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Abstract: Evidence theory (TE), based on imprecise probabilities, is often more appropriate than the
classical theory of probability (PT) to apply in situations with inaccurate or incomplete information.
The quantification of the information that a piece of evidence involves is a key issue in TE. Shannon’s
entropy is an excellent measure in the PT for such purposes, being easy to calculate and fulfilling a
wide set of properties that make it axiomatically the best one in PT. In TE, a similar role is played by
the maximum of entropy (ME), verifying a similar set of properties. The ME is the unique measure
in TE that has such axiomatic behavior. The problem of the ME in TE is its complex computational
calculus, which makes its use problematic in some situations. There exists only one algorithm
for the calculus of the ME in TE with a high computational cost, and this problem has been the
principal drawback found with this measure. In this work, a variation of the original algorithm is
presented. It is shown that with this modification, a reduction in the necessary steps to attain the ME
can be obtained because, in each step, the power set of possibilities is reduced with respect to the
original algorithm, which is the key point of the complexity found. This solution can provide greater
applicability of this measure.

Keywords: belief functions; uncertainty measures; maximum of entropy

1. Introduction

Managing uncertainty is essential for making decisions. Evidence theory (TE), also
known as the Dempster–Shafer theory [1,2], is widely employed to handle uncertainty-
based information in practical applications such as medical diagnosis [3], statistical classi-
fication [4], target identification [5], face recognition [6], or risk management [7,8]. TE is also
commonly utilized to fuse information from different sources [9–11], a crucial issue for
decision making.

Evidence theory extends classical Probability Theory (PT). It is based on the basic
probability assignment concept (b.p.a.), a generalization of the concept of the probability
distribution in PT. Each b.p.a. in TE has a belief function and a plausibility function
associated with it. The belief (plausibility) value of a set is the minimum (maximum)
support of information represented by the b.p.a. on that set.

In TE, it is essential to quantify the uncertainty-based information represented by a
b.p.a. For this purpose, many uncertainty measures in TE have been proposed so far. The
starting point of most of them is the Shannon entropy [12], a well-established uncertainty
measure in PT that satisfies a large set of properties.

As TE generalizes PT, there are more types of uncertainty in TE than in PT. As pointed
out by Yager [13], two types of uncertainty appear in TE. The first one, called conflict, arises
when the information focuses on disjoint sets. The second type, known as non-specificity,
appears when the information has a cardinality greater than or equal to two. Hence, a total
uncertainty measure in TE must capture both the conflict and non-specificity.

Klir and Weirman [14] carried out a study concerning the set of mathematical proper-
ties that have to be verified by every uncertainty measure in TE. Such a study was extended
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by Abellán and Masegosa [15]. They also analyzed the behavioral requirements that a total
uncertainty measure in TE must satisfy. The maximum entropy on the closed and convex
set of probability distributions (credal set) compatible with a b.p.a., proposed in [16], is
the only total uncertainty measure in TE so far that verifies all the crucial mathematical
properties and behavioral requirements.

However, the algorithms proposed so far in [16,17] to compute the maximum entropy
of the credal set associated with a b.p.a. are notably complex. For this reason, in recent years,
many alternative measures to the maximum entropy have been introduced. Nonetheless,
none of these measures verifies all the required mathematical properties and behaviors for
uncertainty measures in TE [18–20]. This is the principal reason for the lack of consensus
on the use of uncertainty measures in TE: the ME has an optimal axiomatic behavior but a
high complexity of calculus, and more recent ones have had worse axiomatic behavior but
a low complexity of calculus.

It must be remarked that the ME has been used with excellent results in practical
applications, such as in the data mining area. Its use on special types of belief functions
can be of different complexity, and its calculus is immediate. We can find examples of this
in [21–24].

An approximation to the maximum entropy on the credal set associated with a b.p.a.
was proposed in [25]. Such an approximation consisted of the maximum entropy on the
credal set consistent with the belief intervals for singletons, where the lower and upper
bounds were, respectively, the belief and plausibility values on singletons. Even though
this measure satisfied all the crucial mathematical properties and behavioral requirements,
when the belief intervals for singletons are employed to represent the uncertainty-based
information instead of the corresponding b.p.a., some information could be lost because
the credal set consistent with a b.p.a. is always contained in the one compatible with the
associated belief intervals for singletons [25]. In consequence, this uncertainty measure
indicated more uncertainty than the one represented by a b.p.a.

