
Citation: Wong, M.-F.; Guo, S.; Hang,

C.-N.; Ho, S.-W.; Tan, C.-W. Natural

Language Generation and

Understanding of Big Code for

AI-Assisted Programming: A Review.

Entropy 2023, 25, 888. https://

doi.org/10.3390/e25060888

Academic Editor: Lei Wang

Received: 26 April 2023

Revised: 25 May 2023

Accepted: 25 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Natural Language Generation and Understanding of Big Code
for AI-Assisted Programming: A Review
Man-Fai Wong 1 , Shangxin Guo 2, Ching-Nam Hang 1 , Siu-Wai Ho 3 and Chee-Wei Tan 4,*

1 Department of Computer Science, City University of Hong Kong, Hong Kong, China;
mfwong29-c@my.cityu.edu.hk (M.-F.W.); cnhang3-c@my.cityu.edu.hk (C.-N.H.)

2 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
sxguo2-c@my.cityu.edu.hk

3 Teletraffic Research Centre, University of Adelaide, Adelaide, SA 5005, Australia; siuwai.ho@adelaide.edu.au
4 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore
* Correspondence: cheewei.tan@ntu.edu.sg

Abstract: This paper provides a comprehensive review of the literature concerning the utilization
of Natural Language Processing (NLP) techniques, with a particular focus on transformer-based
large language models (LLMs) trained using Big Code, within the domain of AI-assisted program-
ming tasks. LLMs, augmented with software naturalness, have played a crucial role in facilitating
AI-assisted programming applications, including code generation, code completion, code translation,
code refinement, code summarization, defect detection, and clone detection. Notable examples of such
applications include the GitHub Copilot powered by OpenAI’s Codex and DeepMind AlphaCode.
This paper presents an overview of the major LLMs and their applications in downstream tasks
related to AI-assisted programming. Furthermore, it explores the challenges and opportunities
associated with incorporating NLP techniques with software naturalness in these applications, with
a discussion on extending AI-assisted programming capabilities to Apple’s Xcode for mobile soft-
ware development. This paper also presents the challenges of and opportunities for incorporating
NLP techniques with software naturalness, empowering developers with advanced coding assistance
and streamlining the software development process.

Keywords: software naturalness; large language models; AI-assisted programming

1. Introduction

The advent of Big Code has become increasingly relevant in today’s software develop-
ment landscape as the size and complexity of software systems continue to grow [1]. Big
Code refers to the vast collection of online software artifacts such as source code reposito-
ries, bug databases, and code snippets. It represents a wealth of knowledge and experience
that researchers can draw upon to improve the quality and efficiency of their own projects.
The goal of Big Code is to build tools and techniques that can assist software engineers to
analyze, understand, and make predictions about large codebases in a scalable and efficient
manner. Big Code also has the potential to revolutionize artificial intelligence (AI) develop-
ment by unitizing Big Code data. The development of statistical programming systems
involves the utilization of advanced programming languages, powerful machine learning
techniques such as large language models (LLMs), and natural language processing (NLP)
techniques based on the software naturalness hypothesis [2]. This hypothesis posits that
computer programs written in diverse programming languages can be comprehended and
manipulated similarly to NLP’s treatment of human natural languages.

By employing this combination of tools, probabilistic models of extensive codebases
can be constructed. These systems query a probabilistic model and calculate the most
probable predictions to solve a specific challenge [3], which are then presented to the

Entropy 2023, 25, 888. https://doi.org/10.3390/e25060888 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060888
https://doi.org/10.3390/e25060888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2063-5065
https://orcid.org/0000-0003-1624-9735
https://orcid.org/0000-0002-8630-494X
https://orcid.org/0000-0002-6624-9752
https://doi.org/10.3390/e25060888
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060888?type=check_update&version=2


Entropy 2023, 25, 888 2 of 23

developer. In other words, the programming language is regarded as the natural language
for the NLP techniques in this study. There are several crucial areas of fundamental research
focused on advancing probabilistic models of “Big Code” using statistical and machine
learning methodologies. By considering source code as a series of tokens and leveraging
the inherent patterns and structures within vast code repositories, NLP techniques can be
developed to enhance AI-assisted programming tasks, including code generation, code
completion, code refinement, code summarization, defect detection, and clone detection.

AI-assisted programming can enable software engineers to work more efficiently
and effectively [4], especially in situations where complex algorithms are being used that
involve large amounts of code (i.e., Big Code regime). It also strikes a balance between
productivity and ensuring safety, security, and reliability within the programming develop-
ment environment [5]. In fact, this can even lead to the development of AI-based predictive
analysis that allows human developers to more easily interact with code using natural
language commands and queries as part of the software development process [6]. AI-based
predictive analysis [7] can also more accurately anticipate potential issues throughout the
software development life cycle and flag critical incidents [8] before they occur [9,10].

Several recent reviews have explored specific topics related to LLMs, such as fair-
ness and bias [11], interpretability [12], explainability [13], and privacy preservation [14].
However, this review focuses primarily on language models with software naturalness.
In Table 1, a detailed comparison of other reviews that have examined related topics is
provided. This review also delves into the analysis of the publicly available Big Code
dataset, which is designed to assist programming with AI. This review addresses the pro-
cess of using language models for assessing software naturalness and examines the concept
of evaluating language models using entropy. Additionally, the latest developments in
AI-assisted programming using transformer-based LLMs trained on Big Code are explored,
and both the generation and comprehension aspects are discussed. The review concludes
with the open challenges and opportunities in AI-assisted programming. This review paper
highlights the unique contributions of this review in comparison to existing reviews.

Reviews have emphasized the significance of AI-assisted programming, leading to
significant advancements in this critical field of study. However, the essential components
of AI-assisted programming have been presented separately, resulting in a fragmented
understanding of the topic. Despite this, these independent studies have created an oppor-
tunity to view AI-assisted programming from a more comprehensive perspective. In light
of this, our survey aims to provide a more structured approach to framing AI-assisted
programming that extends beyond the examination of individual research topics. By doing
so, this review paper hopes to offer a more comprehensive understanding of this field,
highlighting the interdependencies between different areas of research.

Table 1. Comparison of surveys on language models in software naturalness.

Title Year Focus Area

A Survey of Machine Learning for Big Code and Naturalness [15] 2019 Big Code and Naturalness
Software Vulnerability Detection Using Deep Neural Networks: A Survey [16] 2020 Security

A Survey on Machine Learning Techniques for Source Code Analysis [17] 2021 Code Analysis
Deep Security Analysis of Program Code: A Systematic Literature Review [18] 2022 Security

A Survey on Pretrained Language Models for Neural Code Intelligence [19] 2022 Code Summarization and Gener-
ation, and Translation

Deep Learning Meets Software Engineering: A Survey on Pre-trained Models of Source
Code [20] 2022 Software Engineering

Software as Storytelling: A Systematic Literature Review [21] 2023 Storytelling
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural

Language Processing [22] 2023 Prompt-based Learning

The remainder of this review article is structured as follows. Section 2 provides an
overview of the background knowledge in Big Code and software naturalness, covering
topics such as the available dataset, tokenization process, existing language models, and the



Entropy 2023, 25, 888 3 of 23

measurement of language models using entropy. Section 3 explores recent applications
of LLMs trained with Big Code in AI-assisted programming tasks. Section 4 discusses
the potential challenges and opportunities associated with LLMs in this context. Finally,
Section 5 concludes the study and outlines possible directions for future work in this field.

2. Background
2.1. Main Big Code Dataset

Researchers have successively released a large amount of Big Code to train LLMs.
Most datasets used to train LLMs can be applied into different tasks such as code generation
and code summarization. LLMs use unsupervised learning and require large amounts
of high-quality and diverse data to achieve high accuracy and generalization in their
predictions. Access to large-scale, high-quality, diverse, and representative datasets is
essential for developing high-performing LLMs on software naturalness. The datasets
found in the literature are described in Table 2, which were accessed on 18 May 2023.

Table 2. Summary of public datasets used on Big Code. All URLs were accessed on 18 May 2023.

Dataset Name Year Sample Size Language(s) Supported Task(s) Online URL

GitHub Java
Corpus [23] 2013 14.7K Java Code Completion https://groups.inf.ed.ac.uk/cup/

javaGithub/

Description2Code [24] 2016 7.6K Java, C# Code Generation, Code
Summarization

https://github.com/ethancaballero/
description2code

BigCloneBench [25] 2015 5.5K Java Defect Detection, Clone
Detection

https://github.com/clonebench/
BigCloneBench

CodRep [26] 2018 58K Java Code Refinement,
Defect Detection

https://github.com/ASSERT-KTH/
CodRep-competition

CONCODE [27] 2018 104K Java Code Generation https:
//github.com/sriniiyer/concode

WikiSQL [28] 2018 87K SQL Code Summarization https:
//github.com/salesforce/WikiSQL

Bugs2Fix [29] 2019 122K Java Defect Detection, Code
Refinement

https://sites.google.com/view/
learning-fixes

Devign [30] 2019 26.4K C Code Generation, Defect
Detection

https:
//sites.google.com/view/devign

CodeSearchNet [31] 2019 2M Python, Javascript,
Ruby, Go, Java, PHP

Code Generation, Code
Summarization, Code

Translation

https://github.com/github/
CodeSearchNet

The Pile [32] 2020 211M Python Coder Generation https://pile.eleuther.ai

CodeNet [33] 2021 13M C++, C,
Python, Java

Code Generation, Code
Refinement

https://github.com/IBM/Project_
CodeNet

CodeXGLUE [34] 2021 176K Python, Java, PHP,
JavaScript, Ruby, Go

Code Generation, Code
Completion, Code

Summarization, Defect
Detection

https://github.com/microsoft/
CodeXGLUE

HumanEval [35] 2021 164 Python Code Generation https:
//github.com/openai/human-eval

APPS [36] 2021 10K Python Code Generation https:
//github.com/hendrycks/apps

Codeparrot [37] 2022 22M Python Code Generation https://hf.co/datasets/
transformersbook/codeparrot

CodeContests [38] 2022 13.6K
C++, Java,

JavaScript, C# and 8
more

Code Generation https://github.com/deepmind/
code_contests

CERT [39] 2022 5.4M Python Code Generation https://github.com/microsoft/
PyCodeGPT

InCoder [40] 2022 670K Python, JavaScript,
HTML and 24 more

Code Generation, Code
Summarization

https:
//github.com/dpfried/incoder

PolyCoder [41] 2022 1K
C, C++, Java,

JavaScript, C#, Go
and 6 more

Code Generation https://github.com/VHellendoorn/
Code-LMs

ExecEval [42] 2023 58K Ruby, Javascript, Go,
C++, C and 6 more

Code Sumarization,
Code Generation, Code

Translation

https:
//github.com/ntunlp/xCodeEval

https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://github.com/clonebench/BigCloneBench
https://github.com/clonebench/BigCloneBench
https://github.com/ASSERT-KTH/CodRep-competition
https://github.com/ASSERT-KTH/CodRep-competition
https://github.com/sriniiyer/concode
https://github.com/sriniiyer/concode
https://github.com/salesforce/WikiSQL
https://github.com/salesforce/WikiSQL
https://sites.google.com/view/learning-fixes
https://sites.google.com/view/learning-fixes
https://sites.google.com/view/devign
https://sites.google.com/view/devign
https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://pile.eleuther.ai
https://github.com/IBM/Project_CodeNet
https://github.com/IBM/Project_CodeNet
https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
https://github.com/openai/human-eval
https://github.com/openai/human-eval
https://github.com/hendrycks/apps
https://github.com/hendrycks/apps
https://hf.co/datasets/transformersbook/codeparrot
https://hf.co/datasets/transformersbook/codeparrot
https://github.com/deepmind/code_contests
https://github.com/deepmind/code_contests
https://github.com/microsoft/PyCodeGPT
https://github.com/microsoft/PyCodeGPT
https://github.com/dpfried/incoder
https://github.com/dpfried/incoder
https://github.com/VHellendoorn/Code-LMs
https://github.com/VHellendoorn/Code-LMs
https://github.com/ntunlp/xCodeEval
https://github.com/ntunlp/xCodeEval


