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Abstract: This paper presents a first-order integer-valued autoregressive time series model featuring
observation-driven parameters that may adhere to a particular random distribution. We derive the
ergodicity of the model as well as the theoretical properties of point estimation, interval estimation,
and parameter testing. The properties are verified through numerical simulations. Lastly, we
demonstrate the application of this model using real-world datasets.
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1. Introduction

Integer-valued time series data are prevalent in both scientific research and various
socioeconomic contexts. Examples of such data encompass the annual number of companies
listed on stock exchanges, the monthly usage of hospital beds in specific departments, and
the yearly frequency of major earthquakes or tsunamis. However, traditional continuous-
valued time series models are unable to precisely capture the unique characteristics of
integer-valued data, resulting in only approximations through continuous-valued models.
This shortcoming may lead to model mis-specification, posing challenges in statistical
inference. Consequently, the modeling and analysis of integer-valued time series data have
increasingly gained attention within academia. Amongst the extensive range of integer-
valued time series models, thinning operator models have attracted considerable interest
from scholars due to their resemblance to Autoregressive Moving Average (ARMA) models
in continuous-valued time series theory. Thinning operator models replace multiplication
in ARMA models with the binomial thinning operator, which was initially introduced by
Steutel and Van Harn [1]:

φ ◦Yi = ∑Yi
i=1 Bi, (1)

where {Yi} refers to a count series and {Bi} represents a Bernoulli random variable se-
quence that independent of {Yi}, satisfying the condition P(Bi = 1) = 1− P(Bi = 0) = φ.
Building upon this concept, Al-Osh and Alzaid [2] developed the first-order Integer-valued
Autoregressive (INAR(1)) model, for t ∈ N+:

Yt = φ ◦Yt−1 + Zt, (2)

where Zt is considered the innovation term entering the model during period t. Its marginal
distribution aligns with a Poisson distribution, exhibiting an expected value of λ, thereby
giving rise to the nomenclature of the Poisson INAR(1) model. An intuitive interpretation
of this model is that, within a hospital setting, the number of in-patients in period t com-
prises patients from period t− 1 who have not yet been discharged, along with patients
newly admitted in period t. Given that Bi adheres to a Bernoulli distribution, the binomial
thinning operator can exclusively express the {0, 1} to {0, 1} excitation states. However,
the binomial thinning operator does not represent the sole available option for thinning
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operators. Latour [3] expanded the distribution of Bi in Equation (1) to encompass any non-
negative integer-valued random variable, thus establishing the Generalized Integer-valued
Autoregressive (GINAR) model and providing conditions for model stationarity. Further-
more, the φ in Equation (1) need not be a fixed constant. Joe [4] and Zheng, Basawa, and
Datta [5] constructed the Random Coefficient Thinning Operator (RCINAR(1)) model by
permitting the parameter φ in the INAR(1) model to follow a specified random distribution.
Gomes and Castro [6] generalized the thinning operator in RCINAR(1) to GINAR(1) model,
culminating in the development of the Random Coefficient Generalized Integer-valued
Autoregressive model. Weiß and Jentsch [7] proposed a bootstrap estimation method based
on the INAR model to facilitate the introduction of semi-parametric structures within the
INAR model, in turn reducing model assumptions and augmenting model generalization
capabilities. Kang, Wang, and Yang [8] mixed the binomial thinning operator with the oper-
ator introduced by Pegram [9], resulting in the development of a novel INAR model capable
of addressing equi-dispersed, under-dispersed, over-dispersed, zero-inflated, and multi-
modal integer-valued time series data. Salinas, Flunkert, Gasthaus, and Januschowski [10]
proposed a new method for time series forecasting based on autoregressive recurrent neural
network models. Huang, Zhu, and Deng [11] mixed quasi-binomial distribution operators
with generalized Poisson operators, thus equipping the INAR model with the ability to
describe structural changes in the data generation processes. Mohammadi, Sajjadnia, Bak-
ouch, and Sharafi [12] incorporated innovation terms conforming to the Poisson-Lindley
distribution, thereby enhancing the INAR(1) model’s capacity to capture {0, 1} inflated
integer-valued time series data. For further discussion on thinning operator models, Scotto,
Weiß, and Gouveia [13] provide a comprehensive review article.

The thinning operator models previously mentioned presuppose that φ is independent of
other variables, thereby neglecting the dynamic features of the coefficient φ in INAR models.
To tackle this limitation, Zheng and Basawa [14] proposed a first-order observation-driven
integer-valued autoregressive process. Triebsch [15] introduced the first-order Functional
Coefficient Integer-valued Time Series model based on the thinning operator, in which the
coefficient φt during period t is a measurable function of the previous observation Yt−1.
Furthermore, Montriro, Scotto, and Pereira [16] presented the Self-Exciting Threshold Integer-
valued Time Series model (SETINAR) in which the coefficient φt during period t assumes
diverse values contingent on the varying observations in prior limited periods. Building
on the geometric thinning operator (alternatively known as the negative binomial thinning
operator) proposed by Ristić, Bakouch, and Nastić [17], Yu, Wang, and Yang [18] introduced
an INAR(1) model encompassing observation-driven parameters.

With respect to integer-valued time series models featuring observation-driven pa-
rameters, existing studies primarily focus on binomial and geometric thinning operators.
However, the binomial thinning operator cannot represent one-to-many excitation states,
and both binomial and geometric thinning operators exhibit limited descriptive capacity
for locally non-stationary phenomena and extreme values in real data. Consequently, this
paper employs a Poisson thinning operator, defined as follows:

φt 	Yt = ∑Yt
i=1 B(t)

i , (3)

where,
{

B(t)
i

}
is independent of Yt and constitutes an independent and identically dis-

tributed Poisson random variable sequence with an intensity parameter φt > 0. The
probability mass function is expressed by:

P
(

B(t)
i = x

)
=

φx
t

x!
exp(−φt),
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where
{

B(t)
i

}
and Yt are mutually independent. Leveraging this thinning operator, the

INAR(1) model in this study is formulated as follows:

Yt = φt 	Yt−1 + Zt,

where the sequence {Zt} comprises independent and identically distributed non-negative
integer-valued random variables, which are independent of

{
B(t)

i

}
and {Ys}s<t. Further-

more, diverging from the parameters set forth by Yu, Wang, and Yang [18], we posit that φt
correlates with the previous observation Yt−1, and given Yt−1, φt|Yt−1 may still conform to
a specific non-negative probability distribution. In Section 2, we will demonstrate that if
the expectation of this non-negative discrete probability distribution falls below 1, it does
not affect the model’s ergodicity. Simultaneously, due to instances where φt|Yt−1 occa-
sionally exceeds 1, the autoregressive model exhibits non-stationary features or generates
extreme values within specific periods—all without compromising its overall stationarity.
In comparison to existing research, this setting offers the advantage of simultaneously illus-
trating one-to-many excitation states and observation-driven and time-varying parameter
structures, as well as localized non-stationary features or extreme values. For example, in
public health, a patient with an infectious disease may not transmit the illness to others
or could potentially infect one or multiple individuals, indicating one-to-many excitation
states. As the number of infections fluctuates, local epidemic prevention policies may
undergo changes, consequently modifying the disease’s transmissibility and reflecting the
time-varying and observation-driven characteristics of the coefficient. During particular
periods of rapid infectious disease spread, the majority of infected individuals are likely to
infect more than one other person, resulting in infection data that exhibit extreme values or
localized non-stationary characteristics.