In this research, we propose a variation of the algorithm for computing the maximum
entropy on the credal set compatible with a b.p.a. We demonstrate that our proposed
procedure involves less computational time than the algorithms developed so far for the
maximum entropy on the credal set corresponding to a b.p.a. With our proposal, fewer
steps are necessary to achieve the probability distribution of maximum entropy on the
credal set consistent with a b.p.a. This is shown via some numerical examples and with an
experimentation over a huge set of b.p.a. functions randomly generated. The reduction
in the computational time of our proposed algorithm makes this measure (maximum of
entropy) more suitable for use in practical applications.

The remainder of this paper is structured as follows: Section 2 describes evidence
theory, the main uncertainty measures proposed so far in evidence theory, and the algorithm
developed so far to compute the maximum entropy on the credal set consistent with a
basic probability assignment. Our proposed procedure and different examples of its use,
compared with the original one, are presented in Section 3. Moreover, in that section, we
present an experiment showing the gains in the time of computing obtained with the new
improved algorithm compared with the original one. Concluding remarks and ideas for
future work are given in Section 4.

2. Background

Let X = {x1, . . . , xt} be a finite set of possible alternatives, also known as the frame of
discernment. Let ℘(X) denote the power set of X.

2.1. Theory of Evidence

Evidence theory (TE), also known as the Dempster–Shafer theory [1,2], is based on the
concept of a basic probability assignment (b.p.a.). A b.p.a. is a mapping m : ℘(X) → [0, 1],
satisfying m(∅) = 0 and ∑A⊆X m(A) = 1.

If A ⊆ X verifies that m(A) > 0, A is said to be a focal element of m.
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A given b.p.a. m on X has a belief function Belm and a plausibility function Plm associated
with it. Such functions are defined as follows:

Belm(A) = ∑
B|B⊆A

m(B), Plm(A) = ∑
B|B∩A 6=∅

m(B), ∀A ⊆ X. (1)

We may note that for each A ⊆ X, Belm(A) ≤ Plm(A). The interval [Belm(A), Plm(A)]
is called the belief interval of A ∀A ⊆ X. In addition,

Plm(A) = 1− Belm(A), ∀A ⊆ X, (2)

where A denotes the complement of A. Thereby, Belm and Plm are called dual or conjugate.
One of them is sufficient for representing the uncertainty-based information in TE. For this
purpose, Belm is often utilized.

For a given b.p.a. m on X, the set of probability distributions compatible with it (a
closed and convex set of probability distributions, also called a credal set) is given by:

Pm = {p ∈ P(X) | Belm(A) ≤ p(A) ∀A ⊆ X}, (3)

where P(X) is the set of all probability distributions on X.

2.2. Uncertainty Measures in Evidence Theory

The Shannon entropy [12] is a well-established uncertainty measure in probability
theory. For a probability distribution p on X, the Shannon entropy is defined as follows:

S(p) =
t

∑
i=1
−p({xi}) log2(p({xi})). (4)

The type of uncertainty measured by S is called conflict. It is the only type of conflict
present in probability theory. It satisfies a set of desirable properties [12,14].

In classical possibility theory, the Hartley measure [26] is a well-established uncertainty
measure. It is defined in the following way:

H(A) = log2(|A|), ∀A ∈ ℘(X). (5)

The type of uncertainty measured by H, the only one existing in possibility theory, is
known as non-specificity.

As pointed out by Yager [13], conflict and non-specificity coexist in TE; conflict appears
when the information is focused on disjoint sets, while non-specificity arises when the
information resides in sets with a cardinality greater than one.

A generalization of the Hartley measure to TE was introduced by Dubois and Prade
in [27]. It is given by:

GH(m) = ∑
A⊆X

m(A) log2(|A|). (6)

GH reaches its minimum value, 0, when m is a probability distribution, and the maximum
value of GH, log2(t), is attained when m(X) = 1. GH is an appropriate non-specificity
measure in TE that satisfies desirable properties. Moreover, it is easily extensible to more
general theories than TE [28].

Several attempts to generalize the Shannon entropy to TE have been proposed, but
none of them has satisfied all the essential requirements for this type of measure in TE:
probability consistency, set consistency, range, additivity, subadditivity, and monotonic-
ity [15].

