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Abstract: For a given system observed at time t, the past entropy serves as an uncertainty measure
about the past life-time of the distribution. We consider a coherent system in which there are n
components that have all failed at time t. To assess the predictability of the life-time of such a
system, we use the signature vector to determine the entropy of its past life-time. We explore various
analytical results, including expressions, bounds, and order properties, for this measure. Our results
provide valuable insight into the predictability of the coherent system’s life-time, which may be
useful in a number of practical applications.
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1. Introduction

The process of quantifying and managing uncertainty over the random life-time of a
system is a major task for engineers. As uncertainty increases, the reliability of a system
will also decrease, so systems that have a longer life-time while benefiting from a lower
level of uncertainty are preferable (see, e.g., Ebrahimi and Pellery [1]). The concept of
uncertainty has far-reaching applications, as highlighted in Shannon’s seminal work on
information theory [2]. Information theory has provided valuable tools for evaluating
and managing uncertainty in engineering systems. Let X be the lifespan of a system or
other living organism with an absolutely continuous cumulative distribution function (cdf)
F(x) and a probability density function (pdf) f (x). Shannon’s differential entropy is a
well-known measure and is given as follows:

H(X) = −
∫ ∞

0
f (x) log f (x)dx, (1)

where “log” stands for the natural logarithm. If X represents the life-time a new system has,
then H(X) calculates the uncertainty for the life-time of the system. In certain scenarios,
operators may only partially know the age that a system currently has. For example,
an operator may know that a system was in service at specified time t, and he/she is
quantifying the uncertainty for the remaining life-time of the system after age t, commonly
referred to as the remaining life-time or residual life-time after t. According to Ebrahimi [3],
the residual entropy of X is considered to be the entropy of Xt = [X− t|X > t]. Formally,
for all t > 0, the residual life-time entropy for X is measured as

H(Xt) = −
∫ ∞

t

f (x)
1− F(t)

log
f (x)

1− F(t)
dx, (2)

If we already know that an object has survived to time t, then H(Xt) quantifies the un-
certainty contained in the distribution of remaining life-times. Di Crescenzo and Longob-
ardi [4] have proposed a notion of past entropy over the interval (0, t) using an analogy
with the definition of entropy over time given in Equation (3). The introduction of the past
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entropy is motivated by the observation that in realistic scenarios, uncertainty needs not be
limited to the future, but can also affect the past. The authors pointed out the importance of
the past entropy and its relation to the residual entropy. Thus, if X is a random life-time and
recalls that the pdf of Xt = [X|X < t] is ft(x) = f (x)/F(t), 0 < x < t, then the differential
entropy of [X|X < t] is called the past entropy at time t of X, and it is denoted by

H(Xt) = −
∫ t

0

f (x)
F(t)

log
f (x)
F(t)

dx

= 1− 1
F(t)

∫ t

0
f (x) log τ(x)dx, (3)

where τ(x) = f (x)/F(x) is known as the reversed hazard rate function.
Various aspects and statistical perspectives on past entropy have been treated in

the literature, as can be seen in Di Crescenzo and Longobardi [4], Nair and Sunoj [5],
Loperfido [6], and Shangari and Chen [7], as well as in the references used in these papers.
In this case, Gupta et al. [8] obtained some results concerning the residual entropy and
past entropy for order statistics, as well as presented several relevant stochastic ordering
properties. In this context, they provided some characterization properties; see also [9].
Recently, Toomaj et al. [10] applied the residual entropy to a coherent system and obtained
several related properties. Kayid and Alshehri [11] have recently studied the uncertainty in
coherent structures using Tsallis entropy. In addition, Mesfioui et al. [12] also studied the
phenomenon of uncertainty in the life-time of a coherent system using the Rényi entropy.
In this research, we consider a coherent structure where all of the components have failed
at time t. The system signature approach is utilized to compute the differential entropy of
the past life-time.

The contents of this paper are organized as follows: In Section 2, we present a formula
for the Shannon differential entropy of a coherent system when all components are inactive
at time t. The method of system signature is applicable when the random life-times of the
components are independent and identically distributed (i.i.d.). In Section 3, some valuable
bounds are pointed out and outlined. In Section 4, the Jensen–Shannon disparity of the
coherent framework is considered. Some concluding remarks are outlined in Section 5.

