.
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Table 1. Minimum L and its corresponding R for D = 0.0500.

Cases Leakage L Coding Rate R

case (ii) 0.019512 0.494629
case (iii) 0.008298 0.527700
case (i) 0.005107 0.539478

Table 2. Minimum L and its corresponding R for D = 0.100.

Cases Leakage L Coding Rate R

case (ii) 0.015378 0.368062
case (iii) 0.002656 0.418826
case (i) 0.000000 0.429490

Table 3. Minimum L and its corresponding R for D = 0.1500.

Cases Leakage L Coding Rate R

case (ii) 0.011748 0.270436
case (iii) 0.002032 0.294424
case (i) 0.000000 0.382211

Next, we discuss these results. In Figure 4, in comparison with each case, we can
verify that for a given D, the more private information is encoded, the smaller the achiev-
able minimum privacy leakage is. Figure 5 suggests that if the coding rate should be
minimized, it suffices to encode only the public attributes. This result is evident from
Corollaries 1 and 2 because the condition on the choice of test channel PX̂R |XE in case (i)
is weaker than the one in case (ii), and if an appropriate test channel is taken in case (i), it
is also appropriate in case (ii). It is indicated that the achievable region in case (ii) is also
the one in cases (i) and (iii). The opposite is not the case. From Tables 1–3, we can confirm
the trade-off between the optimal privacy leakage L for a fixed D and the corresponding
coding rate R in comparison with each case.

Summarizing the foregoing arguments, we have discussed the relationship between
utility and privacy in Figure 4, the one between utility and coding rate in Figure 5, and the
one between privacy and coding rate in Tables 1–3. From the discussion about Figure 5,
some readers may suspect that case (i) is the best-encoded information because the achiev-
able region in cases (ii) and (iii) is the one in case (i). This is true if we do not consider the
leakage for the encoder. However, this is not true if we consider the leakage for the encoder,
that is, the measurement of privacy for the encoder (see (12) or (76)). In the next section,
we discuss this point in detail.

6.2. Significance of Limited Leakage for Encoder

In this section, we discuss the significance of evaluating the leakage for the encoder.
Our goal of this discussion is to show that the best-encoded information may be case (iii)
R ⊂ E ⊂ K if we take the limited leakage for the encoder into consideration.

The first issue is the amount of encoded information. Some readers may think that it
is better that more encoded information is inputted into the encoder. However, there are
pros and cons.

Pros: The achievable regions CRDL
E (PXK ) and LRDL

E (PXK ) become larger.
Cons: The leakage for the encoder increases.

From this point of view, we can come up with the idea that there exists the best-
encoded information in case (iii)R ⊂ E ⊂ K if we impose some constraint on the leakage
for the encoder. This idea is the key point of this paper.

The second issue is the significance of the limited leakage for the encoder. Figure 6
shows the Hasse diagram, which represents the inclusion relation about the index sets of
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attributes. The Hasse diagram is often used to represent inclusion relations, for example,
R ⊂ E2 ⊂ E1 ⊂ K.

We can also regard Figure 6 as the Hasse diagram that represents the inclusion relation
for the achievable regions CRDL

E (PXK ) and LRDL
E (PXK ) because the index sets of attributes

(R ⊆ E ⊆ K) corresponds to the encoded information (XE ) and the encoded information
corresponds to the achievable region (CRDL

E (PXK ) andLRDL
E (PXK )). In addition, the diagram

in Figure 6 has another property, which is that the superordinate sets have a larger amount
of privacy leakage for the encoder than the subordinate sets since the index sets of attributes
correspond to the privacy leakage for the encoder.

Figure 6. Hasse diagram that represents the inclusion relation for the index sets of attributes.

Let us consider a practical application. We assume that the data aggregator, that is,
the encoder, tries to gather encoded information from some application user and hopes
to develop the utility of the application while limiting the amount of leakage for Xn

H by
E ≥ 0, that is, en ≤ E. More precisely, for a given E, we want to find which subsets of K are
sufficient to characterize

CRDL(PXK |E) :=
⋃

R⊆E⊆K

{
(R, D, L) : (R, D, L, E) ∈ CE (PXK )

}
,

LRDL(PXK |E) :=
⋃

R⊆E⊆K

{
(R, D, L) : (R, D, L, E) ∈ LE (PXK )

}
,

where CE (PXK ) and LE (PXK ) are defined in Definitions 2 and 11, respectively. The process
is as follows.

Step 1: Check the user’s requirements and impose the restriction on the privacy leakage
for the encoder.

Figure 7 shows the Hasse diagram for Step 1. The blue dotted line means the border
line satisfies the restriction of the privacy leakage for the encoder. Therefore, the index sets
E1 and K are not suitable as the index sets of encoded information.

Figure 7. Hasse diagram for Step 1.
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Step 2: Check the inclusion relation between index sets.

Figure 8 shows the Hasse diagram for Step 2. From Figure 6, we can find that

R ⊂ E2, R ⊂ E3, R ⊂ E5, E3 ⊂ E4, E5 ⊂ E4.

Figure 8. Hasse diagram for Step 2.

Therefore, the index setsR, E3, and E5 are not suitable as the index sets of encoded information.
Figure 9 shows the Hasse diagram obtained after Step 2. From Figure 9, the remaining

index sets are E2 and E4. Therefore, if we impose restriction on privacy leakage for the
encoder, the index sets E2 or E4 form the Pareto area in this multi-objective optimization
problem. In other words, there exists a system that satisfies the user’s requirements E of
the maximum amount of leakage to the encoder, and the achievable regions are given by
CRDL(PXK |E) = CRDL

E2
(PXK ) ∪ CRDL

E4
(PXK ) and LRDL(PXK |E) = LRDL

E2
(PXK ) ∪ LRDL

E4
(PXK ).

Figure 9. Hasse diagram obtained after Step 2.

From the discussion above, we mention that the best-encoded information is case (iii)
R ⊂ E ⊂ K if we take the limited leakage for the encoder into account. This concept is one
of the most important novelties in this paper.

