
Citation: Wong, M.-F.; Guo, S.; Hang,

C.-N.; Ho, S.-W.; Tan, C.-W. Natural

Language Generation and

Understanding of Big Code for

AI-Assisted Programming: A Review.

Entropy 2023, 25, 888. https://

doi.org/10.3390/e25060888

Academic Editor: Lei Wang

Received: 26 April 2023

Revised: 25 May 2023

Accepted: 25 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Natural Language Generation and Understanding of Big Code
for AI-Assisted Programming: A Review
Man-Fai Wong 1 , Shangxin Guo 2, Ching-Nam Hang 1 , Siu-Wai Ho 3 and Chee-Wei Tan 4,*

1 Department of Computer Science, City University of Hong Kong, Hong Kong, China;
mfwong29-c@my.cityu.edu.hk (M.-F.W.); cnhang3-c@my.cityu.edu.hk (C.-N.H.)

2 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
sxguo2-c@my.cityu.edu.hk

3 Teletraffic Research Centre, University of Adelaide, Adelaide, SA 5005, Australia; siuwai.ho@adelaide.edu.au
4 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore
* Correspondence: cheewei.tan@ntu.edu.sg

Abstract: This paper provides a comprehensive review of the literature concerning the utilization
of Natural Language Processing (NLP) techniques, with a particular focus on transformer-based
large language models (LLMs) trained using Big Code, within the domain of AI-assisted program-
ming tasks. LLMs, augmented with software naturalness, have played a crucial role in facilitating
AI-assisted programming applications, including code generation, code completion, code translation,
code refinement, code summarization, defect detection, and clone detection. Notable examples of such
applications include the GitHub Copilot powered by OpenAI’s Codex and DeepMind AlphaCode.
This paper presents an overview of the major LLMs and their applications in downstream tasks
related to AI-assisted programming. Furthermore, it explores the challenges and opportunities
associated with incorporating NLP techniques with software naturalness in these applications, with
a discussion on extending AI-assisted programming capabilities to Apple’s Xcode for mobile soft-
ware development. This paper also presents the challenges of and opportunities for incorporating
NLP techniques with software naturalness, empowering developers with advanced coding assistance
and streamlining the software development process.

Keywords: software naturalness; large language models; AI-assisted programming

1. Introduction

The advent of Big Code has become increasingly relevant in today’s software develop-
ment landscape as the size and complexity of software systems continue to grow [1]. Big
Code refers to the vast collection of online software artifacts such as source code reposito-
ries, bug databases, and code snippets. It represents a wealth of knowledge and experience
that researchers can draw upon to improve the quality and efficiency of their own projects.
The goal of Big Code is to build tools and techniques that can assist software engineers to
analyze, understand, and make predictions about large codebases in a scalable and efficient
manner. Big Code also has the potential to revolutionize artificial intelligence (AI) develop-
ment by unitizing Big Code data. The development of statistical programming systems
involves the utilization of advanced programming languages, powerful machine learning
techniques such as large language models (LLMs), and natural language processing (NLP)
techniques based on the software naturalness hypothesis [2]. This hypothesis posits that
computer programs written in diverse programming languages can be comprehended and
manipulated similarly to NLP’s treatment of human natural languages.

By employing this combination of tools, probabilistic models of extensive codebases
can be constructed. These systems query a probabilistic model and calculate the most
probable predictions to solve a specific challenge [3], which are then presented to the
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developer. In other words, the programming language is regarded as the natural language
for the NLP techniques in this study. There are several crucial areas of fundamental research
focused on advancing probabilistic models of “Big Code” using statistical and machine
learning methodologies. By considering source code as a series of tokens and leveraging
the inherent patterns and structures within vast code repositories, NLP techniques can be
developed to enhance AI-assisted programming tasks, including code generation, code
completion, code refinement, code summarization, defect detection, and clone detection.

AI-assisted programming can enable software engineers to work more efficiently
and effectively [4], especially in situations where complex algorithms are being used that
involve large amounts of code (i.e., Big Code regime). It also strikes a balance between
productivity and ensuring safety, security, and reliability within the programming develop-
ment environment [5]. In fact, this can even lead to the development of AI-based predictive
analysis that allows human developers to more easily interact with code using natural
language commands and queries as part of the software development process [6]. AI-based
predictive analysis [7] can also more accurately anticipate potential issues throughout the
software development life cycle and flag critical incidents [8] before they occur [9,10].

Several recent reviews have explored specific topics related to LLMs, such as fair-
ness and bias [11], interpretability [12], explainability [13], and privacy preservation [14].
However, this review focuses primarily on language models with software naturalness.
In Table 1, a detailed comparison of other reviews that have examined related topics is
provided. This review also delves into the analysis of the publicly available Big Code
dataset, which is designed to assist programming with AI. This review addresses the pro-
cess of using language models for assessing software naturalness and examines the concept
of evaluating language models using entropy. Additionally, the latest developments in
AI-assisted programming using transformer-based LLMs trained on Big Code are explored,
and both the generation and comprehension aspects are discussed. The review concludes
with the open challenges and opportunities in AI-assisted programming. This review paper
highlights the unique contributions of this review in comparison to existing reviews.

Reviews have emphasized the significance of AI-assisted programming, leading to
significant advancements in this critical field of study. However, the essential components
of AI-assisted programming have been presented separately, resulting in a fragmented
understanding of the topic. Despite this, these independent studies have created an oppor-
tunity to view AI-assisted programming from a more comprehensive perspective. In light
of this, our survey aims to provide a more structured approach to framing AI-assisted
programming that extends beyond the examination of individual research topics. By doing
so, this review paper hopes to offer a more comprehensive understanding of this field,
highlighting the interdependencies between different areas of research.

