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Abstract: Background: This study aimed at answering the following research questions: (1) Does
the self-reported level of sensory-processing sensitivity (SPS) correlate with complexity, or criticality
features of the electroencephalogram (EEG)? (2) Are there significant EEG differences comparing
individuals with high and low levels of SPS? Methods: One hundred fifteen participants were
measured with 64-channel EEG during a task-free resting state. The data were analyzed using
criticality theory tools (detrended fluctuation analysis, neuronal avalanche analysis) and complexity
measures (sample entropy, Higuchi’s fractal dimension). Correlations with the ‘Highly Sensitive
Person Scale’ (HSPS-G) scores were determined. Then, the cohort’s lowest and the highest 30% were
contrasted as opposites. EEG features were compared between the two groups by applying a Wilcoxon
signed-rank test. Results: During resting with eyes open, HSPS-G scores correlated significantly
positively with the sample entropy and Higuchi’s fractal dimension (Spearman’s ρ = 0.22, p < 0.05). The
highly sensitive group revealed higher sample entropy values (1.83 ± 0.10 vs. 1.77 ± 0.13, p = 0.031).
The increased sample entropy in the highly sensitive group was most pronounced in the central,
temporal, and parietal regions. Conclusion: For the first time, neurophysiological complexity features
associated with SPS during a task-free resting state were demonstrated. Evidence is provided that
neural processes differ between low- and highly-sensitive persons, whereby the latter displayed
increased neural entropy. The findings support the central theoretical assumption of enhanced
information processing and could be important for developing biomarkers for clinical diagnostics.
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1. Introduction

Over the past two decades, research has explored theoretical frameworks for individ-
ual differences in the capacity to process sensory stimuli. One area that emerged during this
time is sensory-processing sensitivity (SPS), which is viewed as a psychological construct
comprised of perceptual sensitivity, and cognitive and emotional responses to environmen-
tal stimuli [1]. Aron and Aron initially characterized SPS as a categorical trait that reflects
inter-individual differences in sensitivity to subtle stimuli, identifying those scoring high
on SPS as Highly Sensitive Persons (HSP) [2]. SPS was further characterized by increased
depth of information processing, enhanced environmental subtlety awareness, and ease of
overstimulation [3–5].

To capture the degree of SPS, the Highly Sensitive Person Scale (HSPS), a 27-item
questionnaire, was developed with three factors: Ease of Excitation (EOE), characterizing
individuals easily overwhelmed by stimuli, Low Sensory Threshold (LST), characterizing
unpleasant sensory arousal in response to external stimuli, and Aesthetic Sensitivity (AES),
describing those deeply moved by arts or music [1,6,7]. Various studies have linked
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EOE and LST to negative emotionality, anxiety, and depression [8], whereas AES has
been associated with positive emotionality, openness to experience, conscientiousness,
positive affect, and self-esteem [9,10]. Approximately 20–30% of the general population
is estimated to possess heightened sensory sensitivity [5,11,12]. Hitherto, SPS is mainly
captured based on questionnaires or behavioral observational assessments. Despite a few
conducted fMRI studies [13–17], little is known about the neurobiological basis of SPS, and
to date, no electroencephalography (EEG) study has been carried out to determining the
neurophysiological correlates of SPS.

Besides the standard method of spectral decomposition in neuroscience, advances
in the field of nonlinear dynamics brought forth multiple metrics for determining the
complexity of neuronal activity providing indices of information processing functions in
the brain. Some of these are applicable to single time-series to quantify statistical similarity
at different time scales [18,19]. Specifically, in recent years, increasing attention has been
given to the hypothesis that neural dynamics might be governed by the phenomenon of
self-organized criticality. This premise is based on findings of criticality hallmarks, such
as scale-free distribution of neuronal avalanches and the presence of long-range temporal
correlations (LRTC) [20]. In the context of SPS, this is especially compelling as critical state
dynamics, representing a complex state at the edge between order and disorder [21,22],
were associated with maximized input susceptibility in neuronal networks [23,24].

Therefore, with the purpose of investigating the neurophysiological complexity of
SPS, the aim of this study was two-fold:

(1) To determine whether the self-reported level of SPS correlates either with (i) neuronal
complexity determined by fractal dimension and sample entropy, and (ii) features of
criticality such as a scale-free distribution of neuronal avalanches and the presence of
long-range temporal correlations.