2. The Past Life-Time Uncertainty in Coherent Systems

Here, in order to define the past-life entropy for coherent structures, we apply the
signature vector of the underlying structure. We assume that all of the components in
the system have become inactive at time t. The coherent system is defined as a system
that satisfies the requirements of having no unnecessary components and has a monotonic
structure function. The vector p = (p1, . . . , pn), in which the ith component is given
by pi = P(T = Xi:n), i = 1, 2, . . . , n, is known as the signature vector (see [13]). We
contemplate a coherent structure with components that have i.i.d. random life-times
X1, . . . , Xn and a specified signature p = (p1, . . . , pn). If Tt = [t− T|Xn:n ≤ t] stands for
the past life-time of the system, provided that at time t the components have all become
inactive, then from the results of Khaledi and Kochar [14], the survival function of Tt can
be obtained as

P(Tt > x) =
n

∑
i=1

piP(t− Xi:n > x|Xn:n ≤ t), (4)

where

P(t− Xi:n > x|Xn:n ≤ t) =
n

∑
k=i

(
n
k

)(
F(t− x)

F(t)

)k(
1− F(t− x)

F(t)

)n−k
, 0 < x < t,

denotes the survival function of the past life-time of an i-out-of-n system as long as all of
the components have failed at time t. It follows from (4) that
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fTt(x) =
n

∑
i=1

pi fTi
t
(x), (5)

where

fTi
t
(x) =

Γ(n + 1)
Γ(i)Γ(n− i + 1)

(
F(t− x)

F(t)

)i−1(
1− F(t− x)

F(t)

)n−i f (t− x)
F(t)

, 0 < x < t, (6)

such that Γ(·) is the full gamma function and Ti
t = [t− Xi:n|Xn:n ≤ t], i = 1, 2, · · · , n, is the

time elapsed since the failure of the component with life-time Xi:n in the system, assuming
that the system failed at or before time t. Remark that Ti

t denotes the i-th order statistic
among n i.i.d. components with cdf F(t−x)

F(t) , 0 < x < t. Now, we give a statement about

the entropy of Tt. To this aim, let us set Ft(x) = F(x)
F(t) , 0 < x < t. The probability integral

transformation given by V = Ft(Tt) plays a vital role in our study and it is obvious that
Ui:n = Ft(Ti

t ) follows the beta distribution with parameters i and n− i + 1 with pdf

gi(u) =
Γ(n + 1)

Γ(i)Γ(n− i + 1)
ui−1(1− u)n−i, 0 < u < 1, (7)

for all i = 1, · · · , n. In the forthcoming theorem, we shall give a formula for the past entropy
of Tt using (6).

Theorem 1. The past entropy of Tt can be expressed as follows:

H(Tt) = H(V)− E[log ft(Tt)] (8)

= H(V)−
n

∑
i=1

piE[log ft(F−1
t (Ui:n))], (9)

V is the life-time of the coherent system which has pdf gV(v) = ∑n
i=1 pigi(v) and F−1

t (u) =
inf{x; Ft(x) ≥ u} is the quantile function of Ft(x) = F(x)/F(t), 0 < x ≤ t.

Proof. By (1) and (6), and by substituting z = t− x, we have

H(Tt) = −
∫ t

0
fTt(x) log fTt(x)dx,

= −
∫ t

0

n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n− i + 1)

(
F(t− x)

F(t)

)i−1(
1− F(t− x)

F(t)

)n−i f (t− x)
F(t)

× log

(
n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n− i + 1)

(
F(t− x)

F(t)

)i−1(
1− F(t− x)

F(t)

)n−i f (t− x)
F(t)

)
dx

= −
∫ t

0

n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n− i + 1)
(Ft(z))

i−1(1− Ft(z))
n−i ft(z)

× log

(
n

∑
i=1

pi
Γ(n + 1)

Γ(i)Γ(n− i + 1)
(Ft(z))

i−1(1− Ft(z))
n−i ft(z)

)
dx

= H(V)−
n

∑
i=1

pi

∫ 1

0
gi(u) log ft(F−1

t (u))du. (10)

The last equality is obtained by changing the variable of u = Ft(z), and the proof is then
completed.