If E satisfies some condition, then CRDL(PXK |E) can be characterized by the expressions
given by Yamamoto [1] (cf. Remark 3). More specifically, the region CRDL(PXK |E) can be
given by

CRDL(PXK |E) = S
RDL
K (PXK )
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if E ≥ H(XK) and

CRDL(PXK |E) = S
RDL
R (PXK )

if H(XR) ≤ E < H(XE ) for any R ⊂ E with R 6= E , where the regions SRDL
K (PXK ) and

SRDL
R (PXK ) are given in [1] (cf. Remark 3).

6.3. Discussion on Measures for Privacy Leakage

This paper adopts the mutual information as the measure of privacy leakage as in
(12), (13), (76), and (77). However, some less likely data can be leaked even though the
database satisfies the theoretical limit of privacy leakage. For example, let (X, Y) be a pair
of correlated random variables whose I(X; Y) is very small. However, there may exist a pair
of (x1, y1) such that Y = y1 can imply X = x1 with high probability. To put it differently,
the receiver can tell the value of X if it observes Y = y1. The theoretical limit evaluated
with mutual information cannot prevent such a scenario. To circumvent this scenario, we
suggest the other measurement adopted in related studies. A promising candidate to avoid
this problem is to employ Rényi information of higher orders [30], maximal leakage [15],
and maximal α-leakage [16–18,21].

7. Conclusions

In this paper, we strengthened the results in [3] mainly by establishing three coding
theorems in a privacy-constrained source coding problem. In Sections 3 and 4, two theorems
are made about the first-order rate analysis in which utility is measured by the expected
distortion or the excess-distortion probability for case (iii), R ⊂ E ⊂ K. The novelty
is the introduction of the measure of privacy for the encoder along with the use of the
excess-distortion probability. The obtained characterization reduces to the one given in [3]
derived based on the expected distortion when the leakage for the encoder is not limited,
and the result shows that employing an excess-distortion probability does not change the
achievable region from the one with an expected distortion. In Section 5, we establish the
strong converse theorem for utility–privacy trade-offs. Although the described result is
for the projected plane of utility and privacy for the decoder for simplicity, we can also
incorporate the measure of privacy for the encoder. Finally, we discuss the significance
of the encoded information considering limited leakage for the encoder. The argument
suggests that the best-encoded information can be case (iii)R ⊂ E ⊂ K if some constraint
is imposed on the privacy leakage for the encoder.

As future work, the second-order rate analysis for utility–privacy trade-offs is an inter-
esting research topic [4–6]. Moreover, the strong converse theorem and the second-order
rate analysis for the four-dimensional region of coding rate, utility, privacy for the decoder,
and privacy for the encoder are more challenging tasks. It is also worth analyzing the
achievable region with the other privacy measures such as Rényi information [30], maximal
leakage [15], and maximal α-leakage [16–18,21]. This paper analyzed the theoretical limits
of coding, but understanding how to achieve the theoretical limits remains open. The
construction of good codes is also an important subject. Extensions of this paper’s scenario
to coding with side information [2,25] are also of interest.
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Appendix A. Proof of the Markov Chain XEc–XE–X̂R in Converse Part of Theorem 1

Let pi(xE ,i, xEc,i, x̂R,i) be the conditional distribution given Q = i,

pi(xE ,i, xEc,i, x̂R,i) = ∑
xE ,k :
k 6=i

∑
xEc,k :
k 6=i

∑
x̂R,k :
k 6=i

p(xn
E , xn
Ec , x̂n

R)

= ∑
xE ,k :
k 6=i

∑
xEc,k :
k 6=i

p(xn
E , xn
Ec , x̂R,i)

(a)
= ∑

xE ,k :
k 6=i

∑
xEc,k :
k 6=i

pi(xn
E , x̂R,i)p(xn

Ec |xn
E )

= ∑
xE ,k :
k 6=i

pi(xn
E , x̂R,i) ∑

xEc,k :
k 6=i

p(xn
Ec |xn

E )

(b)
= ∑

xE ,k :
k 6=i

pi(xn
E , x̂R,i)·

∑
xEc,k :
k 6=i

(
n

∏
l=1

p(xEc,l |xE ,l)

)

= pi(xE ,i, x̂R,i)p(xEc,i|xE ,i)

= p(xE ,i)p(xEc,i|xE ,i)pi(x̂R,i|xE ,i)

= p(xE ,i, xEc,i)pi(x̂R,i|xE ,i), (A1)

where

(a) is due to the Markov chain Xn
Ec–Xn

E–X̂R,i and
(b) follows from the stationary memoryless source.

Therefore, we can obtain the Markov chain XEc,i–XE ,i–X̂R,i. For the marginal distribu-
tion, we can show that

p(xE , xEc , x̂R)
(c)
=

1
n

n

∑
i=1

pi(xE , xEc , x̂R)

(d)
=

1
n

n

∑
i=1

pi(xE , xEc)pi(x̂R|xE )

(e)
= p(xE , xEc) · 1

n

n

∑
i=1

pi(x̂R|xE )

(f)
= p(xE , xEc)p(x̂R|xE ), (A2)

where

(c) follows because

p(xE , xEc , x̂R) =
n

∑
i=1

Pr{Q = i}pi(xE , xEc , x̂R), (A3)

(d) is due to the Markov chain XEc,i–XE ,i–X̂R,i,
(e) follows from the stationary memoryless source, and
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(f) follows because

p(x̂R|xE ) =
n

∑
i=1

Pr{Q = i}pi(x̂R|xE ). (A4)

Therefore, we can obtain the Markov chain XEc–XE–X̂R. We complete the proof.