The organization of this paper is as follows: in Section 2, we introduce the integer-
valued time series model featuring observation-driven coefficients under investigation
and outline its essential statistical properties. In Section 3, we describe the estimation and
testing methods pertinent to this model and present asymptotic results. Section 4 provides
numerical simulation outcomes of these techniques, elaborating on the performance of the
estimation and testing approaches across diverse settings and sample conditions. Section 5
demonstrates the application of the proposed model using real-world data. Finally, Section 6
offers a summary and discussion.

2. Model Construction and Basic Properties

For the time series {Yt}, consider the following data generating process:

Yt = φt 	Yt−1 + Zt (4)

Given Yt−1, φt may be fixed as:

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)] .

Alternatively, {φt} could represent an independent random variable sequence with a
conditional expectation of:

E(φt|Yt−1) =
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)] ,
(5)

where β is an `-dimensional parameter vector, the function ν(·; ·) belongs to a specific
parametric family of functions G{ν(Yt−1; β); β ∈ Θ}, and Θ is a compact subset of R`.
β is an interior point of Θ and ν(y; β) is thrice continuously differentiable with respect to β.
The conditional variance is given by Var(φ|Yt−1) = σ2

φt |Yt−1
. Additionally, {Zt} comprises

an independent and identically distributed non-negative integer-valued random variable
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sequence with a probability mass function fz with expectation E(Zt) = λ < ∞ and variance
Var(Zt) = σ2

Z < ∞. Furthermore, {Zt} is independent of {Yt}.

Remark 1. Integer-valued probability distributions that align with the settings of Zt are common,
with typical examples being Poisson and geometric distributions. This paper employs a Poisson
distribution in the numerical simulation section.

Remark 2. There are numerous functions that align with the setting of ν(·; ·), with the most typical
being the linear function ν(Yt−1; β) = β0 + β1Yt−1. In this paper’s numerical simulation section,
a linear function setting will be adopted.

Remark 3. From model (4), it is evident that {Yt} is a Markov chain defined on the set of natural
numbers N, with a one-step-ahead transition probability:

P(Yt = yt|Yt−1 = yt−1) =
∫

P(Yt = yt|Yt−1 = yt−1, φt = φ)P(φt = φ|Yt−1 = yt−1)dφ

=
∫ yt

∑
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ
(6)

Based on the above model construction, we can obtain the conditional moments for
Model (4). Starting from these conditional moments, we can construct estimating equations
to estimate the unknown parameters in the model:

Property 1. for t ≥ 1

(i) E(Yt|Yt−1) =
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 + λ,

(ii) Var(Yt|Yt−1) =
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 + σ2
Z + σ2

φt |Yt−1
,

(iii) Cov(Yt, Yt−1) = E
(

exp[ν(Yt−1;β)]
1+exp[ν(Yt−1;β)]Y

2
t−1

)
−E

(
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1

)
E(Yt−1).

Ergodicity is crucial for the convergence of parameter estimation, as presented in the
following property:

Property 2. If sup
y∈N

ν(y; β) < ∞, β ∈ Θ, then the data generating process {Yt} defined by (4) is an

ergodic Markov chain.

Remark 4. In Property 2, since the form of the function ν is not determined, we cannot di-
rectly provide the conditions for the ergodicity of {Yt}. However, for specific cases, such as
ν(Yt−1; β) = β0 + β1Yt−1, we can intuitively see that the stationary and ergodic property of
the data generating process requires β1 ≤ 0 at the very least, making the expected value of φt
lower when Yt is higher and vice versa. From the proof of Property A1 in Appendix A, it can be
observed that the ergodicity of {Yt} requires the existence of a constant 0 < m < 1 such that

exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

< m; however, if β1 > 0, then exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

will increase with the rise of Yt,
making it impossible to determine a constant m that meets requirements.

3. Parameter Estimation and Hypothesis Testing

In this section, we assume that the time series {Yt}T
t=1 satisfies the data-generating pro-

cess defined by Equation (4), with θ0 = (β′0, λ0) as the true parameter vector of this process
and θ = (β′, λ) as the unknown parameter vector to be estimated. In this paper, our primary
focus is on two estimation methods: Conditional Least Squares (CLS) and Conditional Max-
imum Likelihood (CML). Additionally, we attempt to establish observation-driven interval
estimation through estimating equations in CLS and observation-driven hypothesis testing
through the framework of Empirical Likelihood (EL). Here, we first make assumptions
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about the data-generating process {Yt} and the function ν(y; β), assuming the existence of
a neighborhood B of β0 and a positive integrable function N(y), such that:

(A1) {Yt} is a strictly stationary and ergodic sequence.

(A2) 1 ≤ i, j ≤ `,
∣∣∣ ∂ν(y;β)

∂βi

∣∣∣ and
∣∣∣ ∂2ν(y;β)

∂βi∂β j

∣∣∣ are continuous with respect to β and dominated by

N(y) on B, where N(y) is a positive integrable function.

(A3) 1 ≤ i, j, k ≤ `,
∣∣∣ ∂3ν(y;β)

∂βi∂β j∂βk

∣∣∣ are continuous with respect to β and dominated by N(y) on

B, where N(y) is a positive integrable function.
(A4) ∃δ > 0, such that E|Yt|8+δ < ∞, E|N(Yt)|8+δ < ∞.

(A5) E
(

∂ν(y;β)
∂β · ∂ν(y;β)

∂β′

)
is a full-rank matrix, i.e., of rank `.

(A6) The parameters of ν(y; β) are identifiable, that is, if β 6= β0, then Pν(Yt ;β) 6= Pν(Yt ;β0)
,

where Pν(Yt ;β) represents the marginal probability measure of ν(Yt; β).

3.1. Conditional Least Squares Estimation

Let S(θ) = ∑T
t=2(Yt −E(Yt|Yt−1))

2 = ∑T
t=2

(
Yt − exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)]Yt−1 − λ
)2

, where

θ = (β′, λ). The CLS estimator is then given by:

θ̂CLS = argminθ(S(θ)).