(2) To examine whether persons scoring high on the HSPS reveal differences in the above-
mentioned EEG parameters during a task-free resting state compared to individuals
scoring low on the HSPS.

2. Materials and Methods
2.1. Data Acquisition and Participants

The participants were recruited throughout Germany via various social networks,
forums, the Research Association for sensory-processing sensitivity, and internal university
invitation notifications. An amount of 30 euros was offered as an incentive to participate
in the study. Psychology students received subject hours. Participation was accepted
from the age of 18 years. Exclusion criteria were known epilepsy, acute self-harm, acute
suicidality, and substance dependence. All 115 participants signed an informed consent
before participating in the laboratory study. The laboratory surveys took place in a sound-
and magnetic field-isolated cabin from 3 May–2 July 2021 on the campus of the University
of the Bundeswehr in Munich. Electrophysiological data were recorded using a 72 chan-
nels QuickAmp amplifier system (BrainProducts GmbH, Munich, Germany). EEG was
measured with a 64-channel ANT Waveguard electrode cap (ANT B.V., Enschede, The
Netherlands) with active shielding and Ag/AgCl electrodes, which were arranged accord-
ing to the international 10/10 system. Data were acquired during a task-free resting state
with eyes closed and eyes open for a duration of 3 min each. Before the recording, all
participants filled in the questionnaire ‘High Sensitive Person Scale’ (HSPS-G) [25]. The
HSPS-G (HSP scale, original version Aron and Aron, 1997 [2]; German version Konrad
and Herzberg, 2017 [25]) is a 26-item self-reported questionnaire that measures the degree
of sensitivity in a 5-point Likert rating scale (“0” does not apply at all—“4” applies com-
pletely). For this purpose, the measurement instrument is divided into the subscales of
Ease of Excitation (EOE), Aesthetic Sensitivity (AES), and a Low Sensory Threshold (LST). The
HSPS-G was normed and standardized on individuals from the general population and
was found to have good reliability (Cronbach’s α of 0.93 to 0.95) [25].
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2.2. Data Processing

Data were sampled at 250 Samples/s in a range from DC to 70 Hz with a notch
filter at 50 Hz. After detrending the 64 EEG channels, a correction for eye movement was
conducted using a linear correction algorithm [26]. Four complexity and criticality analyses
were conducted as described in detail previously in Walter and Hinterberger (2022) [27].
All analyses were calculated from the mean of the time series across participants. These
included a calculation of Higuchi’s fractal dimension (HFD) [28] and the sample entropy
(SE) [29]. For the latter, a template length m of 2 was chosen, and the similarity criteria r was
set to 0.2. To quantify long-range temporal correlations (LRTC) (i.e., the scale-invariance) in
the amplitude envelope of neuronal oscillations, detrended fluctuation analysis (DFA) was
applied [30]. For the assessment of critical brain dynamics the neuronal avalanche analysis
was used [31]. The analysis yields two parameters: the power law scaling parameter
SNZ (critical exponent) and a parameter termed SNZdi f f denoting the difference between
the critical exponent SNZ and the avalanche shape collapse scaling parameter. As these
should be identical for brain dynamics operating in a critical regime, SNZdi f f indicates
the distance to the critical point used [31].

2.3. Statistics

Matlab (MathWorks, Natick, MA, USA) and SPSS (IBM SPSS Statistical Package 28.0,
IBM Corporation, Armonk, NY, USA) were used for data analysis. To calculate correlations
between the EEG features and the HSPS-G summary score as well as subscales, Spearman’s
rank correlation was applied after determining that the distribution was not appropriate
for parametric testing by the Shapiro–Wilk test. For this analysis, the whole cohort (n = 115)
was considered. Then, after trichotomizing the scale, the lowest and the highest 30% of
the sample were contrasted as opposites. Thus, the sample was grouped regarding the
HSPS-G summary score into high sensitive persons (HSP, 78–104) and low-sensitive persons
(LSP, 0–43) participants [12]. EEG features were compared between the two groups by
applying an one-way analysis of variance (ANOVA). In addition, to test whether the scores
are predictive of functionality, the analysis was also performed the other way around.
For this, the cohort was grouped according to high and low complexity values for each
parameter, respectively, by using the mean value of the complexity parameter as a cutoff.
Then, HSPS-G summary scores of these groups were compared using ANOVA. Significance
was set at p < 0.05.