Appendix B. Proof of Equation (56)

From Ã(j) ⊆ B(j) for j = 1, 2, . . . , Mn − 1,

Pr{Xn
K ∈ B(j)} = Pr{Xn

K ∈ Ã(j)}+ Pr{Xn
K ∈ B(j) \ Ã(j)}. (A5)

If xn
K ∈ B(j) \ Ã(j), then xn

E ∈ Tn
δ (XE |x̂n

R(j)) and (xn
E , xn
Ec) /∈ Tn

2δ(XK|x̂n
R(j)), and thus we

have xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j)) from Lemma 5. Then,

xn
K ∈ B(j) \ Ã(j) =⇒xn

E ∈ Tn
δ (XE |x̂n

R(j)),

xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j)) (A6)

We can prove that

Pr{Xn
K ∈ B(j) \ Ã(j)}

≤ Pr{Xn
E ∈ Tn

δ (XE |x̂n
R(j)), Xn

Ec /∈ Tn
δ (XEc |Xn

E , x̂n
R(j))}

= ∑
xn
E∈Tn

δ (XE |x̂n
R(j))

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E}

(a)
= ∑

xn
E∈Tn

δ (XE |x̂n
R(j))

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E , X̂n

R = x̂n
R(j)}

(b)
≤ ∑

xn
E∈Tn

δ (XE |x̂n
R(j))

Pr{Xn
E = xn

E} · 2|XEc | · |XE | · |X̂R|e−2δ2n

≤ 2|XK| · |X̂R|e−2δ2n, (A7)

where

(a) is due to the Markov chain Xn
Ec–Xn

E–X̂n
R and

(b) follows from Lemma 6.

From Equations (A5) and (A7), we can obtain

|Pr{Xn
K ∈ B(j)} − Pr{Xn

K ∈ Ã(j)}| ≤ 2|XK| · |X̂R|e−2δ2n. (A8)

We complete the proof of (56).

Appendix C. Proof of Existence of Code Satisfying Equations (57)–(62)

We first set Mn := 2nR and rn := 1
n log Mn. Then, we obviously have (57).

From the union upper bound,
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Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


≤ Pr{Xn

E /∈ Tn
δ (XE )}

+ Pr{Xn
E ∈ Tn

δ (XE ), Xn
E /∈ Tn

δ (XE |x̂n
R(j))

for all j = 1, 2, . . . , Mn − 1}. (A9)

From Lemma 6, the first term in (A9) is bounded as

Pr{Xn
E /∈ Tn

δ (XE )} ≤ 2|XE |e−2δ2n. (A10)

We consider the expectation of the second term in (A9) by random coding. Hereafter, we
denote the random variable corresponding to the reproduced sequence x̂n

R(j) as X̂n
R(j). For

notational simplicity, we use the abbreviation

Pr{Xn
E /∈ Tn

δ (XE |X̂n
R(j))

for all j = 1, 2, . . . , Mn − 1|Xn
E = xn

E}
= Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1}, (A11)

and then

E[Pr{Xn
E ∈ Tn

δ (XE ), Xn
E /∈ Tn

δ (XE |X̂n
R(j))

for all j = 1, 2, . . . , Mn − 1}]

= ∑
xn
E∈Tn

δ (XE )
p(xn
E )E

[
Pr{Xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1|Xn
E = xn

E}
]

(a)
= ∑

xn
E∈Tn

δ (XE )
p(xn
E )E

[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1}
]

= ∑
xn
E∈Tn

δ (XE )
p(xn
E )

(
Mn−1

∏
j=1

E
[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))}
])

(b)
= ∑

xn
E∈Tn

δ (XE )
p(xn
E )
(
E
[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(1))}
])Mn−1

(c)
≤ exp

{
−2n(R−I(XE ;X̂R)− 1

n−τ)
}

(d)
≤ exp

{
−22δ2n

}
, (A12)

where

(a) is owing to (A11),
(b) is due to the symmetry about indexes of random coding,
(c) follows from the same way as in (Section 3.6.3 in [31]), and
(d) because δ is fixed to satisfy (49).
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From (A10) and (A12), we obtain

E

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


 ≤ (2|XE |+ 1)e−2δ2n. (A13)

Therefore, there exists at least one codebook satisfying (60) in the ensembles obtained by
random coding.

Hereafter, codebook C is fixed to satisfy (60). That is, codebook C satisfies

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 ≤ (2|XE |+ 1)e−2δ2n. (A14)

We evaluate the distortion function for each j.

(i) j = 1, 2, . . . , Mn − 1:

d(xn
R, x̂n

R(j))

=
1
n ∑

a∈XR
∑

b∈X̂R

N(a, b|xn
R, x̂n

R(j))d(a, b)

(e)
≤ ∑

a∈XR
∑

b∈X̂R

PXR ,X̂R
(a, b)d(a, b)

+ (δ + δ1)|XR| · |X̂R|Dmax

= E[d(XR, X̂R)] + (δ + δ1)|XR| · |X̂R|Dmax, (A15)

where

(e) because from Lemma 4, if xn
E ∈ Tn

δ (XE |x̂n
R(j)), then xn

R ∈ Tn
δ1
(XR|x̂n

R(j)) and
from Lemma 3, if x̂n

R(j) ∈ Tn
δ (X̂R) and xn

R ∈ Tn
δ1
(XR|x̂n

R(j)), then (xn
R, x̂n

R(j)) ∈
Tn

δ+δ1
(XR, X̂R).

(ii) j = Mn:

d(xn
R, x̂n

R(Mn)) =
1
n

n

∑
i=1

d(xR,i, x̂R,i)

(f)
≤ Dmax, (A16)

where

(f) is due to the definition of Dmax := max
a∈XR ,b∈X̂R

d(a, b).

We consider Pr{Jn = Mn}. From (A14),

Pr{Jn = Mn} = Pr{Xn
E ∈ A(Mn)}

= Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


≤ (2|XE |+ 1)e−2δ2n. (A17)

Therefore, we can confirm

lim
n→∞

Pr{Jn = Mn} = 0. (A18)
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From (i) and (ii), we can evaluate utility un as below.

un := E
[
d(Xn

R, X̂n
R)
]

≤
Mn−1

∑
j=1

Pr{Jn = j} ·
(
E[d(XR, X̂R)]

+ (δ + δ1)|XR| · |X̂R|Dmax

)
+ Pr{Jn = Mn} · Dmax

(g)
≤ E[d(XR, X̂R)] + (δ + δ1)|XR| · |X̂R|Dmax + τ (A19)

for all sufficiently large n, where

(g) follows from (A18).