Table 1. Comparison of surveys on language models in software naturalness.

Title Year Focus Area

A Survey of Machine Learning for Big Code and Naturalness [15] 2019 Big Code and Naturalness
Software Vulnerability Detection Using Deep Neural Networks: A Survey [16] 2020 Security

A Survey on Machine Learning Techniques for Source Code Analysis [17] 2021 Code Analysis
Deep Security Analysis of Program Code: A Systematic Literature Review [18] 2022 Security

A Survey on Pretrained Language Models for Neural Code Intelligence [19] 2022 Code Summarization and Gener-
ation, and Translation

Deep Learning Meets Software Engineering: A Survey on Pre-trained Models of Source
Code [20] 2022 Software Engineering

Software as Storytelling: A Systematic Literature Review [21] 2023 Storytelling
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural

Language Processing [22] 2023 Prompt-based Learning

The remainder of this review article is structured as follows. Section 2 provides an
overview of the background knowledge in Big Code and software naturalness, covering
topics such as the available dataset, tokenization process, existing language models, and the
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measurement of language models using entropy. Section 3 explores recent applications
of LLMs trained with Big Code in AI-assisted programming tasks. Section 4 discusses
the potential challenges and opportunities associated with LLMs in this context. Finally,
Section 5 concludes the study and outlines possible directions for future work in this field.

2. Background
2.1. Main Big Code Dataset

Researchers have successively released a large amount of Big Code to train LLMs.
Most datasets used to train LLMs can be applied into different tasks such as code generation
and code summarization. LLMs use unsupervised learning and require large amounts
of high-quality and diverse data to achieve high accuracy and generalization in their
predictions. Access to large-scale, high-quality, diverse, and representative datasets is
essential for developing high-performing LLMs on software naturalness. The datasets
found in the literature are described in Table 2, which were accessed on 18 May 2023.

Table 2. Summary of public datasets used on Big Code. All URLs were accessed on 18 May 2023.

Dataset Name Year Sample Size Language(s) Supported Task(s) Online URL

GitHub Java
Corpus [23] 2013 14.7K Java Code Completion https://groups.inf.ed.ac.uk/cup/

javaGithub/

Description2Code [24] 2016 7.6K Java, C# Code Generation, Code
Summarization

https://github.com/ethancaballero/
description2code

BigCloneBench [25] 2015 5.5K Java Defect Detection, Clone
Detection

https://github.com/clonebench/
BigCloneBench

CodRep [26] 2018 58K Java Code Refinement,
Defect Detection

https://github.com/ASSERT-KTH/
CodRep-competition

CONCODE [27] 2018 104K Java Code Generation https:
//github.com/sriniiyer/concode

WikiSQL [28] 2018 87K SQL Code Summarization https:
//github.com/salesforce/WikiSQL

Bugs2Fix [29] 2019 122K Java Defect Detection, Code
Refinement

https://sites.google.com/view/
learning-fixes

Devign [30] 2019 26.4K C Code Generation, Defect
Detection

https:
//sites.google.com/view/devign

CodeSearchNet [31] 2019 2M Python, Javascript,
Ruby, Go, Java, PHP

Code Generation, Code
Summarization, Code

Translation

https://github.com/github/
CodeSearchNet

The Pile [32] 2020 211M Python Coder Generation https://pile.eleuther.ai

CodeNet [33] 2021 13M C++, C,
Python, Java

Code Generation, Code
Refinement

https://github.com/IBM/Project_
CodeNet

CodeXGLUE [34] 2021 176K Python, Java, PHP,
JavaScript, Ruby, Go

Code Generation, Code
Completion, Code

Summarization, Defect
Detection

https://github.com/microsoft/
CodeXGLUE

HumanEval [35] 2021 164 Python Code Generation https:
//github.com/openai/human-eval

APPS [36] 2021 10K Python Code Generation https:
//github.com/hendrycks/apps

Codeparrot [37] 2022 22M Python Code Generation https://hf.co/datasets/
transformersbook/codeparrot

CodeContests [38] 2022 13.6K
C++, Java,

JavaScript, C# and 8
more

Code Generation https://github.com/deepmind/
code_contests

CERT [39] 2022 5.4M Python Code Generation https://github.com/microsoft/
PyCodeGPT

InCoder [40] 2022 670K Python, JavaScript,
HTML and 24 more

Code Generation, Code
Summarization

https:
//github.com/dpfried/incoder

PolyCoder [41] 2022 1K
C, C++, Java,

JavaScript, C#, Go
and 6 more

Code Generation https://github.com/VHellendoorn/
Code-LMs

ExecEval [42] 2023 58K Ruby, Javascript, Go,
C++, C and 6 more

Code Sumarization,
Code Generation, Code

Translation

https:
//github.com/ntunlp/xCodeEval

https://groups.inf.ed.ac.uk/cup/javaGithub/
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2.2. Tokenization

Figure 1 illustrates the pipeline of language models on software naturalness. Similar to
other neural networks and raw text, language models cannot process source code directly,
so the first step of the standard pipeline is to convert the code inputs into numbers of which
the model can make sense. To do this, a tokenizer can be used to split the input into code
syntax keyword, variables, or symbols (similar to punctuation) that are called tokens. Each
token is mapped to an integer in the next step. These tokens typically correspond to words,
punctuation marks, or other meaningful elements of the text. Tokenization is an important
step in many NLP tasks, as it allows machine learning algorithms to process and analyze
text in a more efficient and meaningful way. Some popular tokenizers are available to be
used directly such as Byte-Pair Encoding (BPE) [43] and RoBERTa [44].