3. Results

A total of n = 115 participants were recruited (mean age = 33.1 ± 13.3, 71.3% fe-
male). Detailed sociodemographic data can be found in Table 1. The first group (highly
sensitive persons, HSP) consisted of n = 47 participants (mean age 41.75 ± 12.7 years, 24 fe-
males/23 males), with a mean HSPS-G summary score of 85.14 ± 7.7. The second group
(low sensitive persons, LSP) comprised n = 32 participants (mean age 38.15 ± 5.1 years,
20 females/12 males) with a mean HSPS-G summary score of 22.97 ± 10.35. The groups
did not differ statistically significantly regarding age (p = 0.869), sex (p = 0.649), current
living situation (p = 0.586), education (p = 0.593), and job status (p = 0.632) (Table 1).

3.1. Correlations between Sensory Processing Sensitivity, EEG Complexity, and Criticality
Features

To determine whether the scores on the HSPS-G scale are significantly associated with
the estimated EEG features, Spearman’s rank correlation was applied. The complexity
parameter showed positive correlations between the summary score HSPS-G and MSE
scale factor 1, 5, and 20, as well as HFD (Spearman’s ρ = 0.22, p < 0.05). At the subscale
level, positive associations were found only with the factor EOE and SE and HFD. No
significant associations were found between HSPS-G and criticality values (Table 2). During
the resting state with eyes closed, the summary scores did not significantly correlate with
any of the complexity or criticality values. In addition, when controlling for confounding
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variables, neither age, sex, current living situation, education, nor job status was found to
be statistically significantly correlated with any of the complexity parameter.

Table 1. Sociodemographic data (n = 115). After trichotomizing the Highly Sensitive Person Scale
(HSPS-G), the lowest and the highest 30% of the sample were contrasted as opposites and divided
into the groups high sensitive persons (HSP) and low sensitive persons (LSP).

Total
n (%)

HSP
n (%)

LSP
n (%)

115 47 32
Age (years) 33.1 ± 13.3 41.75 ± 12.7 38.15 ± 5.1
Sex

Male 32 (27.8) 23 (48.9) 12 (37.5)
Female 82 (71.3) 24 (51.1) 19 (59.4)
Diverse 1 (0.9) 1 (3.1)

Living situation
Alone 25 (21.7) 10 (25.6) 5 (12.5)
With partner/family 48 (41.7) 22 (56.4) 12(30.3)
Flat-sharing community 8 (7) 4 (10.3) 2 (5.0)
Relationship yes 76 (66.1) 28 (71.8) 26 (65.0)

Education
Secondary school certificate 13 (11.3) 9 (23.1) 2 (5.0)
Baccalaureate 45 (39.1) 8 (20.5) 21 (52.5)
Bachelor 24(20.9) 4 (10.3) 12(30)
Master 9 (7.8) 4 (10.3) 2 (5.0)
Diploma 10 (8.7) 5 (12.8) 2 (5.0)
PhD 1 (0.9) 1 (2.6) -
Other 13 (11.3) 8 (20.5) 1 (2.5)

Job
Self-employed 1 (9.6) 7 (17.9) 1 (2.5)
Employee 39 (33.9) 21 (53.8) 7 (17.5)
Stay at home 1 (9) 1 (2.6) -
Student 48 (11.3) 4 (10.3) 3 (7.5)

Table 2. Spearman correlations of the Highly Sensitive Person Scale, complexity, and criticality
parameter from the mean of the time series of the eyes open resting state across participants after
averaging over channels; n = 115. * p < 0.05.

rho HSPS-G_SUM HSPS-G_EOE HSPS-G_LST HSPS-G_AES

SE 0.199 * 0.215 * 0.183 0.090

HFD 0.214 * 0.228 * 0.201 0.122

α(DFA) −0.088 −0.088 −0.091 −0.100

SNZ −0.050 −0.070 −0.050 0.020

SNZdiff 0.028 0.027 0.040 −0.068
HSPS-G_SUM = Summary score of the German Highly Sensitive Person Scale, HSPS-G_EOE = Subscale Ease
of Excitation of the German Highly Sensitive Person Scale, HSPS-G_LST = Subscale Aesthetic Sensitivity of the
German Highly Sensitive Person Scale, HSPS-G_AES = Subscale Low Sensory Threshold of the German Highly
Sensitive Person Scale. SE = sample entropy, HFD = Higuchi’s fractal dimension, DFA = Detrended fluctuation
analysis.