Entropy 2023, 25, 888 4 of 23

2.2. Tokenization

Figure 1 illustrates the pipeline of language models on software naturalness. Similar to
other neural networks and raw text, language models cannot process source code directly,
so the first step of the standard pipeline is to convert the code inputs into numbers of which
the model can make sense. To do this, a tokenizer can be used to split the input into code
syntax keyword, variables, or symbols (similar to punctuation) that are called tokens. Each
token is mapped to an integer in the next step. These tokens typically correspond to words,
punctuation marks, or other meaningful elements of the text. Tokenization is an important
step in many NLP tasks, as it allows machine learning algorithms to process and analyze
text in a more efficient and meaningful way. Some popular tokenizers are available to be
used directly such as Byte-Pair Encoding (BPE) [43] and RoBERTa [44].

Tokenizer Language Model Post Processing

Source Codes Input IDs Logits Predictions

def fib(n):
if n in {0, 1}: 

return n
return fib(n − 1) + fib(n − 2) 

[123, 6229, 5789, 1999, 
6230, 922, 3221, 6983, 

5758, 82]
[−4.2210, 4.41612] Java: 0.1%

Python: 99.9%

Figure 1. Pipeline of language models on software naturalness.

In the tokenization process, each token is assigned a unique identifier or index which
can be used to represent the token in a numerical format that can be understood by machine
learning models. Different tokenization strategies may be used depending on the specific
task at hand, such as splitting text into words, phrases, or even individual characters.
One common challenge in tokenization is dealing with ambiguity or variability in the
text. For example, words may have different meanings depending on the context in
which they appear, or may be misspelled or abbreviated in unpredictable ways. There are
various techniques that can be used to address these challenges, such as using contextual
information or statistical models to help disambiguate the text.

2.3. Language Models on Software Naturalness

In this section, some of the leading transformer-based language models are presented.
Figure 2 displays the timeline of the evolution of LLMs since 2018.

2018 2019 2020 2021 2022 2023

GPT

BERT

XLM

GPT-2 GPT-4

XLNet

RoBERTa

ALBERT

T5

BART

DistilBERT

DeBERTA

ELECTRA

GPT-3

LongFormer

M2M100

LUKE

FLAN

Megatron 
Turing-NLG

GLM

BLOOM

OPT

Ernie 3.0

LaMDA

Alpaca 7B

Figure 2. Timeline for the development of transformer-based large language models.

Table 3 provides a summary of transformer-based language models used in AI-assisted
programming. Transformer-based models are a type of neural network architecture used in
NLP and other machine learning tasks. The transformer maintains a similar architecture as
the encoder–decoder architecture shown in Figure 3, but the models use a self-attention
mechanism to weigh the importance of different parts of the input sequence, allowing them



Entropy 2023, 25, 888 5 of 23

to capture dependencies between all parts of the sequence, as shown in Figure 4. They can
be parallelized more easily than previous models, resulting in faster training and lower
inference times. The transformer model is one of the most well-known transformer-based
models and has been used in various NLP tasks. Recently, large transformer-based models
such as GPT-4 [45] and LLaMA [46] have achieved state-of-the-art performance in many
benchmarks. The transformer’s ability to capture long-range dependencies is heavily reliant
on dot-product attention with softmax normalization, leading to a quadratic space and
time complexity in relation to sequence length, which can be a hindrance for longer inputs.
This study focuses on transformer-based models for AI-assisted programming tasks.

Table 3. Summary of language models using transformers for AI-assisted programming.

Model Type AI-Assisted Programming Tasks

Encoder-only Understanding Code Summarization, Code Translation
Decoder-only Generation Code Generation, Code Completion

Encoder–decoder Generation and Understanding Code Generation, Code Refinement, Defect Detection,
Clone Detection

Encoder–decoder models [47] refer to sequence-to-sequence models, utilizing both
components of the transformer architecture [48]. The encoder’s attention layers can access
all words in the input sentence at each stage, while the decoder’s attention layers can only
access the words preceding a given word in the input. Sequence-to-sequence models such
as BART [49], T5 (Text-to-Text Transfer Transformer) [50], and TreeGen [51] are well-suited
for tasks that involve generating new text based on an input, such as code generation, code
refinement, defect detection, and clone detection, for AI-assisted programming tasks.

Encoder

Decoder

Inputs

Outputs Outputs Probabilities

Figure 3. Encoder–decoder architecture. The model is primarily composed of two blocks: The
encoder receives an input and builds a representation of its features, while the decoder uses the
encoder’s representation along with other inputs to generate a target sequence.

Encoder-only models, also known as autoencoders, use only an encoder network
to transform input data into a compressed representation. They are commonly used in
unsupervised learning tasks such as dimensionality reduction and anomaly detection in
NLP tasks. In the past, code embedding approaches could be utilized to obtain the represen-
tation from the input data such as Neural Network Language Model [52], Code2Vec [53],
ELMo [54], TextRank [55], and GGNN [56]. For AI-assisted programming tasks, they
are used for understanding tasks to learn useful representations with the BERT [57] and
RoBERTa [44] of data in an unsupervised manner, which can be used as features for down-
stream tasks such as code translation and code summarization.



Entropy 2023, 25, 888 6 of 23

Input embeddingInputs

Multi-head 
attention

Add & norm

Feed forward

Add & norm

Output embeddingOutputs

Multi-head 
attention

Add & norm

Feed forward

Add & norm

Multi-head 
attention

Add & norm

Outputs Probabilities

SoftMax

Linear

Figure 4. Transformer architecture. The transformer architecture retains a similar structure to that of
the encoder–decoder architecture. The encoder considers all words in a sentence, while the decoder
works sequentially. Once the initial words are predicted, they are used to generate subsequent words.
The attention layers in the encoder consider all the words in a sentence, while the decoder works
sequentially and can only focus on the words it has already translated.

Decoder-only models, also known as autoregressive models, are a type of neural net-
work architecture used in natural language processing tasks such as GPT-2 [58], GPT-3 [59],
GPT-J [60], Reformer [61], and GPT-Neo [62], which use the decoder to predict the next
token output given all previous tokens. They rely solely on a decoder network to generate
output text, predicting the probability distribution of the next token given the previously
generated tokens. Although they are simpler and more efficient than encoder–decoder
models, they may not be as effective in tasks requiring a deeper understanding of the input–
output sequence relationship. Nevertheless, they are still widely used in various natural
language processing tasks for AI-assisted programming, such as code generation and code
completion, and have demonstrated impressive performance in several benchmarks.

2.4. Measurement of Language Models with Entropy

Language models on software naturalness are trained on large code corpora and used
to predict the next token in the code given its context. Mathematically, assuming a set of
program tokens T and a set of program sequences S, the set of possible systems is S ⊂ S.
A language model is a probability distribution p(.) over systems s ∈ S:

∀s ∈ S[0 < p(s) < 1] ∧∑
s∈S

p(s) = 1. (1)

An estimated language model known as a pre-trained language model [63] is created by
computing a maximum-likelihood estimation (MLE) of the parameter of a suitably chosen
parametric distribution p(·) given a corpus C of programs C ⊆ S. This process is described
in Section 2.2. The tokenization of the code is defined by the programming language
to estimate the probability distribution of code tokens given the preceding context. It
uses this information to make predictions or decisions in the software engineering tasks.
The models are trained to predict the probability distribution of words in a sequence, based
on the previous words in that sequence [64]. The language model is typically constructed
using N-gram models, which have a long history in statistical language modeling and are
widely used for estimating the probability distribution of words or characters in a text
sequence [65,66]. This was the standard method before the development of word vectors
and distributed representations of language using Recurrent Neural Networks (RNN) [67].
Given a system s with a sequence of tokens {W1, W2, . . . Wn}, N-gram models can estimate



Entropy 2023, 25, 888 7 of 23

the likelihood of tokens following other tokens. As a result, the model can estimate the
probability of s by multiplying a series of conditional probabilities:

p(s) = p(W1)p(W2|a1)p(W3|W1W2) . . . p(Wn|W1 . . . Wn−1). (2)

An N-gram model captures the co-occurrence patterns of words or characters in the
text. Mathematically, an N-gram model can be represented as a set of N-grams, each
represented as a tuple of n items and their associated probabilities. The probability
of an N-gram can be estimated by the MLE based on the frequency of occurrence of
the N-gram in a given training corpus. This also assumes a Markov property, i.e., to-
ken occurrences are influenced only by a limited prefix length of n. Thus, for example,
in a 3-gram (n = 3) model:

p(Wi|W1 . . . Wi−1) ∼= p(Wi|Wi−2Wi−1). (3)

The probability of a word Wi given its preceding word Wi−1 can be estimated:

p(Wi|Wi−1) = count(Wi−1, Wi)/count(Wi−1), (4)

where count(Wi−1, Wi) is the number of times the 3-gram (Wi−1, Wi) appears in the training
corpus, and count(Wi−1) is the number of times the word Wi−1 appears in the training
corpus. The models have achieved great success in recent years and have been a driving
force behind recent advancements in NLP. The performance of the technique depends on
the quality of the language model and the ability of the model to accurately reflect the
patterns and structures of the target data. Therefore, much research effort has been devoted
to improving the quality of language models for these tasks, including developing better
training algorithms, larger training corpora, and better evaluation metrics.

A representative corpus of repetitive and highly predictable programs is utilized to
capture regularities within the corpus in order to evaluate the naturalness of software
language models. By estimating the language model from this representative corpus, it
can predict the contents of new programs with high confidence, thereby minimizing the
surprise associated with the new program. In NLP, this idea is often measured using per-
plexity or cross-entropy (log-transformed version). Given a program p = {w1, w2, . . . , wn},
of length n, and a language model Θ, it assumes that the probability of the programs
estimated by the model is pΘ, and, thus, the cross-entropy HΘ(p) can be measured:

HΘ(p) = − 1
n

log pΘ(w1, w2, . . . , wn) (5)

and a formulation can be derived from Equation (2):

HΘ(p) = − 1
n

n

∑
i=1

log pΘ(wi|w1, w2, . . . , wi−1). (6)

The entropy rate of a language model is utilized to assess the naturalness of the generated
text [68]. It can be computed by taking the negative logarithm of the probability of each
generated token. An effective model should have low entropy for the majority of programs,
assigning higher probabilities (i.e., values closer to 1) to most words in the program, thereby
resulting in lower absolute log values. In practice, this involves using techniques such as
maximum likelihood estimation or neural networks to estimate the parameters. The final
model can then be used to make predictions by calculating the probability of a given
sequence of words. Estimating entropy from empirical data has been an interesting area in
information theory for AI-assisted programming [69]. For example, a method for estimating
entropy with a confidence interval was proposed in [70]. Another method for estimating the
entropy and redundancy of a language was provided in [68]. A model weighting principle
based on the minimum description length principle was applied in [71] to develop a direct



Entropy 2023, 25, 888 8 of 23

estimator of the entropy rate. The estimator can be used to estimate a Bayesian confidence
interval for the entropy rate using Monte Carlo techniques. Techniques for estimating the
entropy rate have been reviewed in [72]. Analytical results of estimators for entropy and
mutual information can be found in [73].