Tokenizer Language Model Post Processing

Source Codes Input IDs Logits Predictions

def fib(n):
if n in {0, 1}: 

return n
return fib(n − 1) + fib(n − 2) 

[123, 6229, 5789, 1999, 
6230, 922, 3221, 6983, 

5758, 82]
[−4.2210, 4.41612] Java: 0.1%

Python: 99.9%

Figure 1. Pipeline of language models on software naturalness.

In the tokenization process, each token is assigned a unique identifier or index which
can be used to represent the token in a numerical format that can be understood by machine
learning models. Different tokenization strategies may be used depending on the specific
task at hand, such as splitting text into words, phrases, or even individual characters.
One common challenge in tokenization is dealing with ambiguity or variability in the
text. For example, words may have different meanings depending on the context in
which they appear, or may be misspelled or abbreviated in unpredictable ways. There are
various techniques that can be used to address these challenges, such as using contextual
information or statistical models to help disambiguate the text.

2.3. Language Models on Software Naturalness

In this section, some of the leading transformer-based language models are presented.
Figure 2 displays the timeline of the evolution of LLMs since 2018.

2018 2019 2020 2021 2022 2023

GPT

BERT

XLM

GPT-2 GPT-4

XLNet

RoBERTa

ALBERT

T5

BART

DistilBERT

DeBERTA

ELECTRA

GPT-3

LongFormer

M2M100

LUKE

FLAN

Megatron 
Turing-NLG

GLM

BLOOM

OPT

Ernie 3.0

LaMDA

Alpaca 7B

Figure 2. Timeline for the development of transformer-based large language models.

Table 3 provides a summary of transformer-based language models used in AI-assisted
programming. Transformer-based models are a type of neural network architecture used in
NLP and other machine learning tasks. The transformer maintains a similar architecture as
the encoder–decoder architecture shown in Figure 3, but the models use a self-attention
mechanism to weigh the importance of different parts of the input sequence, allowing them
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to capture dependencies between all parts of the sequence, as shown in Figure 4. They can
be parallelized more easily than previous models, resulting in faster training and lower
inference times. The transformer model is one of the most well-known transformer-based
models and has been used in various NLP tasks. Recently, large transformer-based models
such as GPT-4 [45] and LLaMA [46] have achieved state-of-the-art performance in many
benchmarks. The transformer’s ability to capture long-range dependencies is heavily reliant
on dot-product attention with softmax normalization, leading to a quadratic space and
time complexity in relation to sequence length, which can be a hindrance for longer inputs.
This study focuses on transformer-based models for AI-assisted programming tasks.

Table 3. Summary of language models using transformers for AI-assisted programming.

Model Type AI-Assisted Programming Tasks

Encoder-only Understanding Code Summarization, Code Translation
Decoder-only Generation Code Generation, Code Completion

Encoder–decoder Generation and Understanding Code Generation, Code Refinement, Defect Detection,
Clone Detection

Encoder–decoder models [47] refer to sequence-to-sequence models, utilizing both
components of the transformer architecture [48]. The encoder’s attention layers can access
all words in the input sentence at each stage, while the decoder’s attention layers can only
access the words preceding a given word in the input. Sequence-to-sequence models such
as BART [49], T5 (Text-to-Text Transfer Transformer) [50], and TreeGen [51] are well-suited
for tasks that involve generating new text based on an input, such as code generation, code
refinement, defect detection, and clone detection, for AI-assisted programming tasks.

Encoder

Decoder

Inputs

Outputs Outputs Probabilities

Figure 3. Encoder–decoder architecture. The model is primarily composed of two blocks: The
encoder receives an input and builds a representation of its features, while the decoder uses the
encoder’s representation along with other inputs to generate a target sequence.

Encoder-only models, also known as autoencoders, use only an encoder network
to transform input data into a compressed representation. They are commonly used in
unsupervised learning tasks such as dimensionality reduction and anomaly detection in
NLP tasks. In the past, code embedding approaches could be utilized to obtain the represen-
tation from the input data such as Neural Network Language Model [52], Code2Vec [53],
ELMo [54], TextRank [55], and GGNN [56]. For AI-assisted programming tasks, they
are used for understanding tasks to learn useful representations with the BERT [57] and
RoBERTa [44] of data in an unsupervised manner, which can be used as features for down-
stream tasks such as code translation and code summarization.
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Input embeddingInputs

Multi-head 
attention

Add & norm

Feed forward

Add & norm

Output embeddingOutputs

Multi-head 
attention

Add & norm

Feed forward

Add & norm

Multi-head 
attention

Add & norm

Outputs Probabilities

SoftMax

Linear

Figure 4. Transformer architecture. The transformer architecture retains a similar structure to that of
the encoder–decoder architecture. The encoder considers all words in a sentence, while the decoder
works sequentially. Once the initial words are predicted, they are used to generate subsequent words.
The attention layers in the encoder consider all the words in a sentence, while the decoder works
sequentially and can only focus on the words it has already translated.