Let St(θ) = (Yt −E(Yt|Yt−1))
2. The first-order condition equation is represented

as follows:

−1
2

∂St(θ)

∂θ
= 0 = Mt(θ) =

(
mt1(θ), mt2(θ), . . . , mt(`+1)(θ)

)′
, (7)

where

mti(θ) =

(
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

)
exp[ν(Yt−1; β)]

(1 + exp[ν(Yt−1; β)])2
∂ν(y; β)

∂βi
Yt−1, 1 ≤ i ≤ `,

mt(`+1)(θ) = Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ.

Thus, the estimating equation is given by ∑T
t=1 Mt(θ) = 0. Solving this equation

provides the CLS estimate θ̂CLS for the parameter vector θ = (β, λ).

Theorem 1. Under assumptions (A1) to (A5), the CLS estimator θ̂CLS is a consistent estimator for
the true parameter θ0, and it has an asymptotic distribution:

√
T
(
θ̂CLS − θ0

) d→ N
(

0, V−1(θ0)W(θ0)V−1(θ0)
)

,

where
W(θ0) = E

(
Mt(θ0)M′t(θ0)

)
,

V(θ0) = E
(

∂E(Yt|Yt−1)

∂θ
·∂E(Yt|Yt−1)

∂θ′

)
−E

(
ut(θ0)

∂2E(Yt|Yt−1)

∂θ∂θ′

)
,

ut(θ0) = Yt −E
(

Yt

∣∣∣Y(t−1)

)
.
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3.2. Interval Estimation

Based on the estimating equations from the CLS estimation, we can construct
observation-driven interval estimation and hypothesis testing. Let:

H(θ) =

 T

∑
t=2

Mt(θ)

′ T

∑
t=2

Mt(θ)Mt(θ)
′

−1 T

∑
t=2

Mt(θ)


.

We can then obtain the following theorem:

Theorem 2. Under assumptions (A1)–(A5), as T → ∞ ,

H(θ0)
d→ χ2(`+ 1). (8)

Remark 5. From Equation (8), we can construct an interval estimation for θ0:

{θ|H(θ) ≤ Cα},

where Cα satisfies that for 0 < α < 1,P
(

χ2
`+1 ≤ Cα

)
= α. From the perspective of hypothesis testing,

this serves as an acceptance region for testing the null hypothesisH0 : θ0 = θ. If H(θ) > Cα; then the
null hypothesis is rejected.

3.3. Empirical Likelihood Test

In the following, we introduce hypothesis testing based on empirical likelihood es-
timation. First, we provide a brief introduction to the empirical likelihood (EL) method.
Initially proposed by Owen [19] for providing interval estimations for expectation, the EL
method was later extended to estimating equation estimation by Qin and Lawless [20].
For T observations y1, y2, . . . , yT of a random variable Y with distribution F, the empirical
likelihood ratio is defined as:

R(F) =
L(F)
L(FT)

=
T

∏
t=1

Tpt,

where L(F) = ∏T
t=1 pt is the nonparametric likelihood function, pt = dF(yt) = P(Y = yt),

and FT(y) = 1
T ∑T

t=1 1{yt≤y} is the empirical distribution function of the random variable
Y, dFT = 1

T , ∀t ∈ T. Under constraints ∑T
t=1 pt = 1 and pt ≥ 0, ∀t, FT maximizes L(F), so

R(F) ≤ 1.
Suppose we are interested in the parameter vector θ, which satisfies the estimating

equation E(Mt(θ)) = 0. We need to add a new constraint for pt: ∑T
t=1 pt Mt(θ) = 0. Based

on this, we can establish the profile empirical likelihood ratio function:

R(θ) = sup


T

∏
t=1

Tpt : pt ≥ 0,
T

∑
t=1

pt = 1,
T

∑
t=1

pt Mt(θ) = 0


.

The profile empirical likelihood ratio function can be solved using the Lagrange
multiplier method. Let:

L(θ) =
T

∑
t=1

log(pt) +k

 T

∑
t=1

pt − 1

+ γ′T
T

∑
t=1

pt Mt(θ),



Entropy 2023, 25, 859 7 of 30

where k and γ are Lagrange multipliers. It can be proved that when L(θ) is maximized,
k = T, and:

pt =
1
T
· 1
γ′Mt(θ) .

Here, as a function of θ, γ = γ(θ) is the solution to the following equation:

T

∑
t=1

Mt(θ)

1 + γ′Mt(θ)
= 0, (9)

substituting this into pt and R(F), we find:

R(F) =
T

∏
t=1

1
1 + γ(θ)′Mt(θ) .

Thus, the log empirical likelihood ratio function can be defined as:

LE(θ) = − log(R(θ)) =
T

∑
t=1

log
[
1 + γ(θ)′Mt(θ)

]
.

The empirical likelihood estimate is then given by:

θ̂EL = argminθ(LE(θ)).

The corresponding γ is denoted by γ̂
(
θ̂EL
)
.

Remark 6. Given that 0 ≤ pt ≤ 1 for all t ∈ T, it can be deduced that LE(θ) = −log
(

∏T
t=1 pt

)
≥ 0.

Remark 7. Since the number of estimating equations matches the number of parameters to be
estimated (also known as just-identified in some econometrics literature), and θ̂CLS is the solution to
the estimating equation ∑T

t=1 Mt(θ) = 0, it follows from Chen and Keilegom [21] that:

θ̂EL = θ̂CLS.

Therefore, we will omit empirical likelihood estimation in the point estimation segment
in the numerical simulation section.

Theorem 3. Under assumptions (A1)–(A5), let θ =
(
θ′1, θ′2

)′, where θ1 and θ2 are q × 1 and
(`+ 1− q)× 1-dimensional parameter vectors to be estimated, respectively. For the hypothesis
H0 : θ(1) = θ

(1)
0 , a test statistic can be constructed as follows:

LE

(
θ
(1)
0 , θ̃

(2)
EL

)
−LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
d→ χ2(q),

where
(

θ̂
(1)
EL , θ̂

(2)
EL

)
= θ̂EL, and θ̃

(2)
EL is the estimate obtained by minimizing LE

(
θ
(1)
0 , θ(2)

)
concerning θ(2).

Remark 8. As Remark 7 indicates, in a just-identified situation, θ̂EL = θ̂CLS andLE
(
θ̂CLS

)
= 0.

Thus, the conclusion of Theorem 3 can be further simplified as:

LE

(
θ
(1)
0 , θ̃

(2)
EL

)
d→ χ2(q).
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3.4. Conditional Maximum Likelihood Estimation

It is straightforward to derive the log-likelihood function logL(θ) from the one-step-
ahead transition probability (6) of model (4). In time-series models, the probability distri-
bution of the first observation Y1 is unknown, and its influence on the likelihood function
is minimal when the sample size T is sufficiently large. Thus, we focus only on the condi-
tional likelihood function. Given that the log-conditional likelihood function is a nonlinear
function of the parameter vector θ = (β, λ), we employ numerical methods to solve:

θ̂CML = argminθ(logL(θ)).