3. AI-Assisted Programming Tasks

There are two main categories of AI-assisted programming tasks related to software
naturalness: generation and understanding. The former includes code generation, code
completion, code translation, code refinement, and code summarization. The latter is
concerned with understanding code and includes defect detection and clone detection.
Researchers have made significant efforts to enhance the quality of language models for
these tasks by improving pre-training schemes, increasing the size of training corpora,
developing better fine-tuning datasets, and using improved evaluation metrics. The frame-
works and tools developed for these specific tasks are discussed in this section, and a
summary of all the frameworks reviewed is presented in Table 4.

3.1. Code Generation

Program synthesis, also known as source code generation, is the process of auto-
matically generating source code from a programming language based on user-specified
constraints [74,75]. This study focuses on text-to-code generation for code generation, while
code-to-code generation is referred to as code translation, which is discussed in Section 3.3.
The history of code generation dates back to the use of theorem provers to construct a
proof of user-provided specifications and extract corresponding logical programs [76,77].
With the increasing popularity of deep learning methods, neural methods, including Long
Short–Term Memory (LSTM) [78] and Recursive–Reverse–Recursive Neural Network [79],
have been adopted to generate output programs with specific inductive biases given suffi-
cient program samples. More recently, transformer-based LLMs such as GPT-3 [59] and
T5 [50] have shown impressive performance in code generation tasks by leveraging contex-
tual representations learned from large amounts of code, as well as public code sources
and natural language data, to improve program synthesis. These approaches incorporate
systematic pre-training and fine-tuning tasks to develop a deep understanding of code
structure and meaning, making them well-suited for software development tasks. To evalu-
ate the models for code generation tasks, different metrics are available such as pass@k [35],
which measures the percentage of problems solved using k generated programs per prob-
lem, BLEU-4 [80], and exact match accuracy on program synthesis benchmarks such as
APPS [36], MBPP [81], and CodeBLEU [50], which consider both syntactic and semantic
matches based on code structure in addition to N-gram matches.

3.2. Code Completion

Code completion, also known as autocompletion, is a software development feature
that suggests possible code completions as a programmer types [82]. Its goal is to save time
and reduce errors by providing suggestions for method names, variable names, and even
entire code snippets [83]. Previous research on code completion started with statistical
language models [84,85]. Later, LSTM-based deep learning approaches were applied to
the task, aiming to learn the semantic information of source code without considering
its syntactic structure [86]. To address the limitations of LSTM-based language models,
transformer architecture was introduced for code completion. Normally, the language
models for code completion are trained using a causal language model that predicts the
unknown token after a sequence of known tokens. Recent work on code completion using
LLMs [35,87] has shown impressive performance on benchmarks, such as CodeXGLUE [34],
compared to existing statistical language models and deep learning approaches.



Entropy 2023, 25, 888 9 of 23

3.3. Code Translation

Code translation is the process of converting code from one programming language to
another, with the goal of migrating legacy software. While theoretically possible, building
a code translator is challenging due to differences in syntax and platform APIs between
programming languages. Most current translation tools are rule-based, requiring hand-
crafted rewrite rules applied to an abstract syntax tree (AST) derived from the input source
code. However, creating such tools demands significant expertise in both the source and
target languages. Recent studies have explored using statistical machine translation [88,89]
as well as deep learning approaches [90,91] for programming language translation. Quality
evaluation for generated functions often uses the BLEU score, while the exact match is used
to compare generated output with reference ground truth.

3.4. Code Refinement

Code refinement, which can be referred to as automated program repair (APR), is the
process of automatically fixing bugs or vulnerabilities by converting a buggy function into
a correct one. Deep learning models have a strong learning capability that enables them
to learn various patterns for transforming buggy programs into patched ones from large
code corpora. Many studies [92,93] have demonstrated the superior performance of deep
learning-based techniques over traditional template-based [94,95], heuristic-based [96–98],
and constraint-based [99,100] APR techniques. LLM is used to generate plausible patches
or modifications to a given incorrect code. The model can be trained on a large corpus of
correct code to learn the patterns and structures of correct code. When LLMs are given a
faulty code, the model can then generate suggestions for how to correct it as one of the
downstream tasks. The LLMs for code refinement can be evaluated by CodeXGLUE [34]
or HumanEval [35] as the abstracted codes or the classical APR benchmarks such as De-
fects4J [101] and QuixBugs [102] as real-world codes, but the understanding and generation
of concrete variable and function names is still mandatory and challenging [103].

3.5. Code Summarization

Code summarization is a technique used to generate English descriptions of code
snippets at the function level, which can then be used to generate documentation. Typically,
this involves taking the source code as input and producing a natural language summary as
output. In AI-assisted programming tools, code summarization can be used to analyze code
and identify optimization opportunities, such as using a binary Euclid algorithm instead
of a traditional modular arithmetic-based algorithm, which can significantly improve
software performance. In recent years, there has been promising research into the automatic
generation of natural language descriptions of programs, with studies such as [104–106]
making notable progress in this area. The rise of deep learning, coupled with the abundance
of data from open-source repositories, has made automatic code summarization an area
of interest for researchers. Many of the neural approaches [107,108] use a sequence-to-
sequence approach to generate source code summaries, with some models converting
the source code into various types of representations, such as token-based [109,110], tree-
based [111,112], and graph-based [113,114], before passing it through language models.

3.6. Defect Detection

As software systems increase in complexity, it becomes more challenging to iden-
tify errors. Defect detection aims to enhance software reliability by predicting whether
a piece of code is susceptible to bugs or not, by detecting previously unknown errors.
Rule-based approaches have been defined in existing defect detection frameworks by
inferring likely programming rules from various sources such as code, version histories,
and comments [91,115,116]. Statistical language models based on N-gram language models
have also been widely used in this area [117–119]. More recently, many deep learning-based
solutions [95,120–125] have been proposed to bridge the gap by suggesting different feature
sets from which the detection framework can learn, attempting to imitate how a practitioner



Entropy 2023, 25, 888 10 of 23

looks for vulnerabilities. However, LLMs, such as CodeBERT [126], have recently emerged
as a promising technique in this field due to their ability to understand code structure.
These models can be trained on a large corpus of error-free code and used to identify
patterns and structures in source code that deviate from those learned from the error-free
code as a binary classification task [127,128]. To evaluate the model predictions, accuracy,
precision, recall, and F1 scores can be used.

3.7. Clone Detection

Clone detection involves identifying identical or similar code fragments, known as
clones, within or across software systems. The goal of clone detection is to measure the
similarity between two code snippets and determine if they have the same functionality.
Clones can be classified into four types [129,130], with types 1–3 being syntactic clones
that differ in minor ways, while type 4 clones, known as semantic clones, are difficult to
detect since they have different syntax but the same semantics and, thus, require manual
validation. With the increasing amount of source code, large-scale and automatic clone
detection has become essential. Several tools have been developed to perform clone
detection [131–136], using techniques such as comparison of the AST, tokens, or source
code text. Notable clone detection datasets include BigCloneBench [25], which contains
Java code snippets.

Table 4. Summary of language models for AI-assisted programming tasks.

Framework Year Task(s) Baseline(s) Supported Language(s) Open
Sourced

Refactory [137] 2019 Defect Detection BLEU Java 7
CuBERT [138] 2020 Code Refinement, Defect Detection BERT Python 3
CugLM [139] 2020 Code Completion BERT Java, TypeScript 3

Intellicode [140] 2020 Code Generation, Code Completion GPT-2 Python, C#, JavaScript,
and TypeScrip 7

Great [141] 2020 Defect Detection Vanilla
Transformers Python 3

TreeGEN [51] 2020 Code Generation Vanilla
Transformers Python 3

C-BERT [127] 2020 Defect Detection BERT C 7

TransCoder [142] 2020 Code Translation Vanilla
Transformers C++, Java, and Python 7

GraphCodeBERT [143] 2020 Code Summarization, Code Refinement BERT Java 7

Codex [35] 2021 Code Generation, Code Completion,
Code Summarization, Benchmark GPT-3 JavaScript, Go, Perl, and 6

more 7

Copilot [144] 2021 Code Generation, Code Completion Codex Java, PHP, Python, and 5
more 7

CodeT5 [145] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Defect Detection, Clone Detection

T5 Python, Java 3

Tfix [146] 2021 Code Refinement, Defect Detection T5 JavaScript 3

CodeRL [147] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Defect Detection, Clone Detection

T5 Java 3

TreeBERT [148] 2021 Code Summarization Vanilla
Transformers Python, Java 3

BUGLAB [149] 2021 Code Refinement, Defect Detection GREAT Python 3

TBCC [150] 2021 Clone Detection Vanilla
Transformers C, Java 3

APPS [36] 2021 Benchmark N/A Python 3
CodeXGLUE [34] 2021 Benchmark N/A Python 3

CoTexT [151] 2021 Code Summarization, Code Generation,
Code Refinement, Defect detection T5 Python, Java, Javascript,

PHP, Ruby, Go 3

SynCoBERT [152] 2021 Code Translation, Defect Detection,
Clone Detection BERT Ruby, Javascript, Go,

Python, Java, PHP 7

TravTrans [153] 2021 Code Completion Vanilla
Transformers Python 7

CCAG [154] 2021 Code Completion Vanilla
Transformers JavaScript, Python 7

DeepDebug [155] 2021 Defect Detection Reformer Java 3



Entropy 2023, 25, 888 11 of 23

Table 4. Cont.