It is important to keep in mind that Equation (8) expresses the entropy of Tt as the sum
of two terms, where the first term does not depend on the distribution of past life-times,



Entropy 2023, 25, 895 4 of 13

while the second term depends on the distribution of the past life-times of the component.
If Tt = [t − T|Xn:n ≤ t] stands for the past life-time of the coherent system under the
condition that at time t, all components of the system have failed, then H(Tt) calculates
the expected amount of uncertainty induced by the conditional density of t− T, as long as
Xn:n ≤ t, on the predictability of the past life-time of the system. Especially if we consider
an i-out-of-n system with the system signature p = (0, . . . , 0, 1i, 0, . . . , 0), i = 1, 2, · · · , n,
then Equation (9) to

H(Ti
t ) = H(Ui:n)− E[log ft(F−1

t (Ui:n))], (11)

for all t > 0. The next theorem is a direct consequence of Theorem 1 that uses the property
that the reversed hazard rate of X is decreasing. Recall that the random life-time X belongs
to the class of the decreasing reversed hazard rate (DRHR) if τ(x) is a decreasing function
of x > 0.

Theorem 2. If X is DRHR, then H(Tt) is increasing in t.

Proof. Through the identity ft(F−1
t (x)) = xτt(F−1

t (x)), Equation (9) can be rewritten as

H(Tt) = H(V)−
n

∑
i=1

pi[ψ(n− i + 1)− ψ(n + 1)]−
n

∑
i=1

piE[log τt(F−1
t (Ui:n))]. (12)

It is plain to verify that F−1
t (u) = F−1(uF(t)), for all 0 < u < 1, and hence,

τt(F−1
t (u)) = τ(F−1(uF(t))), 0 < u < 1.

If t1 ≤ t2, then F−1(uF(t1)) ≤ F−1(uF(t2)). Consequently, when F is DRHR, then

E[log τ(F−1(Ui:nF(t1)))] ≥ E[log τ(F−1(Ui:nF(t2)))].

Using (12), the proof is then completed.

The next example deals with a situation where Theorems 1 and 2 are applied.

Example 1. Consider a coherent system with the signature p = (0, 2/3, 1/3). It follows that
H(V) = −0.05757. Given the distributions of the components’ life-times, the Relation (9)
can be used to determine the precise value of H(Tt). Let us assume the following life-time
distributions for this purpose.

(a) Let X be uniformly distributed in [0, 1]. It holds that

E[log ft(F−1
t (Ui:n))] = − log(t),

for all i = 1, 2, 3, 4. From (8), we immediately obtain

H(Tt) = −0.05757 + log(t).

It is seen that the entropy of Tt is an increasing function of time t. We note that the uniform
distribution has the DRHR property, and therefore, H(Tt) is an increasing function of time
t, as we expected based on Theorem 1.

(b) Let us assume that X follows the cdf

F(x) = e−x−k
, x > 0, k > 0.
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One can see that

E[log ft(F−1
t (Ui:n))] = log(k) + E[log Ui:n] +

k + 1
k

E
[
log
(

t−k − log(Ui:n)
)]

,

for all i = 1, 2, 3, 4. Upon recalling (9), we obtain

H(Tt) = 1.0257− log(k)− k + 1
k

n

∑
i=1

piE
[
log
(

t−k − log(Ui:n)
)]

,

for all t > 0. For several choices of k, we have shown the exact value of H(Tt) with respect
to time t in Figure 1. It is obvious that H(Tt) is an increasing function of time t for all k > 0
since X is DRHR, as can follow from Theorem 1.
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Figure 1. The exact value of H(Tt) for various values of k, as demonstrated in Part (b) of Example 1.

The duality of a system is a useful concept for technical reliability, which makes it
possible to reduce the computational complexity for determining the signatures of all
coherent systems of a given size by about half. Kochar et al. [15] have proposed a duality
relation that exists between the signature of a system and that of its dual. If p = (p1, · · · , pn)
denotes the signature a coherent system with life-time T has, then the signature of its dual
system with life-time TD is given by pD = (pn, · · · , p1). In the following theorem, we apply
the duality property to simplify the calculation of the past entropy for coherent systems.
First, we need the following the lemma that is well-known as the Müntz–Szász theorem,
and one can find it in [16].

Lemma 1. If φ(x) is a continuous function of [0, 1], such that
∫ 1

0 xnφ(x)dx = 0 for all n ≥ 0,
then φ(x) = 0 for any x ∈ [0, 1].