To obtain the asymptotic distribution of θ̂CML, we need to verify the regularity con-
ditions presented in Billingsley [22]. The satisfaction of these conditions can be directly
observed from the model-building process in Section 2 and the assumptions provided in
Section 3. Therefore, the proof is omitted. We arrive at the following theorem:

Theorem 4. Under assumptions (A1)–(A6), the conditional maximum likelihood estimator θ̂CML
consistently estimates the true parameter θ0 and exhibits an asymptotic distribution:

√
T
(
θ̂CML − θ0

) d→ N
(

0, E−1
)

,

where E = E
(

∂log(P(X1|X0))
∂θ · ∂log(P(X1|X0))

∂θ′

)
represents the Fisher information matrix.

Remark 9. Achieving CML estimation requires making specific assumptions about the probability
distribution of Zt. In this paper, we assume Zt follows a Poisson distribution with parameter λ.
This strong assumption can result in significant errors or even inconsistency in statistical inference
based on the CML method if the assumed model does not represent the true data-generating process.
This constitutes the primary drawback of CML estimation. The impact of model mis-specification on
CML estimation will be examined in the following numerical simulation section.

4. Numerical Simulation

In this section, we set the function ν as a linear function, considering the following
data-generating process:

Yt = φt 	Yt−1 + Zt, (10)

E(φt|Yt) =
exp(β0 + β1Yt−1)

1 + exp(β0 + β1Yt−1) .
(11)

Here, {Zt} represents an independently and identically distributed Poisson random
variable sequence with a mean of λ. In subsequent numerical simulation studies, we mainly
concentrate on three aspects: parameter estimation, interval estimation, and empirical likeli-
hood ratio testing. All numerical simulations are conducted based on 1000 repeated sampling.

4.1. Parameter Estimation

We generate data using the above model and apply the CLS and CML methods
to estimate parameters. Moreover, we define three statistical measures for evaluating
estimation performance (using λ as an example):

Sample bias : Bias = λ− λ,

Root mean square error : RMSE =

√
1

1000 ∑1000
i=1

(
λ̂i − λ

)2
,



Entropy 2023, 25, 859 9 of 30

Mean absolute percentage error : MAPE =
1

1000 ∑1000
i=1

∣∣∣∣∣ λ̂i − λ

λ

∣∣∣∣∣.
In CML estimation, the score function is defined as:

T

∑
t=1

(
∂
∂θ

){∫
∑

yt
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ

}
∫

∑
yt
k=0

(φyt−1)
k

k! exp(−φyt−1) fz(yt − k)P(φt = φ|Yt−1 = yt−1)dφ
= 0.

In the CML estimation, we primarily consider four distribution cases for φt|Yt−1 when
Zt follows a Poisson distribution. Let the variable At =

exp(β0+β1Yt−1)
1+exp(β0+β1Yt−1)

, and the function

dpois(x, l) = lx

x! exp(−l), l ≥ 0, x ∈ N. Then:

(i) φt|Yt−1 is fixed at At, without any randomness. In this case, the log-likelihood
function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

(dpois(k, yt−1 At)·dpois(yt − k, λ))

)
.

(ii) φt|Yt−1 follows a uniform distribution with mean At, minimum value 0, and maxi-
mum value 2At. In this case, the log-likelihood function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

dpois(yt − k, λ)

2k!yt−1 At
·(Γ(k + 1, 0)− Γ(k + 1, 2At))

)
.

where Γ(α, x) =
∫ ∞

x tα−1 exp(−t)dt.
(iii) φt|Yt−1 follows an exponential distribution with mean At. In this case, the log-

likelihood function is:

logL(θ) = −
T

∑
t=2

log

( yt

∑
k=0

At

(At + yt−1)
k+1 ·y

k
t−1·dpois(yt − k, λ)

)
.

(iv) φt|Yt−1 follows a chi-square distribution with the mean At. Specifically, the density
function of φt|Yt−1 is:

P(φt = φ|Yt−1 = yt−1) =
1

2At Γ(At/2)
φ

At
2 −1 exp

(
−φ

2

)
.

Although At is not an integer, we still call it a chi-square distribution. In this case, the
log-likelihood function is:

logL(θ) = −
T

∑
t=2

log

 yt

∑
k=0

yt−1

k!
·dpois(yt − k, λ)· 1

2
At
2 Γ
(

At
2 , 0

) · Γ
(

At+2k
2 , 0

)
(

1
2 + yt−1

) At+2k
2


.

The specific simulation results are shown in the table below:
From Table 1, we can observe that for both CLS and CML estimators, as the sample

size T gradually increases, BIAS, RMSE, and MADE all decline, indicating the consistency
of these estimators. Notably, both CLS and CML yield satisfactory parameter estimates. In
large samples, CLS and CML estimates are approximately equal, while in small samples,
under the premise of a correctly specified model, CML tends to provide superior estimation
precision. Furthermore, we present an additional set of parameter estimation simulation
results in the Appendix A, as shown in Table A1.
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Table 1. Parameter Estimation Simulation Results.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T = 300

BIAS 0.0571 0.0471 −0.0321 −0.0287 0.0051 0.0059

RMSE 0.7399 0.6983 0.2096 0.2008 0.1368 0.1337

MAPE 0.5636 0.5486 0.2691 0.2619 0.0909 0.0886

T = 500

BIAS 0.0506 0.0407 −0.0251 −0.0221 0.0033 0.0042

RMSE 0.5678 0.5562 0.1556 0.1523 0.1113 0.1091

MAPE 0.4443 0.4346 0.1978 0.1946 0.0738 0.0721

T = 800

BIAS 0.0349 0.0246 −0.0152 −0.0127 −0.0011 0.0004

RMSE 0.4165 0.4076 0.1188 0.1163 0.0828 0.0817

MAPE 0.3327 0.3254 0.1587 0.1554 0.0546 0.0535

T = 1200

BIAS 0.0139 0.0071 −0.0074 −0.0055 0.0009 0.0017

RMSE 0.3471 0.3393 0.0951 0.0931 0.0697 0.0688

MAPE 0.2726 0.2686 0.1252 0.1234 0.0465 0.0459

T = 2000

BIAS 0.0112 0.0085 −0.0058 −0.0053 0.0017 0.0023

RMSE 0.2719 0.2711 0.0732 0.0728 0.0533 0.0525

MAPE 0.2195 0.2176 0.0981 0.0978 0.0352 0.0347

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.0865 0.0428 −0.0456 −0.0354 0.0046 0.0121

RMSE 0.8065 0.7395 0.2301 0.2163 0.1454 0.1361

MAPE 0.6267 0.5773 0.2865 0.2696 0.0964 0.0903

T = 500

BIAS 0.0312 0.0076 −0.0228 −0.0169 0.0043 0.0082

RMSE 0.5636 0.5288 0.1567 0.1488 0.1052 0.0997

MAPE 0.4493 0.4239 0.2046 0.1968 0.0703 0.0657

T = 800

BIAS 0.0292 0.0062 −0.0165 −0.0113 0.0038 0.0079

RMSE 0.4503 0.4233 0.1244 0.1191 0.0852 0.0793

MAPE 0.3587 0.3373 0.1651 0.1575 0.0563 0.0525
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Table 1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0249 0.0133 −0.0127 −0.0108 0.0003 0.0031