Framework Year Task(s) Baseline(s) Supported Language(s) Open
Sourced

Recoder [93] 2021 Defect Detection TreeGen Java 3

PLBART [156] 2021
Code Summarization, Code Generation,

Code Translation, Code Refinement,
Clone Detection, Detect Detection

BART Java, Python 7

CODEGEN [157] 2022 Code Generation GPT-NEO &
GPT-J Python 3

GPT-2 for APR [158] 2022 Code Refinement GPT-2 JavaScript 3
CERT [39] 2022 Code Generation CODEGEN Python 3

PyCoder [87] 2022 Code Generation GPT-2 Python 3
AlphaCode [38] 2022 Code Generation GPT Java 7

InCoder [40] 2022 Code Generation, Code Completion,
Code Summarization GPT-3 Java, JavaScript, Python 3

RewardRepair [159] 2022 Code Refinement, Defect Detection T5 Java 3
CodeParrot [37] 2022 Code Generation GPT-2 Python 3

AlphaRepair [160] 2022 Code Refinement, Defect Detection CodeBERT Java 3

CodeReviewer [128] 2022 Code Summarization, Code Refinement,
Defect Detection CodeT5 Java 3

TransRepair [161] 2022 Code Refinement, Defect Detection BLEU Java 7

NatGen [162] 2022 Code Generation, Code Translation,
Code Refinement CodeT5 Java, Python, Go, JavaScript,

Ruby, PHP 3

DualSC [163] 2022 Code Generation, Code Summarization T5 Shellcode 3
VulRepair [164] 2022 Code Refinement, Defect Detection T5 C, C++ 3

CoditT5 [165] 2022 Code Summarization, Defect Detection CodeT5 Java, Python, Ruby, PHP, Go,
JavaScript 3

C4 [166] 2022 Clone Detection CodeBERT C++, C#, Java, Python 3

SPT-Code [167] 2022 Code Summarization, Code Completion,
Code Refinement, Code Translation

CodeBERT &
GraphCode-

BERT

Python, Java, JavaScript,
PHP, Go 3

ExploitGen [168] 2023 Code Generation CodeBERT Python, Assembly 3
Santacoder [169] 2023 Code Summarization, Code Generation GPT-2 Python, Java, and Javascript 3

xCodeEval [42] 2023 Benchmark N/A Python, Java, C++, PHP,
and 8 more 3

StarCoder [170] 2023 Code Generation, Code Completion,
Code Summarization

BERT &
SantaCoder

HTML, Python, Java, and 83
more 3

4. Challenges and Opportunities
4.1. Computational Expense

Training an LLM with millions of parameters can be computationally expensive. This
is because training involves processing vast amounts of data in codes and optimizing the
model’s parameters to generate accurate predictions [171]. Overall, computational expense
can be due to lack of training data and computing resources such as memory, GPU, or even
electricity. At the same time, the quality of the training data used to train a language model
is also crucial, as poor quality data or bias in the data can lead to incorrect predictions.
LLMs require massive computational resources to train, fine-tune, and run, which can be a
hindrance for organizations with limited hardware resources [172].

To reduce the computational expense of training LLMs, researchers and developers
can employ various techniques, such as training on subsets of the data [173,174], optimizing
the hyperparameters [175], and leveraging transfer learning to reuse the knowledge learned
from previous tasks. These techniques can help to speed up the training process and reduce
the amount of required computing resources. Instead of training the LLMs continuously,
some works focus on using prompt-learning [176,177] and human feedback [178–182] to
improve performance of the LLMs. In prompt-based learning, the prompt serves as a
guide or prompt to the language model, providing it with relevant context and guidance to
generate an output that is appropriate for a particular task. The prompt can be a simple
sentence or a full paragraph, depending on the complexity of the task and the amount
of information needed to guide the LLMs. One of the main advantages of prompt-based
learning is its flexibility and ease of use. It allows users to quickly fine-tune pre-trained
language models for specific tasks without requiring a large amount of task-specific data.



Entropy 2023, 25, 888 12 of 23

Additionally, prompt-based learning can be used in a semi-supervised or unsupervised
manner, where the prompt provides a small amount of supervision to the language model,
further reducing the necessary amount of task-specific data.

4.2. Quality Measurement

Leveraging LLMs in AI-assisted programming tasks has enormous potential to im-
prove software development efficiency and reduce the time and effort required to write code
manually. However, several challenges need to be addressed to ensure the performance
and effectiveness of LLMs. One of the primary concerns is the quality of the generated code
or documentation [35], which can be impacted by the accuracy and robustness of the LLMs.
While automated code generation can save time, it can also lead to poor-quality code that
is difficult to maintain and may contain bugs or security vulnerabilities [183]. Therefore, it
is critical to ensure that the generated code meets the desired specifications and adheres
to coding standards and best practices [184]. Another significant challenge is integrating
the generated code into existing software systems seamlessly [185], ensuring that it can be
maintained and updated easily over time.

To address these challenges and improve the reliability and quality of LLMs in
AI-assisted programming tasks, researchers and developers are exploring various ap-
proaches and techniques. These include incorporating advanced machine learning and
optimization algorithms [186,187] and developing new tools and frameworks for inte-
grating generated code into existing software systems. Some researchers have attempted
to use Variational Autoencoders [188] or Generative Adversarial Networks [189] to gen-
erate synthetic data that can be used for training LLMs, but they must ensure that the
performance of these generative models is robust and reliable to ensure the quality of the
synthetic data. Meanwhile, it is possible to adopt active learning [190] to improve the
performance of LLMs while requiring fewer labeled training instances. This approach
works by allowing the model to choose the data from which it learns [191], which enables it
to compute the statistically optimal way to select training data while avoiding poor-quality
data, such as buggy codes, that can negatively impact model performance. One of the
significant benefits of incorporating active learning into the training process is that it can
help reduce the time and effort required to label large amounts of data manually, making it
a cost-effective solution for many applications [192]. By selecting the most informative data
points for labeling, active learning can improve the accuracy and robustness of machine
learning models, even when working with limited labeled data. The integration of active
learning with LLMs remains an open question in this field of study. While active learning
has shown promise in improving the performance of machine learning models, including
LLMs, the application of this technique to LLMs has not yet been fully explored.

4.3. Software Security

Software security is a critical concern in the development of the use of LLMs [193].
While LLMs have shown significant promise in a wide range of code-related tasks, they also
introduce unique security challenges that must be addressed to ensure safety and security.
One of the primary security concerns when using LLMs is the potential for these models
to introduce vulnerabilities into the code [194]. For example, poorly designed LLMs may
generate code that is prone to buffer overflow or SQL injection attacks. Another critical
concern is the possibility of LLMs being manipulated or exploited to generate malicious
code that can be used for cyberattacks. For instance, an attacker may use a poisoned
dataset to manipulate an LLM, resulting in the generation of malicious code that can be
used to exploit vulnerabilities in the software system. Also, users without programming
knowledge can generate programs with a Trojan horse phishing attack.

When using LLMs for AI-assisted programming tasks, it is essential to address soft-
ware security to ensure that the generated codes or documents are secure and free from
vulnerabilities, as well as to ensure the integrity of the training data used to train the LLMs.
Code validation and testing involve thorough validation and testing of the generated code



Entropy 2023, 25, 888 13 of 23

before integrating it with real-world systems to identify and fix any security issues. Data
sanitization and validation ensure that the training data are free from malicious code or
sources of bias.

4.4. Software Piracy

Software piracy refers to the unauthorized copying, distribution, or use of copyrighted
software without the permission of the software’s owner [195–197]. This can take many
forms, including making copies of software for personal or commercial use, distributing
software through unauthorized channels, or using software beyond the terms of the licens-
ing agreement. As the field of natural language generation and statistical machine learning
for Big Code and AI-assisted programming continues to grow, concerns over software
piracy have arisen. The use of open source code repositories for training AI models has
led to lawsuits, with companies such as Microsoft and OpenAI accused of software piracy.
The issue at hand is whether the use of open source code for training LLMs violates copy-
right laws. While the legal implications of this issue are still being debated, it is important to
consider the ethical implications as well. The use of copyrighted code without permission
raises questions about fairness and equity in the development of AI-assisted programming
tools [198,199]. Also, the use of user data to train these models raises concerns over privacy
and data protection. As the field continues to evolve, it will be important for researchers
and developers to consider these issues and work towards finding solutions that balance
the benefits of AI-assisted programming with the need for ethical and legal compliance.
This may include clarifying rules around secondary uses of copyrighted code, as well as
developing more transparent and opt-in data policies for training AI models.

To address software piracy, one approach is to ensure that the training data used for
the development of these models are legally obtained and do not violate any copyrights or
intellectual property rights according to the U.S. Copyright Office [200]. Organizations can
also establish clear policies and guidelines for the ethical and legal use of these technologies.
For instance, developers can be required to obtain permission or licenses before using
proprietary code or software in their work. Machine learning algorithms can also be trained
to identify and prevent the unauthorized distribution of copyrighted material and pirated
code or software.

4.5. Integration with Existing Tools

The opportunity to integrate tools and LLMs enhances and streamlines the software
development process. By incorporating LLMs into integrated tools as cloud virtual service
providers [201,202], developers can leverage the power of NLP to automate repetitive tasks,
improve code quality and readability, and increase efficiency in software development.
This integration can enable developers to experiment prompt engineering with public
LLMs under data compliance, data security, data governance and best practices directly
from their own development environment. Copilot for Xcode [203] serves as a real-world
example of an application integrated with LLMs, allowing Apple developers to utilize
GitHub Copilot [144] for code suggestions and ChatGPT [176] for code explanation and
mutation using natural language. The connection between Xcode and Copilot is achieved
by establishing communication between the Xcode source editor extension and the Copilot
server, presenting suggestions in a user interface not handled by Xcode. To obtain additional
information beyond the source code and file type provided by Xcode, the app utilizes the
Accessibility API, which represents objects in a user interface and exposes information
about each object within the application. Furthermore, for in-place code editing, the app
employs the use of Apple Scripts, a scripting language in macOS for task automation,
to programmatically execute extension commands and emulate menu bar interactions.
The details to integrate the Copilot with Xcode are illustrated in Figure 5.

With these workarounds, Copilot for Xcode successfully enables Xcode to support
GitHub Copilot, as shown in Figure 6. In addition, it facilitates the integration of an external
chat panel that can access and read the user’s code. This chat panel serves as a connection



Entropy 2023, 25, 888 14 of 23

point to leverage LLMs for functionalities such as code explanation and mutation using
natural language. The chat panel can also be extended with plugins to offer additional
features, including support for natural language terminal commands. The incorporation
of Copilot into Xcode signifies a notable advancement in AI-powered programming for
iOS/macOS, expanding the capabilities of language models to widely-used mobile software
development tools.

User Copilot for Xcode Xcode GitHub Copilot

Update the code 
(notify through AXObserver)

Fetch additional information 
via Accessibility API

Update the code

Return suggestion

Present suggestion

Accept suggestion

Fetch suggestion

Use Apple Scripts 
to trigger command

Return suggestion

Send request

Figure 5. A sequence diagram of Copilot for Xcode to produce real-time suggestions with GitHub
Copilot. When a user attempts to update their code, the Copilot for Xcode first receives a notification
and sends a request to the GitHub Copilot API. Once the suggestions from GitHub Copilot are
returned, the user can choose to adopt the suggestions and apply the changes directly to Xcode.

(a) Copilot for Xcode displaying suggestions from GitHub Copilot.

(b) Copilot for Xcode displaying the chat panel.

Figure 6. Interface of Copilot for Xcode integrated with Apple Xcode. (a,b) are the actual user
interface tool, where a developer can interact with the GitHub Copilot inside the Xcode.



Entropy 2023, 25, 888 15 of 23

5. Conclusions

This review paper explores the applications of LLMs in software naturalness to gain a
better understanding of software development processes and develop applications that
cater to the human aspects of software development. Firstly, it provides a background on
Big Code and software naturalness, covering topics such as available datasets, tokeniza-
tion processes, existing language models, and entropy-based measurements. Secondly, it
summarizes recent applications of LLMs trained with Big Code in various tasks, including
code generation, code completion, code translation, code refinement, code summarization,
defect detection, and clone detection. Lastly, it discusses the potential challenges and
opportunities associated with LLMs in the context of AI-assisted programming tasks.