Theorem 3. Let Tt be the life-time of a coherent system with signature p consisting of n i.i.d.
components. Then, H(Tt) = H(TD

t ) for all p and all n, if and only if ft(F−1
t (u)) = ft(F−1

t (1−
u)) satisfies for all 0 < u < 1 and t.
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Proof. It is worth noting that Theorem 2.2 of Toomaj and Doostparast [17] asserts the
equality of entropies between V and VD, i.e., H(V) = H(VD). To prove sufficiency, let
us assume that ft(F−1

t (u)) = ft(F−1
t (1− u)) for all 0 < u < 1. It is worth noting that

gi(1− u) = gn−i+1(u) for all i = 1, . . . , n and 0 < u < 1. Consequently, utilizing (9), we
obtain that:

−
∫ 1

0
gVD (u) log ft(F−1

t (u))du = −
∫ 1

0

(
n

∑
i=1

pn−i+1gi(u)

)
ft(F−1

t (u))du

= −
∫ 1

0

(
n

∑
r=1

prgn−r+1(u)

)
log ft(F−1

t (u))du

= −
∫ 1

0

(
n

∑
r=1

prgr(1− u)

)
log ft(F−1

t (1− u))du

= −
∫ 1

0

(
n

∑
r=1

prgr(u)

)
log ft(F−1

t (u))du

= −
∫ 1

0
gV(u) log ft(F−1

t (u))du,

and this completes the proof by recalling Equation (8). For necessity, H(Tt) = H(Tt
D)

holds for all p and all n. Let p = (1, 0, . . . , 0). So, it follows from (9) that the assumption
H(Tt) = H(Tt

D) is equivalent to

−
∫ 1

0
gn(u) log ft(F−1

t (u))du = −
∫ 1

0
g1(u) log ft(F−1

t (u))du

= −
∫ 1

0
gn(1− u) log ft(F−1

t (u))du,

where the last equality is obtained by noting that g1(u) = gn(1− u), 0 < u < 1. Putting
v = 1− u in the right side of the above equation leads to

−
∫ 1

0
gn(u) log ft(F−1

t (u))du = −
∫ 1

0
gn(u) log ft(F−1

t (1− u))du.

Thus, we obtain

∫ 1

0
gn(u)[log ft(F−1

t (u))− log ft(F−1
t (1− u))]du =

∫ 1

0
(1− u)n−1 log

ft(F−1
t (u))

ft(F−1
t (1− u))

du

=
∫ 1

0
un−1 log

ft(F−1
t (1− u))

ft(F−1
t (u))

du = 0.

Hence ft(F−1
t (1− u)) = ft(F−1

t (u)) due to Lemma 1, and this concludes the proof.

An immediate consequence of the above theorem is given for the i-out-of-n systems.

Corollary 1. Let Ti
t be the life-time of an i-out-of-n system consisting of n i.i.d. components. Then,

H(Ti
t ) = H(Tn−i+1

t ) for all n and i = 1, 2, . . . , n/2 if n is even and i = 1, 2, . . . , (n− 1)/2 if n
is odd, if and only if ft(F−1

t (u)) = ft(F−1
t (1− u)) satisfies for all 0 < u < 1 and t.

3. Bounds for the Past Entropy

Hereafter, we provide several useful bounds for H(Tt) by using the concept of the
system signature. For the first bound, we use the notion of Kullback–Leibler (KL) discrimi-
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nation information. We recall that the KL discrimination information between two random
variables X and Y with pdfs f and g, respectively, is given by

K(X : Y) =
∫ ∞

0
f (x) log

f (x)
g(x)

dx = −H(X) + H(X, Y), (13)

where H(X, Y) = −E(log g(X)) is known as the inaccuracy between f and g.

Theorem 4. Let Tt denote the past life-time of a coherent system consisting of n i.i.d. components’
life-times X1, · · · , Xn having the common pdf f in which, at time t, all components of the system
have failed. Then, we have

HL(Tt) ≤ H(Tt) ≤ HU(Tt), (14)

where HL(Tt) =
n
∑

i=1
pi H(Ti

t ) and HU(Tt) = HL(Tt) +
n
∑

i=1
piK(Ui:n : Uj∗ :n) for all t > 0.