Decoder-only models, also known as autoregressive models, are a type of neural net-
work architecture used in natural language processing tasks such as GPT-2 [58], GPT-3 [59],
GPT-J [60], Reformer [61], and GPT-Neo [62], which use the decoder to predict the next
token output given all previous tokens. They rely solely on a decoder network to generate
output text, predicting the probability distribution of the next token given the previously
generated tokens. Although they are simpler and more efficient than encoder–decoder
models, they may not be as effective in tasks requiring a deeper understanding of the input–
output sequence relationship. Nevertheless, they are still widely used in various natural
language processing tasks for AI-assisted programming, such as code generation and code
completion, and have demonstrated impressive performance in several benchmarks.

2.4. Measurement of Language Models with Entropy

Language models on software naturalness are trained on large code corpora and used
to predict the next token in the code given its context. Mathematically, assuming a set of
program tokens T and a set of program sequences S, the set of possible systems is S ⊂ S.
A language model is a probability distribution p(.) over systems s ∈ S:

∀s ∈ S[0 < p(s) < 1] ∧∑
s∈S

p(s) = 1. (1)

An estimated language model known as a pre-trained language model [63] is created by
computing a maximum-likelihood estimation (MLE) of the parameter of a suitably chosen
parametric distribution p(·) given a corpus C of programs C ⊆ S. This process is described
in Section 2.2. The tokenization of the code is defined by the programming language
to estimate the probability distribution of code tokens given the preceding context. It
uses this information to make predictions or decisions in the software engineering tasks.
The models are trained to predict the probability distribution of words in a sequence, based
on the previous words in that sequence [64]. The language model is typically constructed
using N-gram models, which have a long history in statistical language modeling and are
widely used for estimating the probability distribution of words or characters in a text
sequence [65,66]. This was the standard method before the development of word vectors
and distributed representations of language using Recurrent Neural Networks (RNN) [67].
Given a system s with a sequence of tokens {W1, W2, . . . Wn}, N-gram models can estimate
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the likelihood of tokens following other tokens. As a result, the model can estimate the
probability of s by multiplying a series of conditional probabilities:

p(s) = p(W1)p(W2|a1)p(W3|W1W2) . . . p(Wn|W1 . . . Wn−1). (2)

An N-gram model captures the co-occurrence patterns of words or characters in the
text. Mathematically, an N-gram model can be represented as a set of N-grams, each
represented as a tuple of n items and their associated probabilities. The probability
of an N-gram can be estimated by the MLE based on the frequency of occurrence of
the N-gram in a given training corpus. This also assumes a Markov property, i.e., to-
ken occurrences are influenced only by a limited prefix length of n. Thus, for example,
in a 3-gram (n = 3) model:

p(Wi|W1 . . . Wi−1) ∼= p(Wi|Wi−2Wi−1). (3)

The probability of a word Wi given its preceding word Wi−1 can be estimated:

p(Wi|Wi−1) = count(Wi−1, Wi)/count(Wi−1), (4)

where count(Wi−1, Wi) is the number of times the 3-gram (Wi−1, Wi) appears in the training
corpus, and count(Wi−1) is the number of times the word Wi−1 appears in the training
corpus. The models have achieved great success in recent years and have been a driving
force behind recent advancements in NLP. The performance of the technique depends on
the quality of the language model and the ability of the model to accurately reflect the
patterns and structures of the target data. Therefore, much research effort has been devoted
to improving the quality of language models for these tasks, including developing better
training algorithms, larger training corpora, and better evaluation metrics.

A representative corpus of repetitive and highly predictable programs is utilized to
capture regularities within the corpus in order to evaluate the naturalness of software
language models. By estimating the language model from this representative corpus, it
can predict the contents of new programs with high confidence, thereby minimizing the
surprise associated with the new program. In NLP, this idea is often measured using per-
plexity or cross-entropy (log-transformed version). Given a program p = {w1, w2, . . . , wn},
of length n, and a language model Θ, it assumes that the probability of the programs
estimated by the model is pΘ, and, thus, the cross-entropy HΘ(p) can be measured:

HΘ(p) = − 1
n

log pΘ(w1, w2, . . . , wn) (5)

and a formulation can be derived from Equation (2):

HΘ(p) = − 1
n

n

∑
i=1

log pΘ(wi|w1, w2, . . . , wi−1). (6)

The entropy rate of a language model is utilized to assess the naturalness of the generated
text [68]. It can be computed by taking the negative logarithm of the probability of each
generated token. An effective model should have low entropy for the majority of programs,
assigning higher probabilities (i.e., values closer to 1) to most words in the program, thereby
resulting in lower absolute log values. In practice, this involves using techniques such as
maximum likelihood estimation or neural networks to estimate the parameters. The final
model can then be used to make predictions by calculating the probability of a given
sequence of words. Estimating entropy from empirical data has been an interesting area in
information theory for AI-assisted programming [69]. For example, a method for estimating
entropy with a confidence interval was proposed in [70]. Another method for estimating the
entropy and redundancy of a language was provided in [68]. A model weighting principle
based on the minimum description length principle was applied in [71] to develop a direct
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estimator of the entropy rate. The estimator can be used to estimate a Bayesian confidence
interval for the entropy rate using Monte Carlo techniques. Techniques for estimating the
entropy rate have been reviewed in [72]. Analytical results of estimators for entropy and
mutual information can be found in [73].

3. AI-Assisted Programming Tasks

There are two main categories of AI-assisted programming tasks related to software
naturalness: generation and understanding. The former includes code generation, code
completion, code translation, code refinement, and code summarization. The latter is
concerned with understanding code and includes defect detection and clone detection.
Researchers have made significant efforts to enhance the quality of language models for
these tasks by improving pre-training schemes, increasing the size of training corpora,
developing better fine-tuning datasets, and using improved evaluation metrics. The frame-
works and tools developed for these specific tasks are discussed in this section, and a
summary of all the frameworks reviewed is presented in Table 4.