RMSE 0.3513 0.3295 0.0971 0.0923 0.0689 0.0639

MAPE 0.2815 0.2627 0.1289 0.1249 0.0464 0.0428

T = 2000

BIAS 0.0062 −0.0019 −0.0041 −0.0023 0.0016 0.0032

RMSE 0.2735 0.2529 0.0749 0.0719 0.0529 0.0483

MAPE 0.2165 0.1997 0.0983 0.0942 0.0353 0.0323

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T = 300

BIAS 0.1165 0.0594 −0.0594 −0.0491 0.0048 0.0135

RMSE 0.8356 0.7986 0.2648 0.2541 0.1407 0.1138

MAPE 0.6249 0.5392 0.3071 0.2785 0.0931 0.0752

T = 500

BIAS 0.0174 −0.0175 −0.0195 −0.0116 0.0019 0.0088

RMSE 0.5929 0.5009 0.1649 0.1507 0.1059 0.0871

MAPE 0.4677 0.3955 0.2133 0.1932 0.0701 0.0582

T = 800

BIAS 0.0389 0.0125 −0.0177 −0.0119 −0.0008 0.0042

RMSE 0.4646 0.3871 0.1267 0.1149 0.0839 0.0657

MAPE 0.3673 0.3052 0.1644 0.1486 0.0563 0.0438

T = 1200

BIAS 0.0236 0.0014 −0.0103 −0.0057 0.0016 0.0057

RMSE 0.3709 0.3109 0.0997 0.0903 0.0687 0.0542

MAPE 0.2879 0.2472 0.1299 0.1201 0.0451 0.0362

T = 2000

BIAS 0.0196 0.0074 −0.0091 −0.0072 −0.0021 0.0009

RMSE 0.2837 0.2493 0.0795 0.0746 0.0527 0.0427

MAPE 0.2261 0.1991 0.1047 0.0983 0.0356 0.0286

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T = 300

BIAS 0.9382 0.2286 −0.3652 −0.1152 −0.0292 0.0041

RMSE 3.7397 1.2307 1.7201 0.5974 0.1471 0.0955

MAPE 1.3992 0.7657 0.8326 0.4475 0.0945 0.0636

T = 500

BIAS 0.3437 0.1486 −0.1325 −0.0738 −0.0213 0.0007

RMSE 1.0769 0.7791 0.3808 0.2767 0.1129 0.0737

MAPE 0.7455 0.5794 0.4262 0.3345 0.0738 0.0493
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Table 1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 800

BIAS 0.1769 0.0771 −0.0628 −0.0339 −0.0139 −0.0006

RMSE 0.7215 0.5257 0.2459 0.1844 0.0889 0.0556

MAPE 0.5301 0.4118 0.2954 0.2363 0.0586 0.0374

T = 1200

BIAS 0.0883 0.0452 −0.0322 −0.0216 −0.0054 0.0012

RMSE 0.5649 0.4368 0.1849 0.1498 0.0703 0.0455

MAPE 0.4353 0.3445 0.2367 0.1949 0.0469 0.0299

T = 2000

BIAS 0.0766 0.0269 −0.0292 −0.0128 −0.0057 0.0005

RMSE 0.4163 0.3267 0.1345 0.1103 0.0542 0.0371

MAPE 0.3256 0.2585 0.1706 0.1441 0.0361 0.0246

Figure 1 showcases the typical trajectory of data generated by models (10) and (11) with
parameters β0 = 1, β1 = −0.6, and λ = 1.2. In this figure, “fixed” represents φt|yt−1 as a
fixed parameter given yt−1, “uniform” denotes φt|yt−1 following a uniform distribution,
“exponential” signifies φt|yt−1 following an exponential distribution, and “chi-square”
indicates φt|yt−1 following a chi-square distribution. Figure 1 reveals that some extreme
values are present in the sample paths when φt|yt−1 follows either an exponential or
chi-square distribution, with the latter capable of generating even higher extreme values.
This suggests that these two distribution settings for φt|yt−1 contain a certain descriptive
ability concerning the extreme values in the data.

As pointed out in Section 3.4, the CML method depends upon correct model spec-
ification. To evaluate the effects of model misspecification on parameter estimation, we
consider {Zt} as an independently and identically distributed geometric random-variable
sequence with a mean of λ within the data generation process (10) and (11). Subsequently,
we employ both the CLS and CML methods for estimation, presenting the results in the
table below.

From Table 2, we can observe that the three statistical measures BIAS, RMSE, and
MAPE for the CML estimator have noticeably increased compared to the CLS estimator.
This indicates that model misspecification significantly impacts CML estimation, necessi-
tating appropriate model selection efforts before employing the CML estimation method.
As long as the conditional expectation E(Yt|Yt−1) is correctly specified, CLS estimation
will be more robust than CML estimation. Moreover, we provide the parameter estimation
simulation results obtained under the misspecification of the φt|yt−1 distribution in the
Appendix A, as shown in Table A2.
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Figure 1. Typical trajectory of the model with β0 = 1, β1 = −0.6, and λ = 1.2.

Table 2. Parameter Estimation Simulation Results under Model Misspecification.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution, Zt follows a geometric distribution.

T = 300

BIAS 0.1823 0.8261 −0.1275 −0.1563 −0.0057 −0.1187

RMSE 1.2279 1.5387 0.7587 0.4665 0.1577 0.1798

MAPE 0.8237 1.0551 0.4661 0.4531 0.1027 0.1257

T = 500

BIAS 0.0931 0.7121 −0.0632 −0.1079 −0.0009 −0.1198

RMSE 0.7686 1.0457 0.4375 0.2613 0.1198 0.1574

MAPE 0.5752 0.8394 0.3016 0.3169 0.0786 0.1118

T = 800

BIAS 0.0858 0.6913 −0.0346 −0.0914 0.0001 −0.1199

RMSE 0.5812 0.9088 0.1651 0.1954 0.1006 0.1468

MAPE 0.4509 0.7538 0.2049 0.2451 0.0657 0.1069
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Table 2. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0193 0.6389 −0.0132 −0.0732 0.0043 −0.01191

RMSE 0.4427 0.7848 0.1234 0.1503 0.0829 0.1385

MAPE 0.3495 0.6687 0.1607 0.1913 0.0545 0.1027

T = 2000

BIAS 0.0224 0.6386 −0.0116 −0.0711 0.0021 −0.1213

RMSE 0.3576 0.7362 0.0951 0.1243 0.0625 0.1321

MAPE 0.2796 0.6517 0.1234 0.1612 0.0416 0.1016

4.2. Interval Estimation

We perform a numerical simulation study on the coverage frequency of the interval
estimation, as proposed in Theorem 2 and Remark 5, for the true values in the model.
We consider parameter settings of β0 = 1, β1 = −0.6, and λ = 1.2. The nominal levels
considered are 0.90 and 0.95, with the specific simulation results presented in the following
table:

From Table 3, we can observe that as the sample size T increases, the coverage fre-
quency of interval estimation gradually approaches the nominal level. Even with smaller
sample sizes, the coverage frequency of the interval estimation for the true values remains
satisfactory. This result suggests that the data-driven interval estimation has achieved
commendable performance.