Proof. For the lower bound, since the differential entropy is a concave function of the density
function, we can find a lower bound for the entropy of Tt given by the following representation:

H(Tt) ≥ HL(Tt) =
n

∑
i=1

pi H(Ti
t ). (15)

Moreover, the upper bound can be obtained by noting that the Kullback–Leibler (KL)
discrimination information is a non-negative measure. Thus, we have

K(Tt : T j
t ) = −H(Tt) + H(Tt, T j

t ) ≥ 0.

So, one can obtain
H(Tt) ≤ HU(Tt) = min

1≤j≤n
H(Tt, T j

t ). (16)

The upper bound (16) can be rewritten as

H(Tt, T j
t ) =

n

∑
i=1

pi H(Ti
t , T j

t )

= HL(Tt) +
n

∑
i=1

piK(Ui:n : Uj:n), (17)

where

K(Ui:n : Uj:n) = log
(

Γ(j)Γ(n− j + 1)
Γ(i)Γ(n− i + 1)

)
+ (i− j)

[
ψ(i)− ψ(n− i + 1)

]
,

denotes the Kullback–Leibler divergence of beta distributions (see [18] for details). The
second equality in (17) is obtained by noting that the KL function is invariant under

one-to-one transformations. If we assume that j∗ = arg min
1≤j≤n

n
∑

i=1
piK(Ui:n : Uj:n), then

HU(Tt) = HL(Tt) +
n

∑
i=1

piK(Ui:n : Uj? :n), (18)

and the proof is then completed.

We remark that by recalling Equation (11), the lower bound can be rewritten as

HL(Tt) =
n

∑
i=1

pi H(Ui:n)−
n

∑
i=1

piE[log ft(F−1
t (Ui:n))]. (19)
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It is worth pointing out that using Equation (11), expression (9) can be rewritten as

H(Tt) = H(V)−
n

∑
i=1

pi H(Ui:n) +
n

∑
i=1

pi H(Ti
t )

= H(V)− HL(V) + HL(Tt), (20)

where HL(V) =
n
∑

i=1
pi H(Ui:n). It is worth noting that the difference between the past

entropy and the lower bound of Tt, i.e., H(Tt)− HL(Tt) is distribution free and depends
only on the system signature. For further information about the bounds and to obtain the
optimal index j∗, we refer the reader to [10,19].

Numerous authors have investigated the characteristics of coherent systems with
various distribution components including Murthy and Jiang [20], Jiang et al. [21], Castet
and Saleh [22], and Qiu et al. [23], as well as the references therein. To compare the bounds
derived in Theorems 4 and 5, we present an example of a coherent system with power
distribution components.

Example 2. Consider a coherent system having signature p = (0, 2/3, 1/3). It is easy to see
that H(V) = −0.0874. Moreover, we can obtain j? = 2 (see e.g., [24]). The exact value of
H(Tt) can be computed using Relation (9) when the component life-time distributions are
given. Let us denote the life-time of each component by X. We assume that X is a power
distribution random variable, with the pdf given by

f (x) = kxk−1, 0 < x < 1,

for all k > 0. It is plain to observe that

−E[log ft(F−1
t (Ui:n))] = log

(
t
k

)
− k− 1

k
[ψ(n− i + 1)− ψ(n + 1)],

for all i = 1, 2, 3. From (8), we immediately obtain

H(Tt) = −0.0874−
(

k− 1
k

)
1.1666 + log

(
t
k

)
. (21)

Alternatively, from Equation (19), the lower bound is given as:

HL(Tt) = −0.2273−
(

k− 1
k

)
1.1666 + log

(
t
k

)
. (22)

The upper bound can be obtained by recalling Equation (18) as follows:

HU(Tt) = 0.0416−
(

k− 1
k

)
1.1666 + log

(
t
k

)
. (23)

The entropy of Tt is a monotonically increasing function of time t. We note that the power
distribution possesses the DRHR property, thus, as expected due to Theorem 1, H(Tt) is
also an increasing function of time t. Figure 2 displays the exact value of H(Tt) together
with the lower and upper bounds computed as described above for various values of k. As
predicted by Theorem 1, it is evident that H(Tt) monotonically increases with respect to
time t for all k > 0, since X is DRHR.

Another useful lower bound can be obtained in the next theorem.