Next, a total uncertainty measure in TE that quantified both the conflict and non-
specificity was proposed. Such a measure, developed by Harmanec and Klir [16], is the
maximum entropy on the credal set consistent with the b.p.a. m, Pm, determined via
Equation (3). It is denoted by S∗(Pm). This measure is suitable for quantifying uncertainty
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in TE because it is the only one so far that satisfies all necessary mathematical properties
and behavioral requirements for uncertainty measures in TE.

Nevertheless, the algorithms proposed so far in [16,17] for computing S∗(Pm) (also
noted in the literature as S∗(Bel) or S∗(Belm), where all the expressions have the same
meaning: the maximum of entropy over all the probability distributions associated with a
b.p.a. m), are very complex. For this reason, in recent years, many alternative measures to
S∗(Pm) have been proposed.

For instance, the Deng entropy was presented in [18,29–31]. It was defined in the
following way:

Ed(m) = − ∑
A⊆X

m(A) log2

(
m(A)

2|A| − 1

)
= ∑

A⊆X
m(A) log2

(
2|A| − 1

)
− ∑

A⊆X
m(A) log2 (m(A)). (7)

In Equation (7), the first term captures the non-specificity, while the second one
quantifies the conflict part. The idea of this measure is that there must be more uncertainty
as the number of alternatives increases. However, the Deng entropy violates most of the
required mathematical properties for the uncertainty measures in TE, and its behavior in
many cases is problematic [19].

The basis for some recent uncertainty measures in TE is the plausibility transformation [32,33],
defined in the following way:

Pt(xi) =
Plm({xi})

∑t
j=1 Plm

({
xj
}) , ∀i = 1, . . . , t. (8)

Jirousek and Shenoy [34] introduced a new uncertainty measure consisting of the sum
of the GH and the Shannon entropy of the plausibility transformation:

HJS(m) = GH(m)−
t

∑
i=1

Pt(xi) log2 (Pt(xi)). (9)

The first term of Equation (9) captures the conflict, whereas the second one corresponds
to the non-specificity.

In [35], an uncertainty measure also based on the plausibility transformation was
proposed. It is defined as follows:

HPQ(m) = − ∑
A⊆X

m(A) log2 (Pm(A)) + GH(m), (10)

where for each A ⊆ X, m(A) = ∑x∈A Pt(x). The first term quantifies the conflict, while the
second one captures the non-specificity.

As shown in [25], the HJS does not satisfy all the required mathematical properties for
the uncertainty measures in TE. The same situation occurs with the HPQ.

Let us consider the set of belief intervals for singletons associated with m:

Im = {[Belm({xi}), Plm({xi})] i = 1, . . . , t}. (11)

The uncertainty measure proposed in [36] combines the Deng entropy with the belief
intervals for singletons. It is defined as:

Hinter(m) =− ∑
x∈X

Belm({x}) + Plm({x})
2

× log2

[
Belm({x}) + Plm({x})

2
× exp(−(Plm({x})− Belm({x})

]
− ∑

A⊆X||A|≥2
m(A)× log2

[
m(A)

2|A| − 1
exp(−(Plm(A)− Belm(A)))

]
.

(12)
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In Equation (12), the first term captures the conflict, and the second one quantifies the
non-specificity. As demonstrated in [25], the measure also does not satisfy all the crucial
mathematical properties for the uncertainty measures in TE.

Let P(Im) denote the credal set consistent with the belief intervals for singletons
associated with m. It is determined by:

P(Im) = {p ∈ P(X) | Belm({xi}) ≤ p({xi}) ≤ Plm({xi}), ∀i = 1, . . . , t}, (13)

with P(X) being the set of all probability distributions on X.
In [25], an uncertainty measure that consists of the maximum entropy on the credal

set given in Equation (13) was proposed:

S∗(P(Im)) = max
p∈P(Im)

S(p). (14)

S∗(P(Im)) verified all the essential mathematical properties and behavioral require-
ments for uncertainty measures in TE, as demonstrated in [25].

Nevertheless, it always holds that Pm ⊆ P(Im). Consequently, using Im rather than
m to represent uncertainty may imply some loss of information. Therefore, S∗(P(Im))
might indicate more uncertainty than the one involved in m. The principal advantage of
the use of the maximum entropy in this case is the notable reduction in the complexity
though this implies a possible loss of information.