3.1. Code Generation

Program synthesis, also known as source code generation, is the process of auto-
matically generating source code from a programming language based on user-specified
constraints [74,75]. This study focuses on text-to-code generation for code generation, while
code-to-code generation is referred to as code translation, which is discussed in Section 3.3.
The history of code generation dates back to the use of theorem provers to construct a
proof of user-provided specifications and extract corresponding logical programs [76,77].
With the increasing popularity of deep learning methods, neural methods, including Long
Short–Term Memory (LSTM) [78] and Recursive–Reverse–Recursive Neural Network [79],
have been adopted to generate output programs with specific inductive biases given suffi-
cient program samples. More recently, transformer-based LLMs such as GPT-3 [59] and
T5 [50] have shown impressive performance in code generation tasks by leveraging contex-
tual representations learned from large amounts of code, as well as public code sources
and natural language data, to improve program synthesis. These approaches incorporate
systematic pre-training and fine-tuning tasks to develop a deep understanding of code
structure and meaning, making them well-suited for software development tasks. To evalu-
ate the models for code generation tasks, different metrics are available such as pass@k [35],
which measures the percentage of problems solved using k generated programs per prob-
lem, BLEU-4 [80], and exact match accuracy on program synthesis benchmarks such as
APPS [36], MBPP [81], and CodeBLEU [50], which consider both syntactic and semantic
matches based on code structure in addition to N-gram matches.

3.2. Code Completion

Code completion, also known as autocompletion, is a software development feature
that suggests possible code completions as a programmer types [82]. Its goal is to save time
and reduce errors by providing suggestions for method names, variable names, and even
entire code snippets [83]. Previous research on code completion started with statistical
language models [84,85]. Later, LSTM-based deep learning approaches were applied to
the task, aiming to learn the semantic information of source code without considering
its syntactic structure [86]. To address the limitations of LSTM-based language models,
transformer architecture was introduced for code completion. Normally, the language
models for code completion are trained using a causal language model that predicts the
unknown token after a sequence of known tokens. Recent work on code completion using
LLMs [35,87] has shown impressive performance on benchmarks, such as CodeXGLUE [34],
compared to existing statistical language models and deep learning approaches.
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3.3. Code Translation

Code translation is the process of converting code from one programming language to
another, with the goal of migrating legacy software. While theoretically possible, building
a code translator is challenging due to differences in syntax and platform APIs between
programming languages. Most current translation tools are rule-based, requiring hand-
crafted rewrite rules applied to an abstract syntax tree (AST) derived from the input source
code. However, creating such tools demands significant expertise in both the source and
target languages. Recent studies have explored using statistical machine translation [88,89]
as well as deep learning approaches [90,91] for programming language translation. Quality
evaluation for generated functions often uses the BLEU score, while the exact match is used
to compare generated output with reference ground truth.

3.4. Code Refinement

Code refinement, which can be referred to as automated program repair (APR), is the
process of automatically fixing bugs or vulnerabilities by converting a buggy function into
a correct one. Deep learning models have a strong learning capability that enables them
to learn various patterns for transforming buggy programs into patched ones from large
code corpora. Many studies [92,93] have demonstrated the superior performance of deep
learning-based techniques over traditional template-based [94,95], heuristic-based [96–98],
and constraint-based [99,100] APR techniques. LLM is used to generate plausible patches
or modifications to a given incorrect code. The model can be trained on a large corpus of
correct code to learn the patterns and structures of correct code. When LLMs are given a
faulty code, the model can then generate suggestions for how to correct it as one of the
downstream tasks. The LLMs for code refinement can be evaluated by CodeXGLUE [34]
or HumanEval [35] as the abstracted codes or the classical APR benchmarks such as De-
fects4J [101] and QuixBugs [102] as real-world codes, but the understanding and generation
of concrete variable and function names is still mandatory and challenging [103].

3.5. Code Summarization

Code summarization is a technique used to generate English descriptions of code
snippets at the function level, which can then be used to generate documentation. Typically,
this involves taking the source code as input and producing a natural language summary as
output. In AI-assisted programming tools, code summarization can be used to analyze code
and identify optimization opportunities, such as using a binary Euclid algorithm instead
of a traditional modular arithmetic-based algorithm, which can significantly improve
software performance. In recent years, there has been promising research into the automatic
generation of natural language descriptions of programs, with studies such as [104–106]
making notable progress in this area. The rise of deep learning, coupled with the abundance
of data from open-source repositories, has made automatic code summarization an area
of interest for researchers. Many of the neural approaches [107,108] use a sequence-to-
sequence approach to generate source code summaries, with some models converting
the source code into various types of representations, such as token-based [109,110], tree-
based [111,112], and graph-based [113,114], before passing it through language models.

3.6. Defect Detection

As software systems increase in complexity, it becomes more challenging to iden-
tify errors. Defect detection aims to enhance software reliability by predicting whether
a piece of code is susceptible to bugs or not, by detecting previously unknown errors.
Rule-based approaches have been defined in existing defect detection frameworks by
inferring likely programming rules from various sources such as code, version histories,
and comments [91,115,116]. Statistical language models based on N-gram language models
have also been widely used in this area [117–119]. More recently, many deep learning-based
solutions [95,120–125] have been proposed to bridge the gap by suggesting different feature
sets from which the detection framework can learn, attempting to imitate how a practitioner
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looks for vulnerabilities. However, LLMs, such as CodeBERT [126], have recently emerged
as a promising technique in this field due to their ability to understand code structure.
These models can be trained on a large corpus of error-free code and used to identify
patterns and structures in source code that deviate from those learned from the error-free
code as a binary classification task [127,128]. To evaluate the model predictions, accuracy,
precision, recall, and F1 scores can be used.