Theorem 5. By assuming that the conditions in Theorem 4 hold, one obtains

H(Tt) ≤ HL(Tt)− HL(V), (24)
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for all t > 0.
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Figure 2. The exact value of H(Tt) given in Equation (21) (solid line) along with the lower bound
given in Equation (22) (dashed line) and the upper bound given in Equation (23) (dotted line) for
different values of k, as demonstrated in Example 2.

Proof. Due to Lemma 4.1 of Toomaj et al. [24], it holds that H(V) ≤ 0. Upon recalling
Equation (20), the proof is then completed.

The following theorem compares the past entropies of two coherent systems that have
distinct structures and the same component life-times.

Theorem 6. Let T1,t = [t− T1|Xn:n ≤ t] and T2,t = [t− T2|Xn:n ≤ t] represent the past life-
times in two coherent systems with signatures p1 and p2, respectively, so that p1 ≤st p2. Let the
system’s components be i.i.d. with the common cdf F. Then, for t > 0,

(i) if H(V1) ≥ H(V2) and ft(F−1
t (u)) increases in u for all t > 0, then H(T1,t) ≥ H(T2,t).

(ii) if H(V1) ≤ H(V2) and ft(F−1
t (u)) decreases in u for all t > 0, then H(T1,t) ≤ H(T2,t).

Proof. (i) First, it should be noted that the following equation can be used to rewrite
Equation (9):

H(Ti,t)− H(Vi) = −
∫ 1

0
gVi (u) log

(
ft(F−1

t (u))
)

du, (i = 1, 2). (25)

Assumption p1 ≤st s2 implies V1 ≤st V2. So, we obtain

−
∫ 1

0
gV1(u) log

(
ft(F−1

t (u))
)

du ≥ −
∫ 1

0
gV2(u) log

(
ft(F−1

t (u))
)

du, (26)
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in which the inequality in (26) is derived in spirit of the implication that V1 ≤st V2 implies
E[π(V1)] ≥ E[π(V2)] for all decreasing functions of π. Therefore, Relation (25) gives

H(T1,t)− H(V1) ≥ H(T2,t)− H(V2),

or equivalently
H(T1,t)− H(T2,t) ≥ H(V1)− H(V2) ≥ 0,

where the last inequality is obtained from the assumption and hence the theorem. Part (ii)
is analogously proven.

The following example supplies a situation to apply to Theorem 2.

Example 3. We take into account two coherent systems with four components shown in
Figure 3 with past life-times T1,t = [t− T1|X4:4 ≤ t] (left panel) and T2,t = [t− T2|X4:4 ≤ t]
(right panel). It is easily identified that p1 = ( 1

2 , 1
2 , 0, 0) and p2 = ( 1

4 , 1
4 , 1

2 , 0), respectively.
Further, we can plainly see that H(V1) = −0.2970 and that H(V2) = −0.0575, hence,
H(V1) ≤ H(V2). Moreover, we have p1 ≤st p2. Suppose that the component life-times are
i.i.d. with the standard exponential distribution with the cdf F(t) = 1− e−t, t > 0. It is
easily seen that

ft(F−1
t (u)) =

1− u(1− e−t)

1− e−t , t > 0,

for all 0 < u < 1. Obviously, ft(F−1
t (u)) is a decreasing function of u for all t > 0. Hence,

due to Theorem 2, it holds that H(T1,t) ≤ H(T2,t) for all t > 0.

1 2

3

4

1 3

2

4

Figure 3. Two coherent systems that have signatures with likelihood ratio ordering properties.

In the next theorem, we use the concept of duality to reduce the calculation of the past
entropy of coherent systems. We recall that ≤st stands for the stochastic order (see Shaked
and Shanthikumar [25]).

Corollary 2. Let Tt = [t− T|Xn:n ≤ t] represent the past life-time of a coherent system with
signature vectors p and let TD

t = [t− TD|Xn:n ≤ t] be its dual with signature sD consisting of
i.i.d. component life-time with the common cdf F. Let also p ≤st pD. Then,

(i) if ft(F−1
t (u)) increases in u for all t > 0, then H(Tt) ≥ H(TD

t ).

(ii) if ft(F−1
t (u)) decreases in u for all t > 0, then H(Tt) ≥ H(TD

t ).