2.3. Algorithm to Compute the Maximum Entropy

For the calculation of the maximum entropy, it is necessary to solve a nonlinear
optimization problem. To solve this issue, Meyerowitz et al. [17] proposed an algorithm
for the calculation of the maximum entropy given a belief function. The algorithm follows
these steps:

Input: A belief function Bel on the frame of discernment X.

1. Find a nonempty set A ∈ ℘(X), such that Bel(A)
|A| is maximal. If there exists more than

one set A that attains that maximal, choose the one with maximal cardinality.
2. For x ∈ A, put px = Bel(A)

|A| .

3. For each B ∈ ℘(X \ A), put Bel′(B) = Bel(B ∪ A)− Bel(A).
4. Put X = X \ A.
5. If X 6= ∅ and Bel′(X) > 0, then go to Step 1.
6. If Bel(X) = 0 and X 6= ∅, then put px = 0, ∀x ∈ X.
7. Calculate S∗(Bel) = −∑x∈X px log2 px.

Meyerowitz et al.’s algorithm provides a process for taking the probabilities that
maximize the Shannon entropy, starting from a given belief function. This algorithm has a
complexity of 2|X| because in each iteration it is necessary to check which set maximizes
Bel(A)
|A| , ∀A ⊆ X.

3. A Computational Improvement of Meyerowitz et al.’s Algorithm

In the following, we present the improvement of Meyerowitz et al.’s algorithm. For
this new procedure, we need to define an accumulator variable (acu), which we initialize by
taking acu = 1; this variable can be considered as the probability to be distributed among
the elements of the frame of discernment X. The algorithm follows these steps:

Input: A belief function Bel on the frame of discernment X.

1. Find a nonempty set A ∈ ℘(X), such that Bel(A)
|A| is maximal. If there exists more than

one set A that attains that maximal, choose the one with maximal cardinality.
2. Find a nonempty set B ∈ ℘(X), such that Bel(B)

|B| is minimal. If there exists more than
one set B that attains that minimal, choose the one with minimal cardinality.

3. For x ∈ A, put px = Bel(A)
|A| .
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4. For each y ∈ B, put py = Pl(B)
|B| .

5. Put acu = acu− Bel(A)− Pl(B).
6. For each C ∈ ℘(X \ {A ∪ B}), put Bel′(C) = Bel(C ∪ A)− Bel(A).
7. Put X = X \ {A ∪ B}.
8. For each C ∈ ℘(X), put Pl′(C) = acu− Bel′(C).
9. If X 6= ∅ and X 6= ∅, then go to the first step.
10. If Bel(X) = 0 and X 6= 0, then put px = 0, ∀x ∈ X.
11. Calculate S∗(Bel) = −∑x∈X px log2 px.

Note that, for steps 1 and 2, the same set of subsets is used. We note this characteristic
because it is important: we only need to calculate and use once the power set of X. We
observe that the cardinality of the resulting frame of discernment is reduced more than in
the original algorithm. We must remember that the use of the powerset of the frame of
discernment is the principal drawback found in the original algorithm. Hence, if the size of
such a set is reduced, it is obvious that we can gain time for the calculus of that measure.

3.1. Justification

The idea behind this algorithm is based on the use of the property Pl(A) = 1 −
Bel(A) ∀A ∈ ℘(X), which relates the belief and plausibility functions. To achieve this,
we take the original algorithm as a starting point. Let Ai (i ∈ {1, . . . , n}) be ordered disjoint
sets, obtained after n iterations of Meyerowitz et al.’s algorithm. These sets are those that
verify that Bel(A)

|A| is maximal at each iteration of the algorithm (for simplicity, we assume
that px 6= 0 : x ∈ An. In the case where this is not satisfied, we consider the sets Ai with
1 ≤ i ≤ n− 1).

Within the algorithm, we defined the function Bel′(B) = Bel(B ∪ A1) − Bel(A1)
∀B ⊆ X \ A. Now, our goal is to find a way to relate successive iterations of the function
Bel to the function Pl. For this purpose, the following expression was proposed, where
Beln is the belief function at the n-th iteration of the original algorithm:

Beln(An+1) = Bel(∪n+1
i=1 Ai)− Bel(∪n

i=1 Ai). (15)

To proove the correctness of this equation, we give the following property.