Thus, we obtain (58).
We can evaluate the privacy leakage against the encoder as shown below.

en :=
1
n

I(Xn
H; Xn

E )

(h)
=

1
n

n

∑
i=1

I(XH,j; Xn
E |X

j−1
H )

(i)
=

1
n

n

∑
i=1

I(XH,j; XE ,j)

(j)
= I(XH; XE ), (A20)

where

(h) is due to chain rule for mutual information and
(i), (j) follows because i.i.d. PXn

K
.

Thus, we have (59).
Next, we show that the probability that random vector Xn

K is not included in the set⋃Mn−1
j=1 Ã(j) is sufficiently small. First, notice that

xn
K /∈

Mn−1⋃
j=1

Ã(j) =⇒xn
E /∈

Mn−1⋃
j=1

A(j)

or

xn
E ∈ A(j0),

(xn
E , xn
Ec) /∈ Tn

2δ(XK|x̂n
R(j0))

for j0 = fn(xn
E ), (A21)

where j0 is the index such that fn(xn
E ) = j0 for 1 ≤ j0 ≤ Mn − 1. Therefore, by the union

upper bound,

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


≤ Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


+ Pr{Xn

E ∈ A(j0), (Xn
E , Xn

Ec) /∈ Tn
2δ(XK|x̂n

R(j0))

for j0 = fn(Xn
E )}. (A22)

We evaluate each term in (A22).
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(i) The first term:

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 (k)
≤ (2|XE |+ 1)e−2δ2n, (A23)

where

(k) is because of (A14).

(ii) The second term:
If the event in the second term occurs, xn

E ∈ Tn
δ (XE |x̂n

R(j0)) and (xn
E , xn
Ec ) /∈ Tn

2δ(XK |x̂n
R(j0)).

Therefore, from Lemma 5, xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j0)) holds. Hence,

Pr{Xn
E ∈ A(j0), (Xn

E , Xn
Ec) /∈ Tn

2δ(XK|x̂n
R(j0))

for j0 = fn(Xn
E )}

≤ Pr{Xn
E ∈ A(j0), Xn

Ec /∈ Tn
δ (XEc |Xn

E , x̂n
R(j0))}

≤
Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E}

(l)
=

Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E , X̂n

R = x̂n
R(j)}

(m)
≤

Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E} · 2|XEc | · |XE | · |X̂R|e−2δ2n

(n)
≤ 2|XK| · |X̂R|e−2δ2n, (A24)

where

(l) is due to the Markov chain Xn
Ec − Xn

E − X̂n
R,

(m) follows since xn
E ∈ Tn

δ (XE |x̂n
R(j0)) and Lemma 6, and

(n) follows because A(j) are disjoint for each j.

From (A22)–(A24),

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ 4|XK| · |X̂R|e−2δ2n. (A25)

Therefore, for sufficiently large n,

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ τ, (A26)

and we obtain (61).
From Lemma 1, for sufficiently large n to stochastic matrix W : X̂R → XK and

x̂n
R(j) ∈ Tn

δ (X̂R) we can show that∣∣∣∣ 1n log |Tn
δ2
(XK|x̂n

R(j))| − H(XK|X̂R)
∣∣∣∣ ≤ τ, (A27)

δ2 :=
δ

|XEc | .
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We can also show from (A27) that

2n{H(XK |X̂R)−τ} ≤ |Tn
δ2
(XK|x̂n

R(j))| ≤ 2n{H(XK |X̂R)+τ}. (A28)

From the definition of Ã(j) and Tn
δ2
(XK |x̂n

R(j)) and Lemma 3, for j = 1, 2, . . . , Mn − 1, we have

xn
K ∈ Ã(j)⇐⇒

{
xn
E ∈ Tn

δ (XE |x̂n
R(j))

xn
K ∈ Tn

2δ(XK|x̂n
R(j))

(A29)

xn
K ∈ Tn

δ2
(XK|x̂n

R(j)) =⇒
{

xn
E ∈ Tn

δ (XE |x̂n
R(j))

xn
K ∈ Tn

2δ(XK|x̂n
R(j))

(A30)

This means

Tn
δ2
(XK|x̂n

R(j)) ⊆ Ã(j)

=⇒ |Tn
δ2
(XK|x̂n

R(j))| ≤ |Ã(j)|. (A31)

Therefore, from (A28) and (A31),

|Ã(j)| ≥ 2n{H(XK |X̂R)−τ}, (A32)

and we obtain (62).

Appendix D. Derivation of Inequality in Equation (63)

We derive the inequality in (63). To write notation concisely, for every xn
H ∈ X n

H and
each j = 1, 2, . . . , Mn, we define Pn(j), Qn(j), P̃n(xn

H, j), and Q̃n(xn
H, j) as follows:

Pn(j) := Pr{Xn
K ∈ B(j)}, (A33)

Qn(j) := Pr{Xn
K ∈ Ã(j)}, (A34)

P̃n(xn
H, j) := Pr{Xn

H = xn
H, Xn

K ∈ B(j)}, (A35)

Q̃n(xn
H, j) := Pr{Xn

H = xn
H, Xn

K ∈ Ã(j)}. (A36)

Then, using the notation in [5], we can write each entropy as

H(Xn
K ∈ B(Jn)) = H(Pn), (A37)

H(Xn
K ∈ Ã(Jn)) = H(Qn), (A38)

H(Xn
H, Xn

K ∈ B(Jn)) = H(P̃n), (A39)

H(Xn
H, Xn

K ∈ Ã(Jn)) = H(Q̃n). (A40)

The variational distance between distributions Pn and Qn is

dv(Pn, Qn) =
Mn

∑
j=1
|Pn(j)−Qn(j)|

=
Mn−1

∑
j=1
|Pn(j)−Qn(j)|

+ |Pn(Mn)−Qn(Mn)|. (A41)