3.7. Clone Detection

Clone detection involves identifying identical or similar code fragments, known as
clones, within or across software systems. The goal of clone detection is to measure the
similarity between two code snippets and determine if they have the same functionality.
Clones can be classified into four types [129,130], with types 1–3 being syntactic clones
that differ in minor ways, while type 4 clones, known as semantic clones, are difficult to
detect since they have different syntax but the same semantics and, thus, require manual
validation. With the increasing amount of source code, large-scale and automatic clone
detection has become essential. Several tools have been developed to perform clone
detection [131–136], using techniques such as comparison of the AST, tokens, or source
code text. Notable clone detection datasets include BigCloneBench [25], which contains
Java code snippets.

Table 4. Summary of language models for AI-assisted programming tasks.

Framework Year Task(s) Baseline(s) Supported Language(s) Open
Sourced

Refactory [137] 2019 Defect Detection BLEU Java 7
CuBERT [138] 2020 Code Refinement, Defect Detection BERT Python 3
CugLM [139] 2020 Code Completion BERT Java, TypeScript 3

Intellicode [140] 2020 Code Generation, Code Completion GPT-2 Python, C#, JavaScript,
and TypeScrip 7

Great [141] 2020 Defect Detection Vanilla
Transformers Python 3

TreeGEN [51] 2020 Code Generation Vanilla
Transformers Python 3

C-BERT [127] 2020 Defect Detection BERT C 7

TransCoder [142] 2020 Code Translation Vanilla
Transformers C++, Java, and Python 7

GraphCodeBERT [143] 2020 Code Summarization, Code Refinement BERT Java 7

Codex [35] 2021 Code Generation, Code Completion,
Code Summarization, Benchmark GPT-3 JavaScript, Go, Perl, and 6

more 7

Copilot [144] 2021 Code Generation, Code Completion Codex Java, PHP, Python, and 5
more 7

CodeT5 [145] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Defect Detection, Clone Detection

T5 Python, Java 3

Tfix [146] 2021 Code Refinement, Defect Detection T5 JavaScript 3

CodeRL [147] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Defect Detection, Clone Detection

T5 Java 3

TreeBERT [148] 2021 Code Summarization Vanilla
Transformers Python, Java 3

BUGLAB [149] 2021 Code Refinement, Defect Detection GREAT Python 3

TBCC [150] 2021 Clone Detection Vanilla
Transformers C, Java 3

APPS [36] 2021 Benchmark N/A Python 3
CodeXGLUE [34] 2021 Benchmark N/A Python 3

CoTexT [151] 2021 Code Summarization, Code Generation,
Code Refinement, Defect detection T5 Python, Java, Javascript,

PHP, Ruby, Go 3

SynCoBERT [152] 2021 Code Translation, Defect Detection,
Clone Detection BERT Ruby, Javascript, Go,

Python, Java, PHP 7

TravTrans [153] 2021 Code Completion Vanilla
Transformers Python 7

CCAG [154] 2021 Code Completion Vanilla
Transformers JavaScript, Python 7

DeepDebug [155] 2021 Defect Detection Reformer Java 3
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Table 4. Cont.

Framework Year Task(s) Baseline(s) Supported Language(s) Open
Sourced

Recoder [93] 2021 Defect Detection TreeGen Java 3

PLBART [156] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Clone Detection, Detect Detection

BART Java, Python 7

CODEGEN [157] 2022 Code Generation GPT-NEO &
GPT-J Python 3

GPT-2 for APR [158] 2022 Code Refinement GPT-2 JavaScript 3
CERT [39] 2022 Code Generation CODEGEN Python 3

PyCoder [87] 2022 Code Generation GPT-2 Python 3
AlphaCode [38] 2022 Code Generation GPT Java 7

InCoder [40] 2022 Code Generation, Code Completion,
Code Summarization GPT-3 Java, JavaScript, Python 3

RewardRepair [159] 2022 Code Refinement, Defect Detection T5 Java 3
CodeParrot [37] 2022 Code Generation GPT-2 Python 3

AlphaRepair [160] 2022 Code Refinement, Defect Detection CodeBERT Java 3

CodeReviewer [128] 2022 Code Summarization, Code Refinement,
Defect Detection CodeT5 Java 3

TransRepair [161] 2022 Code Refinement, Defect Detection BLEU Java 7

NatGen [162] 2022 Code Generation, Code Translation,
Code Refinement CodeT5 Java, Python, Go, JavaScript,

Ruby, PHP 3

DualSC [163] 2022 Code Generation, Code Summarization T5 Shellcode 3
VulRepair [164] 2022 Code Refinement, Defect Detection T5 C, C++ 3

CoditT5 [165] 2022 Code Summarization, Defect Detection CodeT5 Java, Python, Ruby, PHP, Go,
JavaScript 3

C4 [166] 2022 Clone Detection CodeBERT C++, C#, Java, Python 3

SPT-Code [167] 2022 Code Summarization, Code Completion,
Code Refinement, Code Translation