Table 3. Coverage Frequency of Interval Estimation.

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T 300 500 800 1200 2000

0.95 0.941 0.957 0.957 0.953 0.956

0.9 0.897 0.908 0.912 0.908 0.905

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T 300 500 800 1200 2000

0.95 0.949 0.959 0.961 0.949 0.954

0.9 0.89 0.913 0.899 0.904 0.903

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T 300 500 800 1200 2000

0.95 0.942 0.938 0.951 0.955 0.953

0.9 0.891 0.894 0.906 0.910 0.909

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T 300 500 800 1200 2000

0.95 0.905 0.917 0.918 0.92 0.939

0.9 0.854 0.853 0.856 0.864 0.881
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4.3. Empirical Likelihood Test

Lastly, we perform a numerical simulation study on the empirical likelihood test
(EL test). For the observation-driven parameter model defined by data generation processes
(10) and (11), we aim to test whether β1 equals 0. If β1 = 0, our model’s parameters are not
driven by observations. We employ models (10) and (11) to generate sequences, assuming
φt|yt−1 is a fixed parameter, and perform estimation under the null hypothesis. Then, we
compare the test statistic proposed in Theorem 3 with the upper 0.90 and 0.95 quantiles of
the corresponding chi-square distribution; if the EL test statistic exceeds the critical value,
we reject the null hypothesis.

Initially, we investigate scenarios in which the true value of β1 for the data generation
process equals 0, considering the following hypotheses:

H0 : β1 = b 6= 0 H1 : β1 6= b.

where b is a nonnegative constant, the simulation results for the test power are presented
below (the simulation results for H0 : β1 = 0 represent the frequency of Type I errors).

Next, we examine the scenarios where the true value of β1 in the data generation
process is not equal to 0, considering the following hypotheses:

H0 : β1 = 0 H1 : β1 6= 0.

The simulation results for the test power are as follows.
From Tables 4 and 5, we observe that the Type I error frequency of the EL test gradually

diminishes to the corresponding confidence level as the sample size T increases, while
the test power concurrently ascends to 1. Notably, in small sample scenarios, when the
true value of β1 is 0, the test power level for H0 : β1 = −0.1 is relatively low. Likewise,
when the true value of β1 is −0.1, the test power for H0 : β1 = 0 exhibits a similar pattern.
Overall, however, the EL test performs satisfactorily when the gap between the true and
hypothesized values of β1 is relatively large, or in cases involving large samples. Owing
to space constraints, we include in the Appendix A, the EL test simulation results for
the parameter λ under φt|yt−1 following four distinct random distributions, as shown
in Table A3.

Table 4. Empirical Likelihood Test for β1 with a True Value of 0.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.05.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.096 0.073 0.065 0.057 0.046

H0 : β1 = −0.1 0.296 0.386 0.658 0.823 0.935

H0 : β1 = −0.2 0.707 0.802 0.941 0.984 1

H0 : β1 = −0.3 0.778 0.837 0.988 1 1

H0 : β1 = −0.4 0.822 0.861 0.997 1 1

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.10.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.146 0.126 0.110 0.103 0.107

H0 : β1 = −0.1 0.399 0.447 0.716 0.874 0.976

H0 : β1 = −0.2 0.784 0.883 0.969 1 1

H0 : β1 = −0.3 0.823 0.904 0.993 1 1

H0 : β1 = −0.4 0.875 0.921 1 1 1
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Table 5. Empirical Likelihood Test for β1 with True Value Not Equal to 0.

Parameter : β0 = 1,H0 : β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.05.

T 300 500 800 1200 2000

β1 = −0.1 (true) 0.363 0.536 0.608 0.751 0.907

β1 = −0.2 (true) 0.647 0.806 0.936 0.988 1

β1 = −0.3 (true) 0.768 0.935 1 1 1

β1 = −0.4 (true) 0.875 0.945 1 1 1

Parameter : β0 = 1,H0 : β1 = 0, λ = 1.2
φt|yt−1 is fixed, significance level 0.10.

T 300 500 800 1200 2000

β1 = −0.1 (true) 0.439 0.705 0.767 0.859 0.966

β1 = −0.2 (true) 0.751 0.877 0.96 1 1

β1 = −0.3 (true) 0.835 0.99 1 1 1

β1 = −0.4 (true) 0.941 0.997 1 1 1

It is crucial to note that the estimation equation employed in the empirical likelihood
test solely reflects the linear mean structure inherent in the data-generating process. For
more intricate and nonlinear coefficient random distributions, the test exhibits limited
descriptive capacity. As a result, we advise against utilizing the empirical likelihood test
in cases where φt|yt−1 is stochastic. In Appendix A, we present numerical simulation
results pertaining to the empirical likelihood test when φt|yt−1 adheres to an exponential
distribution. As evidenced by Table A4, the empirical likelihood test demonstrates a very
high frequency of Type I errors when φt|yt−1 conforms to an exponential distribution.
Consequently, we discourage the use of the empirical likelihood test in such circumstances.

5. Real Data Application

In this section, we analyze the daily download count data for the software CWB
TeXpert, covering the period from 1 June 2006, to 28 February 2007, resulting in a sample
size of T = 267. This dataset is made available on the Supplementary webpage associated
with Weiß [23].

From the sample path in Figure 2, we observe that this data contains a considerable
number of extreme values. Simultaneously, the ACF and PACF plots suggest that the
sample might have originated from a first-order autoregressive data-generating process.
We proceed to analyze this data using the models introduced in this paper. For the CML
estimation, CML f ix in the table below represents φt|yt−1 as a fixed parameter, CMLuni f
denotes φt|yt−1 following a uniform distribution, CMLexp signifies φt|yt−1 following an
exponential distribution, and CMLchi indicates φt|yt−1 following a chi-square distribution.
Additionally, for comparison purposes, we applied the model proposed by Yu et al. [18] to
this dataset, which is denoted as CMLgeom in the subsequent table:
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The estimation results are displayed in Table 6, where we provide AIC and BIC values
for the four distributions that φt|yt−1 may follow. Based on these two information criteria,
we show a preference for models in which φt|yt−1 follows either a chi-square distribution
or an exponential distribution. This preference might be attributable to the presence of
extreme values in the sample path, as anticipated. As observed in Figure 1 in Section 4,
models with φt|yt−1 following either a chi-square or exponential distribution prove more
effective in capturing data characterized by extreme values.