We evaluate each term in (A41).
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(i) The first term:

Mn−1

∑
j=1
|Pn(j)−Qn(j)|

=
Mn−1

∑
j=1

Pr{Xn
K ∈ B(j) \ Ã(j)}

(a)
= Pr

Xn
K ∈

Mn−1⋃
j=1

B(j) \ Ã(j)


= Pr

Xn
K ∈

Mn−1⋃
j=1

B(j)

− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)


=

1− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)




−

1− Pr

Xn
K ∈

Mn−1⋃
j=1

B(j)




= Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

− Pr

Xn
K /∈

Mn−1⋃
j=1

B(j)


≤ Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


(b)
≤ τ, (A42)

where

(a) follows because B(j) \ Ã(j) is disjoint for each j = 1, 2, . . . , Mn − 1,
(b) is owing to (61).

(ii) The second term:

|Pn(Mn)−Qn(Mn)|
(c)
= Qn(Mn)− Pn(Mn)

≤ Qn(Mn)

= Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


(d)
≤ τ, (A43)

where

(c) follows because B(Mn) ⊆ Ã(Mn) and
(d) follows from (61).

From (A42) and (A43), the variational distance between Pn and Qn is bounded from above as

dv(Pn, Qn) ≤ τ + τ

= 2τ. (A44)
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Next, the variational distance between distributions P̃n and Q̃n is

dv(P̃n, Q̃n) =
Mn

∑
j=1

∑
xn
H∈X

n
H

∣∣P̃n(xn
H, j)− Q̃n(xn

H, j)
∣∣

=
Mn−1

∑
j=1

∑
xn
H∈X

n
H

∣∣P̃n(xn
H, j)− Q̃n(xn

H, j)
∣∣

+ ∑
xn
H∈X

n
H

∣∣P̃n(xn
H, Mn)− Q̃n(xn

H, Mn)
∣∣. (A45)

We evaluate each term in (A45).

(i) The first term:

Mn−1

∑
j=1

∑
xn
H∈X

n
H

∣∣P̃n(xn
H, j)− Q̃n(xn

H, j)
∣∣

=
Mn−1

∑
j=1

∑
xn
H∈X

n
H

Pr{Xn
H = xn

H, Xn
K ∈ B(j) \ Ã(j)}

(e)
= ∑

xn
H∈X

n
H

Pr

Xn
H = xn

H, Xn
K ∈

Mn−1⋃
j=1

B(j) \ Ã(j)


= Pr

Xn
K ∈

Mn−1⋃
j=1

B(j) \ Ã(j)


= Pr

Xn
K ∈

Mn−1⋃
j=1

B(j)

− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)


=

1− Pr

Xn
K ∈

Mn−1⋃
j=1

Ã(j)




−

1− Pr

Xn
K ∈

Mn−1⋃
j=1

B(j)




= Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

− Pr

Xn
K /∈

Mn−1⋃
j=1

B(j)


≤ Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


(f)
≤ τ, (A46)

where

(e) follows since B(j) \ Ã(j) is disjoint for each j = 1, 2, . . . , Mn − 1,
(f) is due to (61).
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(ii) The second term:

∑
xn
H∈X

n
H

|P̃n(xn
H, Mn)− Q̃n(xn

H, Mn)|

(g)
= ∑

xn
H∈X

n
H

(
Q̃n(xn

H, Mn)− P̃n(xn
H, Mn)

)
≤ ∑

xn
H∈X

n
H

Q̃n(xn
H, Mn)

= Qn(Mn)

= Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


(h)
≤ τ, (A47)

where

(g) follows because B(Mn) ⊆ Ã(Mn) and
(h) is due to (61).

From (A46) and (A47), the variational distance between P̃n and Q̃n is bounded from above as

dv(P̃n, Q̃n) ≤ τ + τ

= 2τ. (A48)

As a result, from Lemma 2 and the relation of each entropy,

|H(Xn
K ∈ B(Jn))− H(Xn

K ∈ Ã(Jn))| ≤ −2τ log
2τ

Mn
, (A49)

|H(Xn
H, Xn

K ∈ B(Jn))− H(Xn
H, Xn

K ∈ Ã(Jn))|

≤ −2τ log
2τ

|XH|n ·Mn
. (A50)

From (A49), (A50), and the chain rule of entropy,

|H(Xn
H|Xn

K ∈ B(Jn))− H(Xn
H|Xn

K ∈ Ã(Jn))|
= |{H(Xn

H, Xn
K ∈ B(Jn))− H(Xn

K ∈ B(Jn))}
− {H(Xn

H, Xn
K ∈ Ã(Jn))− H(Xn

K ∈ Ã(Jn))}|
= |{H(Xn

H, Xn
K ∈ B(Jn))− H(Xn

H, Xn
K ∈ Ã(Jn))}

+ {H(Xn
K ∈ Ã(Jn))− H(Xn

K ∈ B(Jn))}|
(i)
≤ |H(Xn

H, Xn
K ∈ B(Jn))− H(Xn

H, Xn
K ∈ Ã(Jn))|

+ |H(Xn
K ∈ Ã(Jn))− H(Xn

K ∈ B(Jn))|

≤ −2τ log
2τ

Mn
− 2τ log

2τ

|XH|n ·Mn

= −4τ log
2τ

|XH|n ·Mn

= 4τ log
|XH|n ·Mn

2τ
, (A51)

where

(i) is because of the triangle inequality.
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Therefore, we obtain

1
n

H(Xn
H|Jn) =

1
n

H(Xn
H|Xn

K ∈ B(Jn))

≥ 1
n

H(Xn
H|Xn

K ∈ Ã(Jn))−
4τ

n
log
|XH|n ·Mn

2τ
(j)
>

1
n

H(Xn
H|Xn

K ∈ Ã(Jn))−
4τ

n
log
|XH|n · 2nR

(2τ)n

=
1
n

H(Xn
H|Xn

K ∈ Ã(Jn))− 4τ log
|XH| · 2R

2τ
, (A52)

where

(j) follows from the definition that Mn = 2nR and 2τ < 1.