Proposition 1. Let Bel and Beln be the belief functions in the first and last iteration of Meyerowitz
et al.’s algorithm, respectively. Then, the following is verified.

Beln(An+1) = Bel(∪n+1
i=1 Ai)− Bel(∪n

i=1 Ai). (16)

Proof. We use induction to prove the equality:

• For n = 1:
Bel′(A2) = Bel(A2 ∪ A1)− Bel(A1). (17)

• For n = 2:

Bel2(A3) = Bel′(A3 ∪ A2)− Bel′(A2),

Bel2(A3) = Bel(A3 ∪ A2 ∪ A1)− Bel(A1)− Bel(A2 ∪ A1) + Bel(A1),

Bel2(A3) = Bel(A3 ∪ A2 ∪ A1)− Bel(A2 ∪ A1).

(18)

• Now, we assume true for n, then
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Beln+1(An+2) = Beln(An+2 ∪ An+1)− Beln(An+1)

= Beln(An+2 ∪ An+1)− Bel(∪n+1
i=1 Ai) + Bel(∪n

i=1 Ai)

= Beln−1(An+2 ∪ An+1 ∪ An)− Beln−1(An)− Bel(∪n+1
i=1 Ai) + Bel(∪n

i=1 Ai)

= Beln−1(An+2 ∪ An+1 ∪ An)− Bel(∪n
i=1 Ai) + Bel(∪n−1

i=1 Ai)

− Bel(∪n+1
i=1 Ai) + Bel(∪n

i=1 Ai)

= Beln−1(An+2 ∪ An+1 ∪ An) + Bel(∪n−1
i=1 Ai)− Bel(∪n+1

i=1 Ai)

. . .

= Bel′(∪n+2
i=2 Ai) + Bel(A1)− Bel(∪n+1

i=1 Ai)

= Bel(∪n+2
i=1 Ai)− Bel(A1) + Bel(A1)− Bel(∪n+1

i=1 Ai)

= Bel(∪n+2
i=1 Ai)− Bel(∪n+1

i=1 Ai).

(19)

Hence, it is verified for n + 1.

Meyerowitz et al.’s algorithm ends after a finite number of steps; in our case, we will
say n. Therefore, in the last iteration, we would obtain that Beln−1(An) was the last set for
which the probability was calculated. So, if we apply Equation (17), we obtain:

Beln−1(An) = Bel(∪n
i=1 Ai)− Bel(∪n−1

i1 Ai)

= 1− Bel(∪n−1
i1 Ai)

= Pl(An).

(20)

Having established this new relationship, we must take into account that, to implement
it in the algorithm, it is necessary to take the minimum of the plausibility functions. This is
because the relationship is between the original plausibility function and the belief function
at the n-th iteration, which is the smallest of all.

The next step is to know how the successive plausibility functions are calculated over
the iterations of the algorithm and how this affects the calculation of Bel′. For this purpose,
the following property is stated.

Proposition 2. The calculation of Bel′ and Pl′ follows the following equation:

Bel′(C) = Bel(C ∪ A1)− Bel(A1), ∀C ⊆ X \ {A1 ∪ An}. (21)

Proof. We begin by studying what happens to the function Bel′.
For the calculation of the function Bel′, we do not take into account the set An; this

was excluded and not taken into account in the following iterations.
We have to study how the function Pl′ is calculated. For this purpose, we use

Equation (15).
Considering the sets Ai with 2 ≤ i ≤ n− 1, we have:

Beln−2(An−1) = Bel′(∪n−1
i=2 Ai)− Bel′(∪n−2

i=2 Ai). (22)

In the improvement of the algorithm, we defined Bel′(∪n−1
i=2 Ai) = acu. Hence, making

use of (15), we have:

Beln−2(An−1) = acu− Bel′(∪n−2
i=2 Ai). (23)

In addition, since the set Ai : i ∈ {1, . . . , n} is disjoint, and we defined the new frame
of discernment as X \ {A1 ∪ An}, we have that the set ∪n−2

i=2 Ai = An−1. Therefore, we
obtain:
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Pl′(An−1) = acu− Bel′(∪n−2
i=2 Ai). (24)