Table 6. Model Estimation Results.

CLS CMLfix CMLunif CMLexp CMLchi CMLgeom

β0 0.302 0.209 1.379 1.305 0.658 1.244

β1 −0.151 −0.143 −0.227 −0.244 −0.097 −0.231

λ 1.463 1.493 1.201 1.196 1.359 1.166

AIC - 1243.986 1189.377 1151.465 1143.669 1184.96

BIC - 1254.748 1200.138 1162.227 1154.431 1195.322

6. Discussion and Conclusions

In this paper, we propose a first-order integer-valued autoregressive time series model
based on the Poisson thinning operator. The parameters of this model are observation-
driven and may follow specific random distributions, resulting in time-varying autoregres-
sive coefficients. We established the ergodicity of this model and performed estimation and
hypothesis testing using conditional least squares (CLS), conditional maximum likelihood
(CML), and empirical likelihood (EL) methods. Additionally, we provided a data-driven
interval estimation.
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In the numerical simulation study, we compared the parameter estimation perfor-
mance of CLS and CML, verified the coverage frequency of the interval estimation for
the true parameter values in the data generation process, and conducted corresponding
simulation studies for the EL test. The simulation study reveals that the properties of
the CML estimation depend on the correct model specification, while the CLS estimation
demonstrates a degree of robustness against model misspecifications.

In future research, observation-driven parameter integer-valued time series models
offer numerous promising avenues for development. In this discussion, a brief overview of
some of these directions is provided:

(1) Combining observation-driven parameters with self-driven parameters, namely self-
exciting threshold models: the SETINAR model proposed by Montriro, Scotto, and
Pereira [16] is defined as follows:

Yt =

∑
p(1)

i=1 α
(1)
i ◦Yt−i + Z(1)

t , Yt−d ≤ R,

∑
p(2)

i=1 α
(2)
i ◦Yt−i + Z(2)

t , Yt−d > R,
(12)

in this model, p(1) and p(2) represent given positive integers, with ∑
p(j)

i=1 α
(j)
i ∈ (0, 1)

for j = 1, 2. Additionally, the innovation series
{

Z(1)
t

}
and

{
Z(2)

t

}
possess probability

distributions F1 and F2 on the set of natural numbers N0, respectively. The constant R
represents the threshold value responsible for the structural transition in the lagged
d-period observation excitation model. Montriro, Scotto, and Pereira [16] demon-
strated that model 6.1 possesses a strictly stationary solution when p(1) = p(2) = 1.
By effectively combining observation-driven parameter models with self-driven pa-
rameter models and flexibly selecting thinning operators, a more diverse range of
integer-valued time series models can be characterized.

(2) Expanding upon current observation-driven models to incorporate higher-order
models: Du and Li [24] introduced the INAR(p) model:

Yt = α1 ◦Yt−1 + · · ·+ αp ◦Yt−p + Zt, (13)

in this model, ∑
p
i=1 αi < 1, and {Zt} represents a sequence of integer-valued random

variables defined on the set of natural numbers N0. Existing observation-driven
models are primarily first-order models. By extending these models to higher-order
versions, the capability to describe more intricate and complex parameter dynamics
can be achieved. It is important to note that when progressing to higher-order models,
the technique utilized in the proof of Property 2. is no longer applicable for establish-
ing the model’s ergodicity. As a result, new proof methods need to be sought from
related Markov chain theories.

(3) Extending the observation-driven parameter setting to Integer-valued Autoregres-
sive Conditional Heteroskedasticity (INARCH) models: Fokianos, Rahbek, and
Tjøstheim [25] proposed the INARCH model (which they referred to as Poisson
Autoregressive) as follows:

Yt|Ft−1 ∼ Poisson(λt),
λt = d + αλt−1 + βYt−1,

(14)

where α ≥ 0, β ≥ 0, and α + β < 1. This model is a natural extension of the
generalized linear model and helps to capture the fluctuating changes of observed
variables over time. Another advantage of this model is its simplicity, which makes
it easy to establish the likelihood function of the INARCH model. Extending the
observation-driven parameter setting to integer-valued autoregressive conditional
heteroskedasticity models allows the model to describe the driving effect of the
fluctuations of observed variables on the parameters. However, the challenge in doing
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so lies in the fact that, compared to the INAR model used in this paper, the ergodicity
of the INARCH model is more difficult to establish.

(4) Forecasting Integer-Valued Time Series: In time series research, it is common to
employ h-step forward conditional expectations for forecasting:

Ŷt+h = E(Yt+h|Yt) (15)

Nonetheless, this approach does not guarantee that the predicted values will be
integers, and such predictions primarily describe the expected characteristics of the
model, without capturing potentially time-varying coefficients or other features,
as illustrated in Figure A1. Furthermore, Freeland and McCabe [26] highlighted
that utilizing conditional medians or conditional modes for forecasting could be
misleading. Consequently, it is essential to adopt innovative forecasting methods
for integer-valued time series analysis. The rapid advancement of machine learning
and deep learning in recent years has offered numerous new perspectives, such as
the deep autoregressive model based on autoregressive recurrent neural network
proposed by Salinas, Flunkert, Gasthaus, and Januschowski [10], which may hold
significant potential for widespread application in the domain of integer-valued
time series.
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Appendix A

Appendix A.1. Proofs

Property A1.

(i) Given the data generation process (4), the following can be proved using the law of
iterated expectation:

E(Yt|Yt−1; φt) = φtYt−1 + λ,

Var(Yt|Yt−1; φt) = φtYt−1 + σ2
Z.

Using the formula Var(Y) = Var(E(Y|X)) +E(Var(Y|X)), the result can be proved

(ii) By the law of iterated expectation, we know:

E(YtYt−1) = E(Yt−1E(Yt|Yt−1)) = E
(

φt−1Y2
t−1 + Yt−1λ

)
,

E(Yt)E(Yt−1) = E
(

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 + λ

)
E(Yt−1).

https://www.mdpi.com/article/10.3390/e25060859/s1
https://www.mdpi.com/article/10.3390/e25060859/s1
http://www.wiley.com/go/weiss/discrete-valuedtimeseries
http://www.wiley.com/go/weiss/discrete-valuedtimeseries
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From this, it follows that:

Cov(Yt, Yt−1) = E
(

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Y2

t−1

)
−E

(
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1

)
E(Yt−1).