We complete the derivation of (63).

Appendix E. Proof of Equation (65)

First of all, we shall show

xn
K ∈ Ã(j) =⇒ xn

R ∈ Tn
δ3
(XR|xn

H, x̂n
R(j)),

δ3 := (|XH|+ 1) · 2δ. (A53)

By the definition of Ã(j),

Ã(j) ⊆ Tn
2δ(XK|x̂n

R(j)) for j = 1, 2, . . . , Mn − 1. (A54)

Thus, from Lemma 4, any xn
R such that (xn

R, xn
H) ∈ Ã(j) satisfies

xn
R ∈ Tn

δ3
(XR|xn

H, x̂n
R(j)). (A55)

That is, given xn
H ∈ X n

H and x̂n
R(j) ∈ X̂ n

R, xn
R ∈ X n

R and xn
K = (xn

R, xn
H) ∈ Ã(j) are

conditional strongly typical sequences. Then, we obtain (A53), and

∑
xn
R: (xn

R ,xn
H)∈Ã(j)

Pr{Xn
R = xn

R|Xn
H = xn

H}Pr{Xn
H = xn

H}

≤ ∑
xn
R∈Tn

δ3
(XR |xn

H ,x̂n
R(j))

Pr{Xn
R = xn

R|Xn
H = xn

H}Pr{Xn
H = xn

H}. (A56)

Therefore, we obtain (65).

Appendix F. Proof of the Existence of Code Satisfying Equations (111)–(116)

We first set Mn := 2nR and rn := 1
n log Mn. Then, we obviously have (111).

From the union upper bound,

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


≤ Pr{Xn

E /∈ Tn
δ (XE )}

+ Pr{Xn
E ∈ Tn

δ (XE ), Xn
E /∈ Tn

δ (XE |x̂n
R(j))

for all j = 1, 2, . . . , Mn − 1}. (A57)

From Lemma 6, the first term in (A57) is bounded as

Pr{Xn
E /∈ Tn

δ (XE )} ≤ 2|XE |e−2δ2n. (A58)
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We consider the expectation of the second term in (A57) by random coding. Hereafter, we
denote the random variable corresponding to the reproduced sequence x̂n

R(j) as X̂n
R(j). For

notational simplicity, we use the abbreviation

Pr{Xn
E /∈ Tn

δ (XE |X̂n
R(j))

for all j = 1, 2, . . . , Mn − 1|Xn
E = xn

E}
= Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1}, (A59)

and then

E[Pr{Xn
E ∈ Tn

δ (XE ), Xn
E /∈ Tn

δ (XE |X̂n
R(j))

for all j = 1, 2, . . . , Mn − 1}]

= ∑
xn
E∈Tn

δ (XE )
p(xn
E )E

[
Pr{Xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1|Xn
E = xn

E}
]

(a)
= ∑

xn
E∈Tn

δ (XE )
p(xn
E )E

[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))

for all j = 1, 2, . . . , Mn − 1}
]

= ∑
xn
E∈Tn

δ (XE )
p(xn
E )

(
Mn−1

∏
j=1

E
[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(j))}
])

(b)
= ∑

xn
E∈Tn

δ (XE )
p(xn
E )
(
E
[
Pr{xn

E /∈ Tn
δ (XE |X̂n

R(1))}
])Mn−1

(c)
≤ exp

{
−2n(R−I(XE ;X̂R)− 1

n−τ)
}

(d)
≤ exp

{
−22δ2n

}
, (A60)

where

(a) is owing to (A59),
(b) is due to the symmetry about indexes of random coding,
(c) follows from the same way as in ([31], Section 3.6.3), and
(d) because δ is fixed to satisfy (103).

From (A58) and (A60), we obtain

E

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


 ≤ (2|XE |+ 1)e−2δ2n. (A61)

Therefore, there exists at least one codebook satisfying (112) in the ensembles obtained
using random coding.

Hereafter, codebook C is fixed to satisfy (112). That is, codebook C satisfies

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 ≤ (2|XE |+ 1)e−2δ2n. (A62)

For a fixed codebook C, we divide the sequences xn
E ∈ X n

E into three categories.

• Strongly typical sequences xn
E ∈ Tn

δ (XE ) such that there exists a codeword X̂n
R(jo) for

some jo = 1, 2, . . . , Mn − 1 that is conditionally strongly typical with xn
E . In this case,
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from Lemma 3, (xE , x̂n
R(jo)) ∈ Tn

2δ(XE , X̂R(jo)) . Since the codeword is jointly strongly
typical with xn

E , the continuity of the distortion as a function of the joint distribution
ensures that they are also typical distortions (see [2], Chapters 10.5 and 10.6). Hence, the
distortion between these xn

E and their codewords is bounded by D + δ′ where δ′ goes to
0 as n→ ∞. In the first-order analysis, that is, n→ ∞, we can regard D + δ′ as D.

• Strongly typical sequences xn
E ∈ Tn

δ (XE ) such that fn(xn
E ) = Mn.

• Non-strongly typical sequences xn
E /∈ Tn

δ (XE ).

The sequences in the second and third categories are encoded as fn(xn
E ) = Mn. The

sequences of third categories are the sequences that can be bounded by such the distortion
dmax as in excess of D. Then, the excess-distortion probability is evaluated as

Pr
{

1
n

d(Xn
R, X̂n

R) > D
}

< Pr{Xn
E ∈ A(Mn)} (A63)

= Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 (A64)

≤ (2|XE |+ 1)e−2δ2n. (A65)

Hence, for an appropriate choice of ε and n, we can ensure the excess-distortion probability
of all badly represented sequences are as small as we want. We obtain (113).