3.2. Example 1

Given the frame of discernment X = {a, b, c, d}, if we take the belief function Bel
defined by the following basic probability assignment m (see [14]), then:

m({a}) = 0.26

m({b}) = 0.26

m({c}) = 0.26

m({a, b}) = 0.07

m({a, c}) = 0.01

m({a, d}) = 0.01

m({b, c}) = 0.01

m({b, d}) = 0.01

m({c, d}) = 0.01

m({a, b, c, d}) = 0.1

• Meyerowitz et al.’s algorithm

– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {a, b}. So, we have pa = pb = 0.295. Now, we update the function Bel, and
as X = {c, d}, and there are sets whose function Bel is nonzero, we need a second
iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {c}. Thereby, it holds that pc = 0.28. Now, we update the function Bel, and
since X = {d}, and there are sets whose function Bel is nonzero, we need a third
iteration.

– Third iteration: For this last iteration, we have that X = {d}, and we have that
Bel({d}) = pd = 0.13. With this, we arrive at X = ∅; so, we can now calculate
S∗(Bel).
Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈{a,b,c,d}

pi log2 pi

=− 2× 0.295 log2(0.295)− 0.28 log2(0.28)− 0.13 log2(0.13)

=1.93598.

(25)

• Improvement of Meyerowitz et al.’s algorithm

– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {a, b}. Therefore, we have pa = pb = 0.295. Now, we see the minimum
value of Pl(B)

|B| ∀B ⊆ X, which in this case is B = {d}, and we have pd = 0.13. We
update the value of acu = 0.28, the function Bel, and the function Pl, and since
X = {c}, and there are sets whose function Bel is nonzero, we need a second
iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {c}. So, it is satisfied that pc = 0.28. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is the same that we obtained for A, B = {c}, and

we have pc = 0.28. With this we arrive at X = ∅. Now, we can calculate S∗(Bel).
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Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈{a,b,c,d}

pi log2 pi

=− 2× 0.295 log2(0.295)− 0.28 log2(0.28)− 0.13 log2(0.13)

=1.93598.

(26)

In this example, we reduced one step, i.e., we needed the calculus of the power set one
time less. In this case, we can observe that the probability distribution where the maximum
of entropy was attained, was very close to the initial mass values of the singletons. Hence,
the original algorithm needed little effort to find that maximum. Thus, the improvement
with the new algorithm was not large.

3.3. Example 2

Given the frame of discernment X = {a, b, c, d, e, f }, we take the belief function Bel
defined by the following basic probability assignment m:

m({a}) = 0.25,

m({a, b}) = 0.18,

m({a, b, c}) = 0.16,

m({a, b, c, d}) = 0.15,

m({a, b, c, d, e}) = 0.14,

m({a, b, c, d, e, f }) = 0.12.

• Meyerowitz et al.’s algorithm

– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for A = {a}.

So, we have pa = 0.25. Now, we update the function Bel, and as X = {b, c, d, e, f },
and there are sets whose function Bel is nonzero, we need a second iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {b}. Thereby, it holds that pb = 0.18. Now, we update the function Bel, and
since X = {c, d, e, f }, and there are sets whose function Bel is nonzero, we need a
third iteration.

– Third iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {c}. In this way, we have pc = 0.16. Now, we update the function Bel, and
as X = {d, e, f }, and there are sets whose function Bel is non-zero, we need a
fourth iteration.

– Fourth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {d}. Hence, it is satisfied that pd = 0.15. Now, we update the function Bel,
and since X = {e, f }, and there are sets whose function Bel is nonzero, we need a
fifth iteration.

– Fifth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {e}. Consequently, it holds that pe = 0.14. Now, we update the function
Bel, and as X = { f }, and there are sets whose function Bel is nonzero, we need a
sixth iteration.

– Sixth iteration: For this last iteration, we have X = { f }, and we have Bel({ f }) =
p f = 0.12. With this, we arrive at X = ∅; so, we can now calculate S∗(Bel).
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Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈{a,b,c,d,e, f }

pi log2 pi

=− 0.25 log2(0.25)− 0.18 log2(0.18)− 0.16 log2(0.16)

− 0.15 log2(0.15)− 0.14 log2(0.14)− 0.12 log2(0.12)

=2.5430.