Analyzing Big Code repositories and identifying patterns of naturalness can lead to
more effective methods for AI-assisted programming. This can ultimately improve the
quality and productivity of AI-assisted programming, making it easier for programmers to
create high-quality software with fewer errors in less time. In addition to the challenges
faced by LLMs for codes mentioned in this review paper, there are significant opportuni-
ties for future work in the field. These opportunities include exploring the development
of LLMs that prioritize transparency and interpretability, enabling clearer explanations
for code suggestions and bug fixing. Emphasizing the design of AI-assisted program-
ming applications that prioritize fairness, transparency, and privacy is crucial, as current
research tends to focus primarily on performance and efficiency. By pursuing these av-
enues, AI-assisted programming applications can be advanced to be more user-centric,
ethically responsible, and adaptable, ultimately leading to more efficient and effective
programming workflows.

Author Contributions: Conceptualization, M.-F.W. and C.-W.T.; methodology, M.-F.W., S.G., C.-N.H.,
S.-W.H. and C.-W.T.; software: S.G. and C.-W.T.; validation, M.-F.W., S.-W.H. and C.-W.T.; super-
vision, M.-F.W., S.-W.H. and C.-W.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported in part by the Ministry of Education, Singapore, under its Academic
Research Fund (No. 022307 and AcRF RG91/22) and Google Faculty Award.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vechev, M.; Yahav, E. Programming with “Big Code”. Found. Trends® Program. Lang. 2016, 3, 231–284. [CrossRef]
2. Hindle, A.; Barr, E.T.; Su, Z.; Gabel, M.; Devanbu, P. On The Naturalness of Software. In Proceedings of the 34th International

Conference on Software Engineering (ICSE), Zurich, Switzerland, 2–9 June 2012; pp. 837–847.
3. Goodman, J.T. A bit of progress in language modeling. In Computer Speech & Language; Elsevier: Amsterdam, The Netherlands,

2001; pp. 403–434.
4. Dijkstra, E.W. A Preliminary Investigation into Computer Assisted Programming; The University of Texas: Austin, TX, USA, 2007.
5. Rajamani, S. AI Assisted Programming. In Proceedings of the 15th Annual ACM India Compute Conference, Jaipur, India, 9–11

November 2022; p. 5.
6. Dijkstra, E.W. The Humble Programmer. Commun. ACM 1972, 15, 859–866. [CrossRef]
7. Ji, Y.; Bosselut, A.; Wolf, T.; Celikyilmaz, A. The Amazing World of Neural Language Generation. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts, Virtual, 19–20 November 2020; pp. 37–42.
8. Surameery, N.M.S.; Shakor, M.Y. Use ChatGPT to Solve Programming Bugs. Int. J. Inf. Technol. Comput. Eng. (IJITC) 2023,

3, 17–22.
9. Talamadupula, K. Applied AI Matters: AI4Code: Applying Artificial Intelligence to Source Code. AI Matters 2021, 7, 18–20.

[CrossRef]
10. Ross, S.I.; Martinez, F.; Houde, S.; Muller, M.; Weisz, J.D. The Programmer’s Assistant: Conversational Interaction with a Large

Language Model for Software Development. In Proceedings of the 28th International Conference on Intelligent User Interfaces,
Sydney, Australia, 27–31 March 2023; pp. 491–514.

http://doi.org/10.1561/2500000028
http://dx.doi.org/10.1145/355604.361591
http://dx.doi.org/10.1145/3465074.3465080


Entropy 2023, 25, 888 16 of 23

11. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A Survey on Bias and Fairness in Machine Learning. ACM
Comput. Surv. (CSUR) 2021, 54, 1–35. [CrossRef]

12. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics
2019, 8, 832. [CrossRef]

13. Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Netw. Learn.
Syst. 2020, 32, 4793–4813. [CrossRef] [PubMed]

14. Beigi, G.; Liu, H. A Survey on Privacy in Social Media: Identification, Mitigation, and Applications. ACM Trans. Data Sci. 2020,
1, 1–38. [CrossRef]

15. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.
Surv. (CSUR) 2018, 51, 1–37. [CrossRef]

16. Lin, G.; Wen, S.; Han, Q.L.; Zhang, J.; Xiang, Y. Software Vulnerability Detection using Deep Neural Networks: A Survey. Proc.
IEEE 2020, 108, 1825–1848. [CrossRef]

17. Sharma, T.; Kechagia, M.; Georgiou, S.; Tiwari, R.; Vats, I.; Moazen, H.; Sarro, F. A Survey on Machine Learning Techniques for
Source Code Analysis. arXiv 2022, arXiv:2110.09610.

18. Sonnekalb, T.; Heinze, T.S.; Mäder, P. Deep Security Analysis of Program Code: A Systematic Literature Review. Empir. Softw.
Eng. 2022, 27, 2. [CrossRef]

19. Xu, Y.; Zhu, Y. A Survey on Pretrained Language Models for Neural Code Intelligence. arXiv 2022, arXiv:2212.10079.
20. Niu, C.; Li, C.; Luo, B.; Ng, V. Deep Learning Meets Software Engineering: A Survey on Pre-trained Models of Source Code. In

Proceedings of the 31st International Joint Conference on Artificia Intelligence (IJCAI-22), Vienna, Austria, 23–29 July 2022.
21. Ciancarini, P.; Farina, M.; Okonicha, O.; Smirnova, M.; Succi, G. Software as Storytelling: A Systematic Literature Review. Comput.

Sci. Rev. 2023, 47, 100517. [CrossRef]
22. Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting

Methods in Natural Language Processing. ACM Comput. Surv. (CSUR) 2023, 55, 1–35. [CrossRef]
23. Allamanis, M.; Sutton, C. Mining Source Code Repositories at Massive Scale using Language Modeling. In Proceedings of the

10th Working Conference on Mining Software Repositories, San Francisco, CA, USA, 18–19 May 2013; pp. 207–216.
24. Description2Code Dataset. 2016. Available online : https://github.com/ethancaballero/description2code (accessed on 18

May 2023 ).
25. Svajlenko, J.; Roy, C.K. Description2Code Dataset. 2021. Available online: https://github.com/clonebench/BigCloneBench

(accessed on 18 May 2023).
26. Chen, Z.; Monperrus, M. The CodRep Machine Learning on Source Code Competition. arXiv 2018, arXiv:1807.03200.
27. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Mapping Language to Code in Programmatic Context. arXiv 2018,

arXiv:1808.09588.
28. Zhong, V.; Xiong, C.; Socher, R. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning.

arXiv 2017, arXiv:1709.00103.
29. Tufano, M.; Watson, C.; Bavota, G.; Penta, M.D.; White, M.; Poshyvanyk, D. An Empirical Study on Learning Bug-fixing Patches

in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2019, 28, 1–29. [CrossRef]
30. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program

Semantics via Graph Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS
2019), Vancouver, BC, Canada, 8–14 December 2019.

31. Husain, H.; Wu, H.H.; Gazit, T.; Allamanis, M.; Brockschmidt, M. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv 2019, arXiv:1909.09436.

32. Gao, L.; Biderman, S.; Black, S.; Golding, L.; Hoppe, T.; Foster, C.; Phang, J.; He, H.; Thite, A.; Nabeshima, N.; et al. The Pile: An
800GB Dataset of Diverse Text for Language Modeling. arXiv 2020, arXiv:2101.00027.

33. Puri, R.; Kung, D.S.; Janssen, G.; Zhang, W.; Domeniconi, G.; Zolotov, V.; Dolby, J.; Chen, J.; Choudhury, M.; Decker, L.; et al.
CodeNet: A Large-scale AI for Code Dataset for Learning a Diversity of Coding Tasks. arXiv 2021, arXiv:2105.12655.

34. Lu, S.; Guo, D.; Ren, S.; Huang, J.; Svyatkovskiy, A.; Blanco, A.; Clement, C.B.; Drain, D.; Jiang, D.; Tang, D.; et al. CodeXGLUE: A
Machine Learning Benchmark Dataset for Code Understanding and Generation. arXiv 2021, arXiv:2102.04664.

35. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.d.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating Large language Models Trained on Code. arXiv 2021, arXiv:2107.03374.

36. Hendrycks, D.; Basart, S.; Kadavath, S.; Mazeika, M.; Arora, A.; Guo, E.; Burns, C.; Puranik, S.; He, H.; Song, D.; et al. Measuring
Coding Challenge Competence With APPS. arXiv 2021, arXiv:2105.09938.

37. Tunstall, L.; Von Werra, L.; Wolf, T. Natural Language Processing with Transformers; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
38. Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Dal Lago, A.; et al.

Competition-level Code Generation with Alphacode. Science 2022, 378, 1092–1097. [CrossRef]
39. Zan, D.; Chen, B.; Yang, D.; Lin, Z.; Kim, M.; Guan, B.; Wang, Y.; Chen, W.; Lou, J.G. CERT: Continual Pre-training on Sketches for

Library-oriented Code Generation. In Proceedings of the 31st International Joint Conference on Artificia Intelligence (IJCAI-22),
Vienna, Austria, 23–29 July 2022.

40. Fried, D.; Aghajanyan, A.; Lin, J.; Wang, S.; Wallace, E.; Shi, F.; Zhong, R.; Yih, W.t.; Zettlemoyer, L.; Lewis, M. Incoder: A
Generative Model for Code Infilling and Synthesis. arXiv 2022, arXiv:2204.05999.

http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.1109/TNNLS.2020.3027314
http://www.ncbi.nlm.nih.gov/pubmed/33079674
http://dx.doi.org/10.1145/3343038
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1109/JPROC.2020.2993293
http://dx.doi.org/10.1007/s10664-021-10029-x
http://dx.doi.org/10.1016/j.cosrev.2022.100517
http://dx.doi.org/10.1145/3560815
https://github.com/ethancaballero/description2code
https://github.com/clonebench/BigCloneBench
http://dx.doi.org/10.1145/3340544
http://dx.doi.org/10.1126/science.abq1158


Entropy 2023, 25, 888 17 of 23

41. Xu, F.F.; Alon, U.; Neubig, G.; Hellendoorn, V.J. A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming, San Diego, CA, USA, 13 June 2022; pp. 1–10.

42. Khan, M.A.M.; Bari, M.S.; Do, X.L.; Wang, W.; Parvez, M.R.; Joty, S. xCodeEval: A Large Scale Multilingual Multitask Benchmark
for Code Understanding, Generation, Translation and Retrieval. arXiv 2023, arXiv: 2303.03004.

43. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1715–1725.

44. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

45. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
46. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.

LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971.
47. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

48. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You
Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9
December 2017.

49. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Virtual, 5–10 July 2020; pp. 7871–7880.

50. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring The Limits of Transfer
Learning with a Unified Text-to-text Transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

51. Sun, Z.; Zhu, Q.; Xiong, Y.; Sun, Y.; Mou, L.; Zhang, L. Treegen: A Tree-based Transformer Architecture for Code Generation. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 8984–8991.

52. Morin, F.; Bengio, Y. Hierarchical Probabilistic Neural Network Language Model. In Proceedings of the International Workshop
on Artificial Intelligence and Statistics, Bridgetown, Barbados, 6–8 January 2005; pp. 246–252.

53. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. Code2Vec: Learning Distributed Representations of Code; ACM: New York, NY, USA,
2019; Volume 3, pp. 1–29.

54. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.
In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237.

55. Mihalcea, R.; Tarau, P. TextRank: Bringing order into text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Barcelona, Spain, 25–26 July 2004; pp. 404–411.

56. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to Represent Programs with Graphs. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

57. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019.

58. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI
Blog 2019, 1, 9.

59. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

60. Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. 2021. Available online: https:
//github.com/kingoflolz/mesh-transformer-jax (accessed on 18 May 2023).

61. Kitaev, N.; Kaiser, L.; Levskaya, A. Reformer: The Efficient Transformer. In Proceedings of the International Conference on
Learning Representations, Virtual, 26–30 April 2020.

62. Black, S.; Gao, L.; Wang, P.; Leahy, C.; Biderman, S. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-
Tensorflow. 2021. Available online: https://github.com/EleutherAI/gpt-neo (accessed on 18 May 2023).

63. Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 1st ed.; Prentice Hall PTR: Hoboken, NJ, USA, 2000.

64. Bengio, Y.; Ducharme, R.; Vincent, P. A Neural Probabilistic Language Model. In Proceedings of the Advances in Neural
Information Processing Systems 13 (NIPS 2000), Denver, CO, USA, 27 November–2 December 2000.

65. Katz, S. Estimation of Probabilities from Sparse Data for the Language Model Component of a Speech Recognizer. IEEE Trans.
Acoust. Speech Signal Process. 1987, 35, 400–401. [CrossRef]

66. Brown, P.F.; Della Pietra, V.J.; Desouza, P.V.; Lai, J.C.; Mercer, R.L. Class-based N-gram Models of Natural Language. Comput.
Linguist. 1992, 18, 467–480.

67. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/EleutherAI/gpt-neo
http://dx.doi.org/10.1109/TASSP.1987.1165125


Entropy 2023, 25, 888 18 of 23

68. Shannon, C.E. Prediction and Entropy of Printed English. Bell Syst. Tech. J. 1951, 30, 50–64. [CrossRef]
69. Mozannar, H.; Bansal, G.; Fourney, A.; Horvitz, E. Reading Between the Lines: Modeling User Behavior and Costs in AI-Assisted

Programming. arXiv 2022, arXiv:2210.14306.
70. Ho, S.W.; Yeung, R.W. The Interplay between Entropy and Variational Distance. IEEE Trans. Inf. Theory 2010, 56, 5906–5929.

[CrossRef]
71. Kennel, M.B.; Shlens, J.; Abarbanel, H.D.; Chichilnisky, E. Estimating Entropy Rates with Bayesian Confidence Intervals. Neural

Comput. 2005, 17, 1531–1576. [CrossRef]
72. Feutrill, A.; Roughan, M. A Review of Shannon and Differential Entropy Rate Estimation. Entropy 2021, 23, 1046. [CrossRef]

[PubMed]
73. Paninski, L. Estimation of Entropy and Mutual Information. Neural Comput. 2003, 15, 1191–1253. [CrossRef]
74. Waldinger, R.J.; Lee, R.C. PROW: A Step toward Automatic Program Writing. In Proceedings of the 1st International Joint

Conference on Artificial Intelligence, Washington, DC, USA, 7–9 May 1969; pp. 241–252.
75. Manna, Z.; Waldinger, R.J. Toward Automatic Program Synthesis. Commun. ACM 1971, 14, 151–165. [CrossRef]
76. Manna, Z.; Waldinger, R. Knowledge and Reasoning in Program Synthesis. Artif. Intell. 1975, 6, 175–208. [CrossRef]
77. Green, C. Application of Theorem Proving to Problem Solving. In Readings in Artificial Intelligence; Elsevier: Amsterdam, The

Netherlands, 1981; pp. 202–222.
78. Dong, L.; Lapata, M. Language to Logical Form with Neural Attention. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 33–43.
79. Parisotto, E.; Mohamed, A.r.; Singh, R.; Li, L.; Zhou, D.; Kohli, P. Neuro-Symbolic Program Synthesis. arXiv 2016, arXiv:1611.01855.
80. Lin, C.Y.; Och, F.J. Orange: A Method for Evaluating Automatic Evaluation Metrics for Machine Translation. In Proceedings of

the 20th International Conference on Computational Linguistics, Geneva, Switzerland, 23–27 August 2004; pp. 501–507.
81. Austin, J.; Odena, A.; Nye, M.; Bosma, M.; Michalewski, H.; Dohan, D.; Jiang, E.; Cai, C.; Terry, M.; Le, Q.; et al. Program

Synthesis with Large Language Models. arXiv 2021, arXiv:2108.07732.
82. Dong, Y.; Gu, T.; Tian, Y.; Sun, C. SnR: Constraint-based Type Inference for Incomplete Java Code Snippets. In Proceedings of the

44th International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 1982–1993.
83. Amazon, C. AI Code Generator—Amazon CodeWhisperer. Available online: https://aws.amazon.com/codewhisperer (accessed

on 18 May 2023).
84. Robbes, R.; Lanza, M. How Program History Can Improve Code Completion. In Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering, L’aquila, Italy, 15–16 September 2008; pp. 317–326.
85. Bruch, M.; Monperrus, M.; Mezini, M. Learning from Examples to Improve Code Completion Systems. In Proceedings of the 7th

Joint Meeting of The European Software Engineering Conference and The ACM SIGSOFT Symposium on The Foundations of
Software Engineering, Amsterdam, The Netherlands, 24–28 August 2009; pp. 213–222.

86. Svyatkovskiy, A.; Zhao, Y.; Fu, S.; Sundaresan, N. Pythia: Ai-assisted code completion system. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 2727–2735.

87. Takerngsaksiri, W.; Tantithamthavorn, C.; Li, Y.F. Syntax-Aware On-the-Fly Code Completion. arXiv 2022, arXiv:2211.04673.
88. Koehn, P.; Federico, M.; Shen, W.; Bertoldi, N.; Bojar, O.; Callison-Burch, C.; Cowan, B.; Dyer, C.; Hoang, H.; Zens, R.; et al.

Open Source Toolkit for Statistical Machine Translation: Factored Translation Models and Confusion Network Decoding. In
Proceedings of the CLSP Summer Workshop Final Report WS-2006, Baltimore, MD, USA, 1 June–1 August 2007 .

89. Artetxe, M.; Labaka, G.; Agirre, E. Unsupervised Statistical Machine Translation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018.

90. Allamanis, M.; Barr, E.T.; Bird, C.; Sutton, C. Learning Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–21 November 2014; pp. 281–293.

91. Acharya, M.; Xie, T.; Pei, J.; Xu, J. Mining API Patterns as Partial Orders from Source Code: From Usage Scenarios to Specifications.
In Proceedings of the 6th Joint Meeting of The European Software Engineering Conference and The ACM SIGSOFT Symposium
on The Foundations of Software Engineering, Dubrovnikm, Croatia, 3–7 September 2007; pp. 25–34.

92. Jiang, N.; Lutellier, T.; Tan, L. Cure: Code-aware Neural Machine Translation for Automatic Program Repair. In Proceedings of
the IEEE/ACM 43rd International Conference on Software Engineering, Madrid, Spain, 22–30 May 2021; pp. 1161–1173.

93. Zhu, Q.; Sun, Z.; Xiao, Y.a.; Zhang, W.; Yuan, K.; Xiong, Y.; Zhang, L. A Syntax-guided Edit Decoder for Neural Program
Repair. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, 23–28 August 2021; pp. 341–353.

94. Jiang, J.; Xiong, Y.; Zhang, H.; Gao, Q.; Chen, X. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium On Software Testing And Analysis, Amsterdam, The
Netherlands, 16–21 July 2018; pp. 298–309.

95. Liu, K.; Koyuncu, A.; Kim, D.; Bissyandé, T.F. TBar: Revisiting Template-based Automated Program Repair. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, Beijing China, 15–19 July 2019; pp. 31–42.

96. Yuan, Y.; Banzhaf, W. Arja: Automated Repair of Java Programs via Multi-objective Genetic Programming. IEEE Trans. Softw.
Eng. 2018, 46, 1040–1067. [CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
http://dx.doi.org/10.1109/TIT.2010.2080452
http://dx.doi.org/10.1162/0899766053723050
http://dx.doi.org/10.3390/e23081046
http://www.ncbi.nlm.nih.gov/pubmed/34441186
http://dx.doi.org/10.1162/089976603321780272
http://dx.doi.org/10.1145/362566.362568
http://dx.doi.org/10.1016/0004-3702(75)90008-9
https://aws.amazon.com/codewhisperer
http://dx.doi.org/10.1109/TSE.2018.2874648


Entropy 2023, 25, 888 19 of 23

97. Wen, M.; Chen, J.; Wu, R.; Hao, D.; Cheung, S.C. Context-aware patch generation for better automated program repair. In
Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 1–11.

98. Saha, R.K.; Lyu, Y.; Yoshida, H.; Prasad, M.R. Elixir: Effective Object-oriented Program Repair. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, Urbana-Champaign, IL, USA, 30 October–3 November
2017; pp. 648–659.

99. Xiong, Y.; Wang, J.; Yan, R.; Zhang, J.; Han, S.; Huang, G.; Zhang, L. Precise Condition Synthesis for Program Repair. In
Proceedings of the IEEE/ACM 39th International Conference on Software Engineering, Buenos Aires, Argentina, 20–28 May 2017;
pp. 416–426.

100. Xuan, J.; Martinez, M.; Demarco, F.; Clement, M.; Marcote, S.L.; Durieux, T.; Le Berre, D.; Monperrus, M. Nopol: Automatic
Repair of Conditional Statement Bugs in Java Programs. IEEE Trans. Softw. Eng. 2016, 43, 34–55. [CrossRef]

101. Just, R.; Jalali, D.; Ernst, M.D. Defects4J: A Database of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the International Symposium on Software Testing and Analysis, San Jose, CA, USA, 21–25 July 2014; pp. 437–440.

102. Lin, D.; Koppel, J.; Chen, A.; Solar-Lezama, A. QuixBugs: A Multi-lingual Program Repair Benchmark Set Based on The
Quixey Challenge. In Proceedings of the ACM SIGPLAN International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, Vancouver, BC, Canada, 22–27 October 2017; pp. 55–56.

103. Jiang, N.; Liu, K.; Lutellier, T.; Tan, L. Impact of Code Language Models on Automated Program Repair. In Proceedings of the
IEEE/ACM 45th International Conference on Software Engineering, Melbourne, Australia, 14–20 May 2023.

104. Sridhara, G.; Hill, E.; Muppaneni, D.; Pollock, L.; Vijay-Shanker, K. Towards Automatically Generating Summary Comments
for Java Methods. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, Antwerp,
Belgium, 20–24 September 2010; pp. 43–52.

105. Moreno, L.; Aponte, J.; Sridhara, G.; Marcus, A.; Pollock, L.; Vijay-Shanker, K. Automatic Generation of Natural Language
Summaries for Java Classes. In Proceedings of the 21st International Conference on Program Comprehension, San Francisco, CA,
USA, 20–21 May 2013.