We can evaluate privacy leakage against the encoder as below.

en :=
1
n

I(Xn
H; Xn

E )

(e)
=

1
n

n

∑
i=1

I(XH,j; Xn
E |X

j−1
H )

(f)
=

1
n

n

∑
i=1

I(XH,j; XE ,j)

(g)
= I(XH; XE ), (A66)

where

(e) is due to chain rule for mutual information and
(f), (g) follows because i.i.d. PXn

K
.

Thus, we have (114).
Next, we show that the probability that random vector Xn

K is not included in the set⋃Mn−1
j=1 Ã(j) and is sufficiently small. First, notice that

xn
K /∈

Mn−1⋃
j=1

Ã(j) =⇒xn
E /∈

Mn−1⋃
j=1

A(j)

or

xn
E ∈ A(j0),

(xn
E , xn
Ec) /∈ Tn

2δ(XK|x̂n
R(j0))

for j0 = fn(xn
E ), (A67)

where j0 is the index such that fn(xn
E ) = j0 for 1 ≤ j0 ≤ Mn − 1. Therefore, by the union’s

upper bound,
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Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)


≤ Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)


+ Pr{Xn

E ∈ A(j0), (Xn
E , Xn

Ec) /∈ Tn
2δ(XK|x̂n

R(j0))

for j0 = fn(Xn
E )}. (A68)

We evaluate each term in (A68).

(i) The first term:

Pr

Xn
E /∈

Mn−1⋃
j=1

A(j)

 (h)
≤ (2|XE |+ 1)e−2δ2n, (A69)

where

(h) is because of (A62).

(ii) The second term:
If the event in the second term occurs, xn

E ∈ Tn
δ (XE |x̂n

R(j0)) and (xn
E , xn
Ec ) /∈ Tn

2δ(XK |x̂n
R(j0)). Therefore,

from Lemma 5, xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j0)) holds. Hence,

Pr{Xn
E ∈ A(j0), (Xn

E , Xn
Ec) /∈ Tn

2δ(XK|x̂n
R(j0))

for j0 = fn(Xn
E )}

≤ Pr{Xn
E ∈ A(j0), Xn

Ec /∈ Tn
δ (XEc |Xn

E , x̂n
R(j0))}

≤
Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E}

(i)
=

Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E}·

Pr{Xn
Ec /∈ Tn

δ (XEc |xn
E , x̂n
R(j))|Xn

E = xn
E , X̂n

R = x̂n
R(j)}

(j)
≤

Mn−1

∑
j=1

∑
xn
E∈A(j)

Pr{Xn
E = xn

E} · 2|XEc | · |XE | · |X̂R|e−2δ2n

(k)
≤ 2|XK| · |X̂R|e−2δ2n, (A70)

where

(i) is due to the Markov chain Xn
Ec − Xn

E − X̂n
R,

(j) follows since xn
E ∈ Tn

δ (XE |x̂n
R(j0)) and Lemma 6,

(k) follows because A(j) is disjoint for each j.

From (A68)–(A70),

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ 4|XK| · |X̂R|e−2δ2n. (A71)
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Therefore, for sufficiently large n,

Pr

Xn
K /∈

Mn−1⋃
j=1

Ã(j)

 ≤ τ, (A72)

and we obtain (115).
From Lemma 1, for sufficiently large n to stochastic matrix W : X̂R → XK and

x̂n
R(j) ∈ Tn

δ (X̂R) we can show that∣∣∣∣ 1n log |Tn
δ2
(XK|x̂n

R(j))| − H(XK|X̂R)
∣∣∣∣ ≤ τ, (A73)

δ2 :=
δ

|XEc | .

We can also show from (A73) that

2n{H(XK |X̂R)−τ} ≤ |Tn
δ2
(XK|x̂n

R(j))| ≤ 2n{H(XK |X̂R)+τ}. (A74)

From the definition of Ã(j) and Tn
δ2
(XK|x̂n

R(j)) and Lemma 4, for j = 1, 2, . . . , Mn − 1, we have

xn
K ∈ Ã(j)⇐⇒

{
xn
E ∈ Tn

δ (XE |x̂n
R(j))

xn
K ∈ Tn

2δ(XK|x̂n
R(j))

(A75)

xn
K ∈ Tn

δ2
(XK|x̂n

R(j)) =⇒
{

xn
E ∈ Tn

δ (XE |x̂n
R(j))

xn
K ∈ Tn

2δ(XK|x̂n
R(j))

(A76)

This means

Tn
δ2
(XK|x̂n

R(j)) ⊆ Ã(j)

=⇒ |Tn
δ2
(XK|x̂n

R(j))| ≤ |Ã(j)|. (A77)

Therefore, from (A74) and (A77),

|Ã(j)| ≥ 2n{H(XK |X̂R)−τ}, (A78)

and we obtain (116).

References
1. Yamamoto, H. A source coding problem for sources with additional outputs to keep secret from the receiver or wiretappers. IEEE

Trans. Inf. Theory 1983, 29, 918–923.
2. Sankar, L.; Rajagopalan, S.R.; Poor, H.V. Utility–Privacy tradeoff in databases: An information-theoretic approach. IEEE Trans. Inf.

Forensics Secur. 2013, 8, 838–852.
3. Shinohara, N.; Yagi, H. Unified expression of utility–privacy trade-off in privacy-constrained source coding. In Proceedings of the

2022 International Symposium on Information Theory and Its Applications (ISITA2022), Tsukuba, Japan, 17–19 October 2022; pp.
198–202.

4. Ingber, A.; Kochman, Y. The dispersion of lossy source coding. In Proceedings of the 2011 Data Compression Conference, Snowbird,
UT, USA, 29–31 March 2011; pp. 53–62.

5. Kostina, V.; Verdú, S. Fixed length lossy compression in the finite blocklength regime: Discrete memoryless sources. IEEE Trans. Inf.
Theory 2012, 58, 3309–3338.