(27)

• Improvement of Meyerowitz et al.’s algorithm

– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {a}. Therefore, we have pa = 0.25. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is B = { f }, and we have that p f = 0.12. We

update the value of acu = 0.63, the function Bel, and the function Pl, and since
X = {b, c, d, e}, and there are sets whose function Bel is nonzero, we need a
second iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {b}. So, it is satisfied that pb = 0.18. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is B = {e}, and we have that pe = 0.14. We

update the value of acu = 0.31, the function Bel, and the function Pl, and as
X = {c, d}, and there are sets whose function Bel is nonzero, we need a third
iteration.

– Third iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {c}. Thus, we have pc = 0.16. Now, we see the minimum value of Pl(B)
|B| ∀B ⊆

X, which in this case is B = {d}, and we have that pd = 0.15. With this, we arrive
at X = ∅. Now, we can calculate S∗(Bel).
Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈{a,b,c,d,e, f }

pi log2 pi

=− 0.25 log2(0.25)− 0.18 log2(0.18)− 0.16 log2(0.16)

− 0.15 log2(0.15)− 0.14 log2(0.14)− 0.12 log2(0.12)

=2.5430.

(28)

In this example, we reduced the number of steps to the middle one. This example
used a b.p.a. with no conflict because all the focal sets shared an element.

3.4. Example 3

Given the frame of discernment X = {a, b, c, d, e, f , g, h}, we take the belief function
Bel defined by the following basic probability assignment m:

m({a}) = 0.23,

m({g}) = 0.05,

m({a, b}) = 0.21,

m({g, h}) = 0.02,

m({a, b, c}) = 0.18,

m({a, b, c, d}) = 0.13,

m({a, b, c, d, e}) = 0.1,

m({a, b, c, d, e, f }) = 0.08.

• Meyerowitz et al.’s algorithm
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– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {a}. So, we have pa = 0.23. Now, we update the function Bel, and as
X = {b, c, d, e, f , g, h}, and there are sets whose function Bel is nonzero, we need
a second iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {b}. Thereby, it holds that pb = 0.21. Now, we update the function Bel, and
since X = {c, d, e, f , g, h}, and there are sets whose function Bel is nonzero, we
need a third iteration.

– Third iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {c}. In this way, we have pc = 0.18. Now, we update the function Bel, and
as X = {d, e, f , g, h}, and there are sets whose function Bel is nonzero, we need a
fourth iteration.

– Fourth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {d}. Hence, it is satisfied that pd = 0.13. Now, we update the function Bel,
and since X = {e, f , g, h}, and there are sets whose function Bel is nonzero, we
need a fifth iteration.

– Fifth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {e}. Consequently, it holds that pe = 0.1. Now, we update the function Bel,
and as X = { f , g, h}, and there are sets whose function Bel is nonzero, we need a
sixth iteration.

– Sixth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = { f }. In this way, we have p f = 0.08. Now, we update the function Bel,
and as X = {g, h}, and there are sets whose function Bel is nonzero, we need a
seventh iteration.

– Seventh iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {g}. Hence, it is satisfied that pg = 0.05. Now, we update the function Bel,
and as X = {h}, and there are sets whose function Bel is nonzero, we need a
eighth iteration.

– Eighth iteration:
For this last iteration, we have X = {h}, and we have Bel({h}) = ph = 0.02.
With this, we arrive at X = ∅; so, we can now calculate S∗(Bel).
Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈X

pi log2 pi

=− 0.23 log2(0.23)− 0.21 log2(0.21)− 0.18 log2(0.18)

− 0.13 log2(0.13)− 0.1 log2(0.1)− 0.08 log2(0.08)

− 0.05 log2(0.05)− 0.02 log2(0.02)

=2.74112.

(29)

• Improvement of Meyerowitz et al.’s algorithm

– First iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {a}. Therefore, we have pa = 0.23. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is B = {h}, and we have ph = 0.02. We

update the value of acu = 0.75, the function Bel, and the function Pl, and since
X = {b, c, d, e, f , g}, and there are sets whose function Bel is nonzero, we need a
second iteration.

– Second iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is attained for

A = {b}. So, it is satisfied that pb = 0.21. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is B = {g}, and we have that pg = 0.05. We

update the value of acu = 0.49, the function Bel, and the function Pl, and as
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X = {c, d, e, f }, and there are sets whose function Bel is nonzero, we need a third
iteration.

– Third iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {c}. Thus, we have pc = 0.18. Now, we see the minimum value of Pl(B)
|B| ∀B ⊆

X, which in this case is B = { f }, and we have that p f = 0.08. We update the
value of acu = 0.23, the function Bel, and the function Pl, and as X = {d, e}, and
there are sets whose function Bel is nonzero, we need a fourth iteration.