3.2. Group Comparisons

A significant difference was found for the mean SE, which was higher in the HSP
group (1.83 ± 0.10 vs. 1.77 ± 0.13, p = 0.031) (Figure 1). The increased sample entropy
in the HSP group was most pronounced in the central, temporal, and parietal regions
(Figure 2). Further, it was tested, whether those participants with higher complexity
values also report a higher HSPS-G summary score. This additional comparison yielded
statistically significant results when the cohort was grouped according to the mean SE
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(HSPS-G summary score: 54.3 ± 25.4 vs. 63.2 ± 25.8, p = 0.037), however not for the other
complexity parameter (Table 3).
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Figure 1. Comparison of the temporal mean of the power spectral density for each complexity
parameter during a task-free resting state between the highly sensitive and the low sensitive group
with ANOVA. (A) shows the results of the sample entropy, (B) HFD, (C) the scaling exponent
resulting from the DFA, (D) the critical exponent SNZ, and the distance to the critical point (SNZdiff).
HSP = highly sensitive person, LSP = low sensitive person, n.s. = not significant.
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Figure 2. Topographical map of differences in the effect size calculated for the sample entropy
comparing the groups of highly sensitive persons and low sensitive persons.

Table 3. Comparison of Highly Sensitive Person Scale scores in association with the EEG complexity
features.

HSPS-G Summary
Score in Association
with SE

HSPS-G Summary
Score in Association
with HFD

HSPS-G Summary
Score in Association
with DFA

HSPS-G Summary
Score in Association
with SNZ

HSPS-G Summary
Score in Association
with SNZdiff

Low complexity
values

54.3 ± 25.4
(n = 49)

58.0 ± 27.6
(n = 78)

60.5 ± 24.8
(n = 42)

60.4 ± 25.9
(n = 57)

60.4 ± 26.8
(n = 63)

High complexity
values

63.2 ± 25.8
(n = 66)

62.5 ± 23.6
(n = 37)

58.8 ± 27.3
(n = 73)

58.5 ± 26.9
(n = 58)

58.2 ± 26.0
(n = 52)

p-value (ANOVA) 0.037 0.197 0.747 0.695 0.650

HSPS-G_SUM = Summary score of the German Highly Sensitive Person Scale, SE = sample entropy,
HFD = Higuchi’s fractal dimension, DFA = Detrended fluctuation analysis.
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4. Discussion

The present study investigated electrophysiological correlates during a task-free rest-
ing state in association with the level of SPS in 115 subjects using analytical tools from
criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), as well as
complexity measures (sample entropy and Higuchi’s fractal dimension). A major strength
of the study represents the use of multiple nonlinear parameters to determine the neuro-
physiological signatures of SPS as it has been emphasized that each complexity measure
gives additional information about the underlying data [32].

The analysis was based on the hypothesis that there might be a correlation between the
level of SPS and criticality and neural complexity. While the notion that neural dynamics
are governed by the phenomenon of self-organized criticality has received criticism [20],
a substantial body of research emphasized the potential of critical dynamics as general
indicators of healthy functioning of information processing and a surrogate measure of
consciousness [33,34]. Such findings inspired the research question and the investigation
whether the modulation of critical dynamics might be an underlying mechanisms of SPS.

A few authors have also demonstrated that the amount of integrated information is
largest near the critical point in network model [35,36]. Further, previous studies showed
that neuronal networks operating near a critical phase transition show enhanced input
sensitivity to changes in external inputs, which supports the presented premise associating
criticality with heighened susceptibility [23,37]. Explanations for the phenomenon include
that nodes are more excitable in a critical subpopulation and, hence, can more effectively
amplify weak stimuli [38]. In addition, previous findings indicated a link between self-
regulated top-down modulation of attention and a shift in the critical regime [39]. For
instance, an alteration of critical dynamics in association with increased attentional load has
been shown during a visuomotor cognitive finger-tapping task [40]. Further, statistically
significant differences in the critical exponent were reported comparing distinct meditative
states [27]. Marginally subcritical dynamics were associated with enhanced stimulus
discriminability under attention [41]. However, the level of self-reported SPS did not
significantly correlate with any of the criticality features and, thus, a modulation of the
critical regime as the underlying mechanisms of SPS could not be confirmed in this study.