6. Watanabe, S. Second-order region for Gray-Wyner network. IEEE Trans. Inf. Theory 2017, 63, 1006–1018.
7. Tyagi, H.; Watanabe, S. Strong converse using change of measure arguments. IEEE Trans. Inf. Theory 2020, 66, 689–703.
8. Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of the 3rd

Conference Theory Cryptograph (TCC), New York, NY, USA, 4–7 March 2006; pp. 265–284.
9. Dwork, C. Differential privacy. In Proceedings of the 33rd International Conference Automata, Languages and Programming

(ICALP), Venice, Italy, 10–14 July 2006; pp. 1–12.



Entropy 2023, 25, 921 47 of 47

10. Soria-Comas, J.; Domingo-Ferrer, J.; Sánchez, D.; Megías, D. Individual differential privacy: A utility-preserving formulation of
differential privacy guarantees. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1418–1429.

11. Kalantari, K.; Sankar, L.; Sarwate, A.D. Robust privacy-utility tradeoffs under differential privacy and hamming distortion. IEEE
Trans. Inf. Forensics Secur. 2018, 13, 2816–2830.

12. Makhdoumi, A.; Fawaz, N. Privacy-utility tradeoff under statistical uncertainty. In Proceedings of the 2013 51st Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2–4 October 2013; pp. 1627–1634.

13. Basciftci, Y.O.; Wang, Y.; Ishwar, P. On privacy-utility tradeoffs for constrained data release mechanisms. In Proceedings of the
2016 Information Theory and Applications Workshop (ITA), La Jolla, CA, USA, 31 January–5 February 2016; pp. 1–6.

14. Günlü, O.; Schaefer, R.F.; Boche, H.; Poor, H.V. Secure and private source coding with private key and decoder side information. In
Proceedings of the 2022 IEEE Information Theory Workshop (ITW), Mumbai, India, 6–9 November 2022; pp. 226–231.

15. Issa, I.; Wagner, A.B.; Kamath, S. An operational approach to information leakage. IEEE Trans. Inf. Theory 2020, 66, 1625–1657.
16. Liao, J.; Kosut, O.; Sankar, L.; Calmon, F.P. Privacy under hard distortion constraints. In Proceedings of the 2018 IEEE Information

Theory Workshop (ITW2018), Guangzhou, China, 25–29 November 2018; pp. 1–5.
17. Liao, J.; Kosut, O.; Sankar, L.; Calmon, F.P. Tunable measures for information leakage and applications to privacy-utility tradeoffs.

IEEE Trans. Inf. Theory 2019, 65, 8043–8066.
18. Saeidian, S.; Cervia, G.; Oechtering, T.J.; Skoglund M. Quantifying membership privacy via information leakage. IEEE Trans. Inf.

Forensics Secur. 2020, 16, 3096–3108.
19. Rassouli, B.; Gündüz, D. Optimal utility–privacy trade-off with total variation distance as a privacy measure. IEEE Trans. Inf.

Forensics Secur. 2019, 15, 594–603.
20. Wang, W.; Ying, L.; Zhang, J. On the relation between identifiability, differential privacy, and mutual-information privacy. IEEE

Trans. Inf. Theory 2016, 62, 5018–5029.
21. Liao, J.; Sankar, L.; Kosut, O.; Calmon, F.P. Maximal α-leakage and its properties. In Proceedings of the 2020 IEEE Conference on

Communications and Network Security (CNS), Virtual, 29 June–1 July 2020; pp. 1–6.
22. Shinohara, N.; Yagi, H. Strong converse theorem for utility–privacy trade-offs. In Proceedings of the 45th Symposium on

Information Theory and Its Applications (SITA2022), Noboribetsu, Japan, 29 November–2 December 2022; pp. 338–343.
23. Guan, Z.; Si, G.; Wu, J.; Zhu, L.; Zhang, Z.; Ma, Y. Utility–privacy tradeoff based on random data obfuscation in internet of energy.

IEEE Access 2017, 5, 3250–3262.
24. Asikis, T.; Pournaras, E. Optimization of privacy-utility trade-offs under informational self-determination. Future Gener. Comput.

Syst. 2020, 109, 488–499.
25. Lu, J.; Xu, Y.; Zhu, Z. On scalable source coding problem with side information privacy. In Proceedings of the 2022 14th

International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 1–3 November 2022; pp.
415–420.

26. Makhdoumi, A.; Salamatian, S.; Fawaz, N.; Médard, M. From the information bottleneck to the privacy funnel. In Proceedings of
the 2014 IEEE Information Theory Workshop (ITW), Hobart, Australia, 2–5 November 2014; pp. 501–505.

27. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John & Wiley Sons, Inc.: Hoboken, NJ, USA, 2006.
28. Uyematsu, T. Gendai Shannon Riron, 1st ed.; Baihukan: Tokyo, Japan, 1998. (In Japanese)
29. Csizar, L.; Korner, J. Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed.; Cambridge University Press:

Cambridge, UK, 2011.
30. Sason, I.; Verdú, S. Improved bounds on lossless source coding and guessing moments via Rényi measures. IEEE Trans. Inf. Theory

2018, 64, 4323–4346.
31. El Gamal, A.; Kim, Y.H. Network Information Theory, 1st ed.; Cambridge University Press: Cambridge, UK, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Background
	Motivation and Contributions
	Related Work
	Organization

	Notation and System Model
	Information Source
	Encoder and Decoder

	First-Order Rate Analysis with Expected Distortion
	Performance Measures
	Achievable Region and Theorem
	Proof Preliminaries for First-Order Rate Analysis
	Proof of Converse Part
	Proof of Direct Part

	First-Order Rate Analysis with Excess-Distortion Probability
	Performance Measures
	Achievable Region and Theorem
	Proof of Converse Part
	Proof of the Direct Part

	Strong Converse Theorem for Utility–Privacy Trade-Offs
	Another Expression of the Achievable Region
	Proof Preliminaries
	Strong Converse Theorem
	Proof of Lemma 7
	Proof of Strong Converse Theorem

	Discussion
	Numerical Calculation of Coding Rate, Utility, and Privacy for Decoder
	Significance of Limited Leakage for Encoder
	 Discussion on Measures for Privacy Leakage

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	References