– Fourth iteration: The maximum of the function Bel(A)
|A| ∀A ⊆ X is reached for

A = {d}. Thus, we have pd = 0.13. Now, we see the minimum value of
Pl(B)
|B| ∀B ⊆ X, which in this case is B = {e}, and we have pe = 0.1. With this we

arrive at X = ∅. Consequently, we can now calculate S∗(Bel).
Now, we proceed to the calculation of the maximum entropy:

S∗(Bel) =− ∑
i∈X

pi log2 pi

=− 0.23 log2(0.23)− 0.21 log2(0.21)− 0.18 log2(0.18)

− 0.13 log2(0.13)− 0.1 log2(0.1)− 0.08 log2(0.08)

− 0.05 log2(0.05)− 0.02 log2(0.02)

=2.74112.

(30)

Again, in this example we needed the middle steps to find the maximum of entropy.
In this case, we used a b.p.a. with conflict. Clearly, the greater the |X|, the greater the
improvement.

3.5. Experiments

We carried out a series of experiments generating b.p.a.s on sets of n = 4, n = 5, and
n = 6 elements (sizes of the frames of discernment), to examine the time of processing of
both algorithms: the original and the improved ones. We implemented both algorithms in
C++ programming language and ran them in a computer with an Intel Core i5 processor, a
CPU of 1.8 GHz, and 8 G of RAM. Each b.p.a. was randomly generated with assigned mass
values with the constraint that none of them was above 0.5/n . This characteristic ensured
we could obtain b.p.a.s with a good level of sharing. Obviously, if a b.p.a. has masses only
on the singlenton sets or only it is focused on one set, both algorithms are inmediate and
similar, but these situations do not appear with the constraint used. We think that, with
this constraint, the differences of both algorithms can be seen in a better way. The results
can be seen in Table 1.

Table 1. Time of processing (seconds) of the calculus of both algorithms on 10 million b.p.a.s randomly
generated on sets of 4, 5, and 6 elements.

Original Alg. Improved Alg. Percentage of Improvement

n = 4 29.10 26.69 8.28%
n = 5 120.05 101.20 15.70%
n = 6 1077.24 868.66 19.36%

As we can see in Table 1, the reduction in time increases with the number of values.
We had about an 8% improvement on sets of four elements, more than a 15% improvement
on sets of five elements, and a more than 19% improvement on sets of six elements. As we
showed in the previous examples, the level of improvement increased with the number
of elements. The increment in the performance was duplicated from n = 4 to n = 6, with
n = 6 very close to 20%, which shows the importance of the new algorithm when the size
of the frame of discernment increases.
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As expected, we observed that the time of processing increased strongly with the size
of the frame of discernment, which is a characteristic of algorithms that need to enumerate
all the elements of the powerset of a universal set. However, we should not forget that
the number of the first two columns correspond to seconds taken for the application of
the algorithms on 10 million b.p.a.s on each set of size n. Hence, the average time of the
calculus for obtaining the maximum entropy for one b.p.a. can be achieved dividing those
values (from columns 1 and 2) by 10 million.

4. Conclusions and Future Work

The computational cost of Meyerowitz et al.’s algorithm has been the principal draw-
back of using the maximum entropy as a measure to quantify the uncertainty-based
information in TE. In this work, a variation of that algorithm was presented. The key point
of this new proposal is the double use of each enumeration of the subsets of the power
set of the frame of discernment. This new procedure implies an important reduction in
the set of elements in the resulting frame of discernment of each step in Meyerowitz et
al.’s algorithm. Hence, the number of steps necessary to achieve the maximum entropy
of a b.p.a. is reduced. The experiments carried out showed that the improvement in the
time can be close to 20% for a set with a cardinality of six elements, showing that this
improvement can be greater when we increase the size of the frame of discernment. The
outcome presented may have greater applicability in TE. As future work and application of
the algorithm presented here, we want to apply it in some real areas, such as the one based
on the information obtained by sensors, where TE has been recently widely used.

We believe that it is possible to continue lowering the complexity of the calculation of
the maximum entropy via new algorithms. Obtaining these new algorithms with better
computational behavior and their comparison with those used in this work are part of our
future work in this area of research.
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