4. Jensen–Shannon Divergence of System

This section presents an analytical expression for the Jensen–Shannon (JS) divergence
of the past life-time of a coherent system. Specifically, we demonstrate that the JS divergence
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of the proposed past life-time provides an information criterion for comparing systems
based solely on their designs, independent of the parent distribution function F of the
system. Drawing on earlier findings by Asadi et al. [18], the JS divergence of the mixture
given by Equation (5) can be defined as follows:

JS(Tt : T1
t , . . . , Tn

t ; p) = JS(p) = H(Tt)−
n

∑
i=1

pi H(Ti
t )

= H(V)−
n

∑
i=1

pi H(Ui:n). (27)

By recalling Equation (11), we easily obtain

n

∑
i=1

pi H(Ti
t ) =

n

∑
i=1

pi H(Ui:n)−
n

∑
i=1

piE[log ft(F−1
t (Ui:n))].

Upon recalling the above relation and (9), the third equality in (27) is easily obtained. It
is worth pointing out that (27) does not depend on time t and the common cdf F, and it
solely depends on the design of the system signature that coincides with the results given
by [18].Therefore, all given results in that paper are also held.

It is evident from (27) that the past life-time entropy concerning the coherent system
can be written in terms of JS divergence as follows:

H(Tt) = JS(p) +
n

∑
i=1

pi H(Tt
i), (28)

for all t > 0. This representation is useful and interesting since it relates the entropy of Tt to
the JS divergence as well as a weighted sum of the past entropy of order statistics. From the
results of Toomaj et al. [10], we have the following useful results for which its proof is omitted.

Theorem 7. For a given coherent system with signature s and dual system with signature sD, we have

JS(p) = JS(pD).

Boundaries play a crucial role in many areas of research; therefore, much attention has
been paid to the study of the acquisition of boundaries presented in the literature. Asadi
et al. [18] proposed an approach to computing upper bounds for the Jensen–Shannon
(JS) divergence. Specifically, let N be a random variable with a probability mass function
p = (p1, . . . , pn), where pi = P(N = ni) and ni = 1, 2, . . . , n, represent the number of
failures of components fatal to the system. The Shannon entropy of the signature vector
H(N ) = H(p) = −∑n

i=1 pi log pi measures the uncertainty associated with the failure of
the system due to the failure of its components. Asadi et al. [18] have derived a primitive
upper bound for the JS divergence related to the Shannon entropy of the signature vector
given by:

0 ≤ JS(p) ≤ H(p).

The above representation allows for us to obtain bounds for H(Tt) in terms of the entropy
of the signature vector as follows:

HL(Tt) ≤ H(Tt) ≤ H(p) + HL(Tt), (29)

where HL(Tt) =
n
∑

i=1
pi H(Tt

i). In an attempt to obtain an improved upper bound, Asadi

et al. [18] obtained the following representation that is applicable for the general case of the
JS divergence of mixture distributions. Namely, it holds that
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0 ≤ JS(p) ≤
n

∑
i=1

n

∑
j=1

pi pjK(Ui:n : Uj:n). (30)

Therefore, the second upper bound for H(Tt) can be obtained by substituting (30) in place
of H(p) in (29).

5. Concluding Remarks

In recent years and decades, researchers in the field of information theory have become
increasingly interested in developing measures that can be used to evaluate the degree
of uncertainty in random variables. The phenomenon of uncertainty associated with the
life-time of engineering systems is related to other aspects of the systems. For example,
imagine a situation in which an inspection at time t by an operator makes it clear that
a number of components that were functioning in a system have become inactive. The
problem here is that an event has occurred in the past, but there is still uncertainty about
the exact time at which the system or the components within it failed. The ability to
assess predictability over the life-time of a system can be a valuable criterion in this regard.
Differential Shannon entropy has proven to be an attractive measure for quantifying
uncertainty in such situations. Assuming that each system component has failed at time t,
we have established in this work an equation for the entropy of the life-time of a system.
We have also investigated various properties of this proposed measure, including the
determination of boundaries and partial orders between the past life-times of two coherent
systems based on their entropy uncertainties using the concept of system signature. To
demonstrate the effectiveness of our approach, we give several examples of its application.
Our results highlight the potential of this measure for assessing the predictability of system
life-times and its usefulness for engineering applications.
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