CodeBERT &
GraphCode-

BERT

Python, Java, JavaScript,
PHP, Go 3

ExploitGen [168] 2023 Code Generation CodeBERT Python, Assembly 3
Santacoder [169] 2023 Code Summarization, Code Generation GPT-2 Python, Java, and Javascript 3

xCodeEval [42] 2023 Benchmark N/A Python, Java, C++, PHP,
and 8 more 3

StarCoder [170] 2023 Code Generation, Code Completion,
Code Summarization

BERT &
SantaCoder

HTML, Python, Java, and 83
more 3

4. Challenges and Opportunities
4.1. Computational Expense

Training an LLM with millions of parameters can be computationally expensive. This
is because training involves processing vast amounts of data in codes and optimizing the
model’s parameters to generate accurate predictions [171]. Overall, computational expense
can be due to lack of training data and computing resources such as memory, GPU, or even
electricity. At the same time, the quality of the training data used to train a language model
is also crucial, as poor quality data or bias in the data can lead to incorrect predictions.
LLMs require massive computational resources to train, fine-tune, and run, which can be a
hindrance for organizations with limited hardware resources [172].

To reduce the computational expense of training LLMs, researchers and developers
can employ various techniques, such as training on subsets of the data [173,174], optimizing
the hyperparameters [175], and leveraging transfer learning to reuse the knowledge learned
from previous tasks. These techniques can help to speed up the training process and reduce
the amount of required computing resources. Instead of training the LLMs continuously,
some works focus on using prompt-learning [176,177] and human feedback [178–182] to
improve performance of the LLMs. In prompt-based learning, the prompt serves as a
guide or prompt to the language model, providing it with relevant context and guidance to
generate an output that is appropriate for a particular task. The prompt can be a simple
sentence or a full paragraph, depending on the complexity of the task and the amount
of information needed to guide the LLMs. One of the main advantages of prompt-based
learning is its flexibility and ease of use. It allows users to quickly fine-tune pre-trained
language models for specific tasks without requiring a large amount of task-specific data.
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Additionally, prompt-based learning can be used in a semi-supervised or unsupervised
manner, where the prompt provides a small amount of supervision to the language model,
further reducing the necessary amount of task-specific data.

4.2. Quality Measurement

Leveraging LLMs in AI-assisted programming tasks has enormous potential to im-
prove software development efficiency and reduce the time and effort required to write code
manually. However, several challenges need to be addressed to ensure the performance
and effectiveness of LLMs. One of the primary concerns is the quality of the generated code
or documentation [35], which can be impacted by the accuracy and robustness of the LLMs.
While automated code generation can save time, it can also lead to poor-quality code that
is difficult to maintain and may contain bugs or security vulnerabilities [183]. Therefore, it
is critical to ensure that the generated code meets the desired specifications and adheres
to coding standards and best practices [184]. Another significant challenge is integrating
the generated code into existing software systems seamlessly [185], ensuring that it can be
maintained and updated easily over time.

To address these challenges and improve the reliability and quality of LLMs in
AI-assisted programming tasks, researchers and developers are exploring various ap-
proaches and techniques. These include incorporating advanced machine learning and
optimization algorithms [186,187] and developing new tools and frameworks for inte-
grating generated code into existing software systems. Some researchers have attempted
to use Variational Autoencoders [188] or Generative Adversarial Networks [189] to gen-
erate synthetic data that can be used for training LLMs, but they must ensure that the
performance of these generative models is robust and reliable to ensure the quality of the
synthetic data. Meanwhile, it is possible to adopt active learning [190] to improve the
performance of LLMs while requiring fewer labeled training instances. This approach
works by allowing the model to choose the data from which it learns [191], which enables it
to compute the statistically optimal way to select training data while avoiding poor-quality
data, such as buggy codes, that can negatively impact model performance. One of the
significant benefits of incorporating active learning into the training process is that it can
help reduce the time and effort required to label large amounts of data manually, making it
a cost-effective solution for many applications [192]. By selecting the most informative data
points for labeling, active learning can improve the accuracy and robustness of machine
learning models, even when working with limited labeled data. The integration of active
learning with LLMs remains an open question in this field of study. While active learning
has shown promise in improving the performance of machine learning models, including
LLMs, the application of this technique to LLMs has not yet been fully explored.

4.3. Software Security

Software security is a critical concern in the development of the use of LLMs [193].
While LLMs have shown significant promise in a wide range of code-related tasks, they also
introduce unique security challenges that must be addressed to ensure safety and security.
One of the primary security concerns when using LLMs is the potential for these models
to introduce vulnerabilities into the code [194]. For example, poorly designed LLMs may
generate code that is prone to buffer overflow or SQL injection attacks. Another critical
concern is the possibility of LLMs being manipulated or exploited to generate malicious
code that can be used for cyberattacks. For instance, an attacker may use a poisoned
dataset to manipulate an LLM, resulting in the generation of malicious code that can be
used to exploit vulnerabilities in the software system. Also, users without programming
knowledge can generate programs with a Trojan horse phishing attack.

When using LLMs for AI-assisted programming tasks, it is essential to address soft-
ware security to ensure that the generated codes or documents are secure and free from
vulnerabilities, as well as to ensure the integrity of the training data used to train the LLMs.
Code validation and testing involve thorough validation and testing of the generated code
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before integrating it with real-world systems to identify and fix any security issues. Data
sanitization and validation ensure that the training data are free from malicious code or
sources of bias.