Therefore, although the theory of SPS implies a biological foundation, the regulation
of its neural basisremains a topic of investigation.

To further unreveal alterations in brain activity, the cohort was additionally grouped
regarding the HSPS-G summary score into highly sensitive and low sensitive participants,
and EEG features were compared. The analysis revealed a significant difference between
the degree of SPS and increased complexity in terms of the sample entropy. Entropy mea-
sures are a well-established tool for the quantification of the brain’s information processing
capacity [42]. Thus, this finding can be interpreted to reflect a greater depth of informa-
tion processing in HSP and provide evidence for specific neurophysiological differences,
especially considering that the entropy increase was only observed for the resting state
with eyes open, but not for the resting state with eyes closed. This may be supported by
previous studies reported higher values of entropy in experienced meditators during the
practice of focused attention [27,43]. Besides constant monitoring, the focused attention
meditation requires executive control in terms of detecting phases of mind wandering,
where attention is directed elsewhere. Such training was shown to increase the depth of
information processing and enhance the allocation of attentional resources [44,45].

In line with this assumption, past investigations demonstrated that HSP performed
better in a visual search task, although subsequently reporting more stress compared to
non-HSP. The authors explained the greater performance with higher activation of working
memory in HSP [46]. Notably, significantly higher entropy values were further observed
in the EEG of healthy participants performing a visual memory task [47] Moreover, it has
been suggested that in HSP, the filter of the thalamus, which serves to sort out irrelevant in-
formation, considers more stimuli as relevant as in non-HSP. Consequently, environmental
stimuli are perceived in finer nuances, which leads to a much wider spectrum of perceived
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and received stimuli but also to chronic stress experience [5,17]. This would also be in line
with the entropic brain theory by Carhart Harris and colleagues, proposing that the entropy
of brain activity indexes the informational richness of conscious states [48].

Limitations

This study shows several limitations. First, the ad-hoc obtained sample (n = 115)
was heterogeneous (71.3% women; 38.1% psychology students). In the HSP group, the
majority of participants were female. Note, it has been suggested that, first, women score
higher on the HSPS-G and, second, women identify more with the construct SPS [4,25].
As recruitment took place through the High Sensitivity Research Association, groups
(https://www.hochsensibel.org, accessed on 29 May 2023) and forums for highly sensitive
people, and email distribution lists of HSP coaches, it cannot be ruled out that study
participants were aware of the SPS trait and the associated questionnaire, and through
this knowledge, instead of their own experience, self-beliefs were reflected. Another
limitation stems from the construction of the HSPS-G [25]. The scale consists exclusively of
positively worded items. Thus, acquiescence tendencies on the part of the subjects cannot
be excluded. This response style leads to more frequent response profiles that overestimate
the presence of actual HSP in the sample. A possible solution for future research would
be to invert some items. In addition, the HSPS-G is based on Aron and Aron’s original
1997 scale, which has not been modified since [2]. In the last 20 years, research interest
in SPS has increased considerably, so there is a demand for an adapted measurement
instrument that also increasingly captures the positive aspects of SPS [4]. Last, the question
remains to what extent the HSPS-G measures SPS, as there is much overlap in content with
psychopathological symptoms, e.g., from the neurotic, stress, somatoform, and affective
disorder spectrums. In addition, the group division limits the generalizability of the
results and the comparison with existing studies. For this reason, not only extreme group
comparisons but also correlative results were reported. Finally, it should be noted that
the different investigators potentially could have influenced the largely sensitive subjects.
HSP can sometimes be strongly influenced by people’s moods or emotions [17]. For this
reason, the investigators were extensively trained and also received detailed instructions
on dealing with HSP to minimize corresponding biases.

5. Conclusions

The present study demonstrated, for the first time, neurophysiological complexity
associated with SPS, which could be of importance, inter alia, for the development of
biomarkers for clinical diagnostics to differentiate psychopathologies and for monitoring
the effectiveness of therapeutic interventions. Hereby, evidence is provided that neural
processes differ between HSP and LSP. High levels of SPS were associated with statistically
significant increases in the sample entropy during a task-free eyes opened resting state. The
findings support the central theoretical assumption of enhanced information processing
in HSP.
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