106. Sridhara, G.; Pollock, L.; Vijay-Shanker, K. Generating Parameter Comments and Integrating with Method Summaries. In
Proceedings of the IEEE 19th International Conference on Program Comprehension, Kingston, ON, Canada, 22–24 June 2011;
pp. 71–80.

107. Ahmad, W.; Chakraborty, S.; Ray, B.; Chang, K.W. A Transformer-based Approach for Source Code Summarization. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual, 5–10 July 2020; pp. 4998–5007.

108. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing Source Code Using a Neural Attention Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 2073–2083.

109. Allamanis, M.; Peng, H.; Sutton, C. A Convolutional Attention Network for Extreme Summarization of Source Code. In
Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 2091–2100.

110. Chen, Q.; Zhou, M. A Neural Framework for Retrieval and Summarization of Source Code. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018; pp. 826–831.

111. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional Neural Networks Over Tree Structures for Programming Language
Processing. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.

112. Liang, Y.; Zhu, K. Automatic Generation of Text Descriptive Comments for Code Blocks. In Proceedings of the AAAI Conference
on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

113. Tufano, M.; Watson, C.; Bavota, G.; Di Penta, M.; White, M.; Poshyvanyk, D. Deep Learning Similarities From Different
Representations of Source Code. In Proceedings of the 15th International Conference on Mining Software Repositories,
Gothenburg, Sweden, 27 May–3 June 2018.

114. Ou, M.; Cui, P.; Pei, J.; Zhang, Z.; Zhu, W. Asymmetric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016;
pp. 1105–1114.

115. Livshits, B.; Zimmermann, T. Dynamine: Finding Common Error Patterns by Mining Software Revision Histories. ACM SIGSOFT
Softw. Eng. Notes 2005, 30, 296–305. [CrossRef]

116. Wasylkowski, A.; Zeller, A.; Lindig, C. Detecting Object Usage Anomalies. In Proceedings of the 6th Joint Meeting of The
European Software Engineering Conference and The ACM SIGSOFT Symposium on The Foundations of Software Engineering,
Dubrovnik, Croatia, 3–7 September 2007; pp. 35–44.

117. Charniak, E. Statistical Language Learning; MIT Press: Cambridge, MA, USA, 1996.
118. Nessa, S.; Abedin, M.; Wong, W.E.; Khan, L.; Qi, Y. Software Fault Localization Using N-gram Analysis. In Proceedings of the

Wireless Algorithms, Systems, and Applications: 3rd International Conference, Dallas, TX, USA, 26–28 October 2008; pp. 548–559.
119. Wang, S.; Chollak, D.; Movshovitz-Attias, D.; Tan, L. Bugram: Bug Detection with N-gram Language Models. In Proceedings of

the 31st IEEE/ACM International Conference on Automated Software Engineering, Singapore, 3–7 September 2016; pp. 708–719.
120. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y.; De Vel, O.; Montague, P. Cross-project Transfer Representation Learning for

Vulnerable Function Discovery. IEEE Trans. Ind. Inform. 2018, 14, 3289–3297. [CrossRef]
121. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A Deep Learning-based System for Vulnerability

Detection. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA, 18–21
February 2018.

http://dx.doi.org/10.1109/TSE.2016.2560811
http://dx.doi.org/10.1145/1095430.1081754
http://dx.doi.org/10.1109/TII.2018.2821768


Entropy 2023, 25, 888 20 of 23

122. Russell, R.; Kim, L.; Hamilton, L.; Lazovich, T.; Harer, J.; Ozdemir, O.; Ellingwood, P.; McConley, M. Automated Vulnerability
Detection in Source Code Using Deep Representation Learning. In Proceedings of the 17th IEEE International Conference on
Machine Learning and Applications, Orlando, FL, USA, 17–20 December 2018; pp. 757–762.

123. Le, T.; Nguyen, T.; Le, T.; Phung, D.; Montague, P.; De Vel, O.; Qu, L. Maximal Divergence Sequential Autoencoder for Binary
Software Vulnerability Detection. In Proceedings of the International Conference on Learning Representations, New Orleans, LA,
USA, 6–9 May 2019.

124. Chen, Z.; Kommrusch, S.; Tufano, M.; Pouchet, L.N.; Poshyvanyk, D.; Monperrus, M. Sequencer: Sequence-to-sequence Learning
for End-to-end Program Repair. IEEE Trans. Softw. Eng. 2019, 47, 1943–1959. [CrossRef]

125. Gupta, R.; Pal, S.; Kanade, A.; Shevade, S. Deepfix: Fixing Common C Language Errors by Deep Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

126. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Proceedings of the Findings of the Association for Computational Linguistics
(EMNLP 2020), Virtual, 16–20 November 2020; pp. 1536–1547.

127. Buratti, L.; Pujar, S.; Bornea, M.; McCarley, S.; Zheng, Y.; Rossiello, G.; Morari, A.; Laredo, J.; Thost, V.; Zhuang, Y.; et al. Exploring
Software Naturalness through Neural Language Models. arXiv 2020, arXiv:2006.12641.

128. Li, Z.; Lu, S.; Guo, D.; Duan, N.; Jannu, S.; Jenks, G.; Majumder, D.; Green, J.; Svyatkovskiy, A.; Fu, S.; et al. Automating Code
Review Activities by Large-scale Pre-training. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Singapore, 14–18 November 2022; pp. 1035–1047.

129. Bellon, S.; Koschke, R.; Antoniol, G.; Krinke, J.; Merlo, E. Comparison and Evaluation of Clone Detection Tools. IEEE Trans. Softw.
Eng. 2007, 33, 577–591. [CrossRef]

130. Roy, C.K.; Cordy, J.R. A Survey on Software Clone Detection Research. Queen’s Sch. Comput. TR 2007, 541, 64–68.
131. Kontogiannis, K.A.; DeMori, R.; Merlo, E.; Galler, M.; Bernstein, M. Pattern Matching for Clone and Concept Detection. Autom.

Softw. Eng. 1996, 3, 77–108. [CrossRef]
132. Ducasse, S.; Rieger, M.; Demeyer, S. A Language Independent Approach for Detecting Duplicated Code. In Proceedings of the

IEEE International Conference on Software Maintenance, Oxford, UK, 30 August–3 September 1999; pp. 109–118.
133. Baxter, I.D.; Yahin, A.; Moura, L.; Sant’Anna, M.; Bier, L. Clone Detection using Abstract Syntax Trees. In Proceedings of the

International Conference on Software Maintenance, Bethesda, MD, USA, 16–19 November 1998; pp. 368–377.
134. Chen, K.; Liu, P.; Zhang, Y. Achieving Accuracy and Scalability Simultaneously in Detecting Application Clones on Android

Markets. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014;
pp. 175–186.

135. Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C.K.; Lopes, C.V. Sourcerercc: Scaling code clone detection to big-code. In Proceedings of
the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 1157–1168.

136. Yu, H.; Lam, W.; Chen, L.; Li, G.; Xie, T.; Wang, Q. Neural Detection of Semantic Code Clones via Tree-based Convolution. In
Proceedings of the IEEE/ACM 27th International Conference on Program Comprehension, Montreal, QC, Canada, 25–26 May
2019; pp. 70–80.

137. Hu, Y.; Ahmed, U.Z.; Mechtaev, S.; Leong, B.; Roychoudhury, A. Re-factoring based Program Repair applied to Programming
Assignments. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering, San Diego,
CA, USA, 11–15 November 2019; pp. 388–398.

138. Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and Evaluating Contextual Embedding of Source Code. In Proceedings
of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 5110–5121.

139. Liu, F.; Li, G.; Zhao, Y.; Jin, Z. Multi-task Learning Based Pre-trained Language Model for Code Completion. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering, Virtual, 21–25 September 2020; pp. 473–485.

140. Svyatkovskiy, A.; Deng, S.K.; Fu, S.; Sundaresan, N. Intellicode Compose: Code Generation Using Transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual, 8–13 November 2020; pp. 1433–1443.

141. Hellendoorn, V.J.; Sutton, C.; Singh, R.; Maniatis, P.; Bieber, D. Global Relational Models of Source Code. In Proceedings of the
International Conference on Learning Representations, Virtual, 26–30 April 2020.

142. Roziere, B.; Lachaux, M.A.; Chanussot, L.; Lample, G. Unsupervised Translation of Programming Languages. Adv. Neural Inf.
Process. Syst. 2020, 33, 20601–20611.

143. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-training
Code Representations with Data Flow. In Proceedings of the International Conference on Learning Representations, Vienna,
Austria, 3–7 May 2021.

144. Friedman, N. Introducing GitHub Copilot: Your AI Pair Programmer. 2021. Available online: https://github.com/features/
copilot (accessed on 18 May 2023).

145. Wang, Y.; Wang, W.; Joty, S.; Hoi, S.C. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code
Understanding and Generation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Punta
Cana, Dominican Republic, 7–11 November 2021; pp. 8696–8708.

http://dx.doi.org/10.1109/TSE.2019.2940179
http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1007/BF00126960
https://github.com/features/copilot
https://github.com/features/copilot


Entropy 2023, 25, 888 21 of 23

146. Berabi, B.; He, J.; Raychev, V.; Vechev, M. Tfix: Learning to Fix Coding Errors with a Text-to-text Transformer. In Proceedings of
the International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 780–791.

147. Le, H.; Wang, Y.; Gotmare, A.D.; Savarese, S.; Hoi, S. CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning. In Proceedings of the Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New
Orleans, LA, USA, 28 November 2022.

148. Jiang, X.; Zheng, Z.; Lyu, C.; Li, L.; Lyu, L. TreeBERT: A Tree-based Pre-trained Model for Programming Language. In Proceedings
of the Uncertainty in Artificial Intelligence, Virtual, 27–30 July 2021; pp. 54–63.

149. Allamanis, M.; Jackson-Flux, H.; Brockschmidt, M. Self-supervised Bug Detection and Repair. In Proceedings of the Advances in
Neural Information Processing Systems 34 (NeurIPS 2021), Virtual, 6–14 December 2021.

150. Hua, W.; Liu, G. Transformer-based Networks Over Tree Structures for Code Classification. Appl. Intell. 2022, 52, 8895–8909.
[CrossRef]

151. Phan, L.; Tran, H.; Le, D.; Nguyen, H.; Annibal, J.; Peltekian, A.; Ye, Y. CoTexT: Multi-task Learning with Code-Text Transformer.
In Proceedings of the 1st Workshop on Natural Language Processing for Programming, Virtual, 6 August 2021; pp. 40–47.

152. Wang, X.; Wang, Y.; Mi, F.; Zhou, P.; Wan, Y.; Liu, X.; Li, L.; Wu, H.; Liu, J.; Jiang, X. SynCoBERT: Syntax-Guided Multi-Modal
Contrastive Pre-Training for Code Representation. arXiv 2021, arXiv:2108.04556.

153. Kim, S.; Zhao, J.; Tian, Y.; Chandra, S. Code Prediction by Feeding Trees to Transformers. In Proceedings of the IEEE/ACM 43rd
International Conference on Software Engineering, Madrid, Spain, 22–30 May 2021; pp. 150–162.