4.4. Software Piracy

Software piracy refers to the unauthorized copying, distribution, or use of copyrighted
software without the permission of the software’s owner [195–197]. This can take many
forms, including making copies of software for personal or commercial use, distributing
software through unauthorized channels, or using software beyond the terms of the licens-
ing agreement. As the field of natural language generation and statistical machine learning
for Big Code and AI-assisted programming continues to grow, concerns over software
piracy have arisen. The use of open source code repositories for training AI models has
led to lawsuits, with companies such as Microsoft and OpenAI accused of software piracy.
The issue at hand is whether the use of open source code for training LLMs violates copy-
right laws. While the legal implications of this issue are still being debated, it is important to
consider the ethical implications as well. The use of copyrighted code without permission
raises questions about fairness and equity in the development of AI-assisted programming
tools [198,199]. Also, the use of user data to train these models raises concerns over privacy
and data protection. As the field continues to evolve, it will be important for researchers
and developers to consider these issues and work towards finding solutions that balance
the benefits of AI-assisted programming with the need for ethical and legal compliance.
This may include clarifying rules around secondary uses of copyrighted code, as well as
developing more transparent and opt-in data policies for training AI models.

To address software piracy, one approach is to ensure that the training data used for
the development of these models are legally obtained and do not violate any copyrights or
intellectual property rights according to the U.S. Copyright Office [200]. Organizations can
also establish clear policies and guidelines for the ethical and legal use of these technologies.
For instance, developers can be required to obtain permission or licenses before using
proprietary code or software in their work. Machine learning algorithms can also be trained
to identify and prevent the unauthorized distribution of copyrighted material and pirated
code or software.

4.5. Integration with Existing Tools

The opportunity to integrate tools and LLMs enhances and streamlines the software
development process. By incorporating LLMs into integrated tools as cloud virtual service
providers [201,202], developers can leverage the power of NLP to automate repetitive tasks,
improve code quality and readability, and increase efficiency in software development.
This integration can enable developers to experiment prompt engineering with public
LLMs under data compliance, data security, data governance and best practices directly
from their own development environment. Copilot for Xcode [203] serves as a real-world
example of an application integrated with LLMs, allowing Apple developers to utilize
GitHub Copilot [144] for code suggestions and ChatGPT [176] for code explanation and
mutation using natural language. The connection between Xcode and Copilot is achieved
by establishing communication between the Xcode source editor extension and the Copilot
server, presenting suggestions in a user interface not handled by Xcode. To obtain additional
information beyond the source code and file type provided by Xcode, the app utilizes the
Accessibility API, which represents objects in a user interface and exposes information
about each object within the application. Furthermore, for in-place code editing, the app
employs the use of Apple Scripts, a scripting language in macOS for task automation,
to programmatically execute extension commands and emulate menu bar interactions.
The details to integrate the Copilot with Xcode are illustrated in Figure 5.

With these workarounds, Copilot for Xcode successfully enables Xcode to support
GitHub Copilot, as shown in Figure 6. In addition, it facilitates the integration of an external
chat panel that can access and read the user’s code. This chat panel serves as a connection
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point to leverage LLMs for functionalities such as code explanation and mutation using
natural language. The chat panel can also be extended with plugins to offer additional
features, including support for natural language terminal commands. The incorporation
of Copilot into Xcode signifies a notable advancement in AI-powered programming for
iOS/macOS, expanding the capabilities of language models to widely-used mobile software
development tools.

User Copilot for Xcode Xcode GitHub Copilot

Update the code 
(notify through AXObserver)

Fetch additional information 
via Accessibility API

Update the code

Return suggestion

Present suggestion

Accept suggestion

Fetch suggestion

Use Apple Scripts 
to trigger command

Return suggestion

Send request

Figure 5. A sequence diagram of Copilot for Xcode to produce real-time suggestions with GitHub
Copilot. When a user attempts to update their code, the Copilot for Xcode first receives a notification
and sends a request to the GitHub Copilot API. Once the suggestions from GitHub Copilot are
returned, the user can choose to adopt the suggestions and apply the changes directly to Xcode.

(a) Copilot for Xcode displaying suggestions from GitHub Copilot.

(b) Copilot for Xcode displaying the chat panel.

Figure 6. Interface of Copilot for Xcode integrated with Apple Xcode. (a,b) are the actual user
interface tool, where a developer can interact with the GitHub Copilot inside the Xcode.



Entropy 2023, 25, 888 15 of 23

5. Conclusions

This review paper explores the applications of LLMs in software naturalness to gain a
better understanding of software development processes and develop applications that
cater to the human aspects of software development. Firstly, it provides a background on
Big Code and software naturalness, covering topics such as available datasets, tokeniza-
tion processes, existing language models, and entropy-based measurements. Secondly, it
summarizes recent applications of LLMs trained with Big Code in various tasks, including
code generation, code completion, code translation, code refinement, code summarization,
defect detection, and clone detection. Lastly, it discusses the potential challenges and
opportunities associated with LLMs in the context of AI-assisted programming tasks.

Analyzing Big Code repositories and identifying patterns of naturalness can lead to
more effective methods for AI-assisted programming. This can ultimately improve the
quality and productivity of AI-assisted programming, making it easier for programmers to
create high-quality software with fewer errors in less time. In addition to the challenges
faced by LLMs for codes mentioned in this review paper, there are significant opportuni-
ties for future work in the field. These opportunities include exploring the development
of LLMs that prioritize transparency and interpretability, enabling clearer explanations
for code suggestions and bug fixing. Emphasizing the design of AI-assisted program-
ming applications that prioritize fairness, transparency, and privacy is crucial, as current
research tends to focus primarily on performance and efficiency. By pursuing these av-
enues, AI-assisted programming applications can be advanced to be more user-centric,
ethically responsible, and adaptable, ultimately leading to more efficient and effective
programming workflows.
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