154. Wang, Y.; Li, H. Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtual, 2–9 February 2021; pp. 14015–14023.

155. Drain, D.; Clement, C.B.; Serrato, G.; Sundaresan, N. Deepdebug: Fixing Python Bugs Using Stack Traces, Backtranslation, and
Code Skeletons. arXiv 2021, arXiv:2105.09352.

156. Ahmad, W.; Chakraborty, S.; Ray, B.; Chang, K.W. Unified Pre-training for Program Understanding and Generation. In
Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Virtual, 6–11 June 2021; pp. 2655–2668.

157. Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.; Zhou, Y.; Savarese, S.; Xiong, C. CodeGen: An Open Large Language Model
for Code with Multi-Turn Program Synthesis. arXiv 2022, arXiv:2203.13474.

158. Lajkó, M.; Csuvik, V.; Vidács, L. Towards Javascript Program Repair with Generative Pre-trained Transformer (GPT-2). In
Proceedings of the 3rd International Workshop on Automated Program Repair, Pittsburgh, PA, USA, 19 May 2022; pp. 61–68.

159. Ye, H.; Martinez, M.; Monperrus, M. Neural Program Repair with Execution-based Backpropagation. In Proceedings of the 44th
International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May 2022; pp. 1506–1518.

160. Xia, C.S.; Zhang, L. Less Training, More Repairing Please: Revisiting Automated Program Repair via Zero-shot Learning. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Singapore, 14–18 November 2022; pp. 959–971.

161. Li, X.; Liu, S.; Feng, R.; Meng, G.; Xie, X.; Chen, K.; Liu, Y. TransRepair: Context-aware Program Repair for Compilation Errors.
In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14
October 2022; pp. 1–13.

162. Chakraborty, S.; Ahmed, T.; Ding, Y.; Devanbu, P.T.; Ray, B. NatGen: Generative Pre-training by “Naturalizing” Source Code. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Singapore, 14–18 November 2022; pp. 18–30.

163. Yang, G.; Chen, X.; Zhou, Y.; Yu, C. Dualsc: Automatic Generation and Summarization of Shellcode via Transformer and Dual
Learning. In Proceedings of the International Conference on Software Analysis, Evolution and Reengineering, Honolulu, HI,
USA, 15–18 March 2022.

164. Fu, M.; Tantithamthavorn, C.; Le, T.; Nguyen, V.; Phung, D. VulRepair: A T5-based Automated Software Vulnerability Repair. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Singapore, 14–18 November 2022; pp. 935–947.

165. Zhang, J.; Panthaplackel, S.; Nie, P.; Li, J.J.; Gligoric, M. CoditT5: Pretraining for Source Code and Natural Language Editing. In
Proceedings of the International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022.

166. Tao, C.; Zhan, Q.; Hu, X.; Xia, X. C4: Contrastive Cross-language Code Clone Detection. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension, Virtual, 16–17 May 2022; pp. 413–424.

167. Niu, C.; Li, C.; Ng, V.; Ge, J.; Huang, L.; Luo, B. SPT-code: Sequence-to-sequence Pre-training for Learning Source Code
Representations. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 25–27 May
2022; pp. 2006–2018.

168. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented Exploit Code Generation based on
CodeBERT. J. Syst. Softw. 2023, 197, 111577. [CrossRef]

169. Allal, L.B.; Li, R.; Kocetkov, D.; Mou, C.; Akiki, C.; Ferrandis, C.M.; Muennighoff, N.; Mishra, M.; Gu, A.; Dey, M.; et al.
SantaCoder: Don’t Reach for the Stars! arXiv 2023, arXiv:2301.03988.

170. Li, R.; Allal, L.B.; Zi, Y.; Muennighoff, N.; Kocetkov, D.; Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; et al. StarCoder: May the
source be with you! arXiv 2023, arXiv:2305.06161.

http://dx.doi.org/10.1007/s10489-021-02894-2
http://dx.doi.org/10.1016/j.jss.2022.111577


Entropy 2023, 25, 888 22 of 23

171. Zhang, M.; He, Y. Accelerating Training of Transformer-based Language Models with Progressive Layer Dropping. Adv. Neural
Inf. Process. Syst. 2020, 33, 14011–14023.

172. Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained Models: Past, Present
and Future. AI Open 2021, 2, 225–250. [CrossRef]

173. Lin, H.; Bilmes, J. How to Select a Good Training-Data Subset for Transcription: Submodular Active Selection for Sequences; Technical
report; Washington University: Washington, DC, USA, 2009.

174. Liang, W.; Zou, J. MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts. In
Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022.

175. Yin, Y.; Chen, C.; Shang, L.; Jiang, X.; Chen, X.; Liu, Q. AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient
Pre-trained Language Models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, Bangkok, Thailand, 1–6 August 2021 ; pp. 5146–5157.

176. OpenAI. CHATGPT: Optimizing Language Models for Dialogue. 2023. Available online: https://online-chatgpt.com/ (accessed
on 16 May 2023).

177. Serban, I.V.; Sankar, C.; Germain, M.; Zhang, S.; Lin, Z.; Subramanian, S.; Kim, T.; Pieper, M.; Chandar, S.; Ke, N.R.; et al. A Deep
Reinforcement Learning Chatbot. arXiv 2017, arXiv:1709.02349.

178. Christiano, P.F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.; Amodei, D. Deep Reinforcement Learning from Human Preferences. In
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

179. Ling, L.; Tan, C.W. Human-assisted Computation for Auto-grading. In Proceedings of the IEEE International Conference on Data
Mining Workshops, Singapore, 17–20 November 2018; pp. 360–364.

180. Ziegler, D.M.; Stiennon, N.; Wu, J.; Brown, T.B.; Radford, A.; Amodei, D.; Christiano, P.; Irving, G. Fine-tuning Language Models
from Human Preferences. arXiv 2019, arXiv:1909.08593.

181. Stiennon, N.; Ouyang, L.; Wu, J.; Ziegler, D.; Lowe, R.; Voss, C.; Radford, A.; Amodei, D.; Christiano, P.F. Learning to Summarize
with Human Feedback. Adv. Neural Inf. Process. Syst. 2020, 33, 3008–3021.

182. Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training
Language Models to Follow Instructions with Human Feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744.

183. Hendler, J. Understanding the Limits of AI coding. Science 2023, 379, 548 . [CrossRef] [PubMed]
184. Chen, B.; Zhang, F.; Nguyen, A.; Zan, D.; Lin, Z.; Lou, J.G.; Chen, W. CodeT: Code Generation with Generated Tests. In

Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022.
185. White, A.D.; Hocky, G.; Ansari, M.; Gandhi, H.A.; Cox, S.; Wellawatte, G.P.; Sasmal, S.; Yang, Z.; Liu, K.; Singh, Y.; et al.

Assessment of Chemistry Knowledge in Large Language Models That Generate Code. Digit. Discov. 2023, 2, 368–376. [CrossRef]
[PubMed]

186. Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 328–339.

187. Wei, J.; Bosma, M.; Zhao, V.; Guu, K.; Yu, A.W.; Lester, B.; Du, N.; Dai, A.M.; Le, Q.V. Finetuned Language Models are Zero-Shot
Learners. In Proceedings of the International Conference on Learning Representations, Virtual, 25–29 April 2022.

188. Kingma, D.P.; Welling, M. Auto-encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
189. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
190. Settles, B. Active Learning Literature Survey; University of Wisconsin: Madison, WI, USA, 2009.
191. Cohn, D.A.; Ghahramani, Z.; Jordan, M.I. Active Learning with Statistical Models. J. Artif. Intell. Res. 1996, 4, 129–145. [CrossRef]
192. Settles, B.; Craven, M.; Friedland, L. Active Learning with Real Annotation Costs. In Proceedings of the NIPS Workshop on

Cost-sensitive Learning, Vancouver, BC, Canada, 8–13 December 2008.
193. He, J.; Vechev, M. Large Language Models for Code: Security Hardening and Adversarial Testing. arXiv 2023, arXiv:2302.05319.
194. Pearce, H.; Ahmad, B.; Tan, B.; Dolan-Gavitt, B.; Karri, R. Asleep at the Keyboard? Assessing the Security of Github Copilot’s

Code Contributions. In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 22–26 May 2022;
pp. 754–768.

195. Peace, A.G.; Galletta, D.F.; Thong, J.Y. Software Piracy in the Workplace: A Model and Empirical Test. J. Manag. Inf. Syst. 2003,
20, 153–177.

196. Reavis Conner, K.; Rumelt, R.P. Software piracy: An Analysis of Protection Strategies. Manag. Sci. 1991, 37, 125–139. [CrossRef]
197. Limayem, M.; Khalifa, M.; Chin, W.W. Factors Motivating Software Piracy: A Longitudinal Study. IEEE Trans. Eng. Manag. 2004,

51, 414–425. [CrossRef]
198. De Laat, P.B. Copyright or Copyleft?: An Analysis of Property Regimes for Software Development. Res. Policy 2005, 34, 1511–1532.

[CrossRef]
199. Kelty, C.M. Culture’s Open Sources: Software, Copyright, and Cultural Critique. Anthropol. Q. 2004, 77, 499–506. [CrossRef]
200. The United States Copyright Office, Library of Congress. Copyright Registration Guidance: Works Containing Material Generated

by Artificial Intelligence. 2023. Available online: https://www.federalregister.gov/d/2023-05321 (accessed on 26 April 2023).
201. Zheng, L.; Joe-Wong, C.; Tan, C.W.; Chiang, M.; Wang, X. How to Bid the Cloud. In Proceedings of the ACM Conference on

Special Interest Group on Data Communication (SIGCOMM), London, UK, 17–21 August 2015; pp. 71–84.

http://dx.doi.org/10.1016/j.aiopen.2021.08.002
https://online-chatgpt.com/
http://dx.doi.org/10.1126/science.adg4246
http://www.ncbi.nlm.nih.gov/pubmed/36758097
http://dx.doi.org/10.1039/D2DD00087C
http://www.ncbi.nlm.nih.gov/pubmed/37065678
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1613/jair.295
http://dx.doi.org/10.1287/mnsc.37.2.125
http://dx.doi.org/10.1109/TEM.2004.835087
http://dx.doi.org/10.1016/j.respol.2005.07.003
http://dx.doi.org/10.1353/anq.2004.0042
https://www.federalregister.gov/d/2023-05321


Entropy 2023, 25, 888 23 of 23

202. Zheng, L.; Joe-Wong, C.; Brinton, C.; Tan, C.W.; Ha, S.; Chiang, M. On the Viability of a Cloud Virtual Service Provider.
In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science,
Antibes Juan–les–Pins, France, 14–18 June 2016; pp. 235-–248.

203. Guo, S. INTITNI/CopilotForXcode: The Missing GitHub Copilot and ChatGPT Xcode Source Editor Extension. Available online:
https://github.com/intitni/CopilotForXcode (accessed on 18 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/intitni/CopilotForXcode

	Introduction
	Background
	Main Big Code Dataset
	Tokenization
	Language Models on Software Naturalness
	Measurement of Language Models with Entropy

	AI-Assisted Programming Tasks
	Code Generation
	Code Completion
	Code Translation
	Code Refinement
	Code Summarization
	Defect Detection
	Clone Detection

	Challenges and Opportunities
	Computational Expense
	Quality Measurement
	Software Security
	Software Piracy
	Integration with Existing Tools

	Conclusions
	References