Property A2. According to Theorem 1 in Tweedie [27] (also see Meyn and Tweedie [28]), the
sufficient condition for {Yt} to be an ergodic Markov chain is the existence of a set K and a
measurable function g in the state space Y of {Yt} such that:∫

Y
P(x, dy)g(y) ≤ g(x)− 1, x ∈ Kc.

and for a constant B: ∫
Y

P(x, dy)g(y) = λ(x) ≤ B < ∞, x ∈ K.

where P(x, A) = P(Yt ∈ A|Yt−1 = x) .
The state spaceY of {Yt} is the set of natural numbersN = {0, 1, 2, 3, . . .}. Let g(y) = y,

then we have: ∫
N P(x, dy)g(y) =

∞

∑
y=0

P(Yt = y|Yt−1 = x) = E(Yt|Yt−1 = x)

=
exp[ν(Yt−1;β)]

1+exp[ν(Yt−1;β)] x + λ.

Since sup
y∈N

ν(y; β) < ∞, then:

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
=

1
1 + exp[−ν(x; β)]

≤ 1

1 + exp

[
−sup

y∈N
ν(y; β)

] < 1.

Therefore, we can choose a constant 0 < m < 1, such that exp[ν(Yt−1;β)]
1+exp[ν(Yt−1;β)] < m. Let

N =
∣∣∣ λ+1

1−m

∣∣∣+ 1, where bcc represents the floor function of c. Defining K = {0, 1, 2, . . . , N − 1},
we know:∫

N
P(x, dy)g(y) = E(Yt|Yt−1 = x) < mx + λ < x− 1 = g(x)− 1, x ∈ Kc,

∫
N

P(x, dy)g(y) = E(Yt|Yt−1 = x) < x + λ < N + λ < ∞, x ∈ K.

Hence, the data generation process {Yt} is ergodic.

Theorem A1. According to Theorems 5 and 6 in Klimko and Nelson [29], let g = E
(

Yt

∣∣∣Y(t−1)

)
,

if the following four conditions hold, then Theorem 1 in this paper holds:

(i) ∂g
∂θi

, ∂2g
∂θi∂θj

, ∂3g
∂θi∂θj∂θk

, 1 ≤ i, j, k ≤ `+ 1, exists and are continuous with respect to θ.

(ii) For 1 ≤ i, j ≤ `+ 1, E
∣∣∣(Yt − g) ∂g

∂θi

∣∣∣ < ∞, E
∣∣∣(Yt − g) ∂2g

∂θi∂θj

∣∣∣ < ∞, E
∣∣∣ ∂g

∂θi

∂g
∂θj

∣∣∣ < ∞.

(iii) For 1 ≤ i, j, k ≤ `+ 1, there exist functions:

H(0)(Yt−1, . . . , Y0), H(1)
i (Yt−1, . . . , Y0), H(2)

ij (Yt−1, . . . , Y0), H(3)
ijk (Yt−1, . . . , Y0),
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such that

|g| ≤ H(0),
∣∣∣ ∂g

∂θi

∣∣∣ ≤ H(1)
i ,

∣∣∣ ∂2g
∂θi∂θj

∣∣∣ ≤ H(2)
ij ,

∣∣∣ ∂3g
∂θi∂θj∂θk

∣∣∣ ≤ H(3)
ijk ,

E
∣∣∣Yt·H(3)

ijk (Yt−1, . . . , Y0)
∣∣∣ < ∞,

H(0)(Yt−1, . . . , Y0)H(3)
ijk (Yt−1, . . . , Y0) < ∞,

E
∣∣∣H(1)

i (Yt−1, . . . , Y0)H(2)
ij (Yt−1, . . . , Y0)

∣∣∣ < ∞.

(iv) E(Yt|Yt−1, . . . , Y0) = E
(

Yt

∣∣∣Y(t−1)

)
, a.e., t ≥ 1,

E
(

u2
t (θ)

∣∣∣∣∣ ∂g
∂θi

∂g
∂θj

∣∣∣∣∣
)

< ∞,

where ut(θ) = Yt −E(Yt|Yt−1) .

For model (4), g(θ) = exp[ν(Yt−1;β)]
1+exp[ν(Yt−1;β)]Yt−1 + λ, for 1 ≤ i, j, k ≤ `, we have:

|g(θ)| < Yt−1 + λ,
∣∣∣∣ ∂g
∂θ`+1

∣∣∣∣ = 1,
∣∣∣∣ ∂g
∂θi

∣∣∣∣ < ∣∣∣∣ ∂ν

∂βi

∣∣∣∣Yt−1,

∣∣∣∣∣ ∂2g
∂θi∂θj

∣∣∣∣∣ <
(∣∣∣∣∣ ∂g

∂θi

∂g
∂θj

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂β j

∣∣∣∣∣
)

Yt−1,

∣∣∣∣∣ ∂3g
∂θi∂θj∂θk

∣∣∣∣∣ <
(∣∣∣∣∣ ∂ν

∂βi

∂ν

∂β j

∂ν

∂βk

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂βk

∂ν

∂β j

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂β j∂βk

∂ν

∂βi

∣∣∣∣∣+
∣∣∣∣∣ ∂2ν

∂βi∂β j

∂ν

∂βk

∣∣∣∣∣
)

Yt−1 +

∣∣∣∣∣ ∂3ν

∂βi∂β j∂βk

∣∣∣∣∣Yt−1.

Note that the second- and third-order partial derivatives of the function g with respect to λ are

both 0. According to assumptions (A2) and (A3), ∂g
∂θi

, ∂2g
∂θi∂θj

), and ∂3g
∂θi∂θj∂θk

, 1 ≤ i, j, k ≤ ` + 1,

exist and are continuous with respect to θ. According to assumption (A5), V(θ0) is non-singular.
Based on assumptions (A1), (A4), and the Hölder inequality, all four conditions are satisfied. Thus,
Theorem 1 holds.

Lemma A1.
{

Mt(θ)Mt(θ)
′
}

is an integrable process.

Note that exp[ν(Yt−1; β)]
1+exp[ν(Yt−1; β)]

< 1, 1
1+exp[ν(Yt−1; β)]

≤ 1. According to assumption (A4), if
i ≤ `, then:

E(mtimti) ≤ E
{[

Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi

∂ν(Yt−1; β)

∂βi
Y2

t−1

}

≤

√
E
[

Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]4√
E
(

N4(y)Y4
t−1
)

≤

√
E
[

Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]4√√
E(N8(y))

√
EY8

t−1 < ∞.

Similarly, we can derive that:
If i, j ≤ `, i 6= j, then:

E
(
mtimtj

)
≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi

∂ν(Yt−1; β)

∂β j
Y2

t−1

}
< ∞.
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If i ≤ `, j = `+ 1, then:

E
(
mtimtj

)
≤ E

{[
Yt −

exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2 ∂ν(Yt−1; β)

∂βi
Yt−1

}
< ∞.

If i = `+ 1, then:

E(mtimti) ≤ E
{[

Yt −
exp[ν(Yt−1; β)]

1 + exp[ν(Yt−1; β)]
Yt−1 − λ

]2
}

< ∞.

Lemma A2. max1≤t≤T‖Mt(θ)‖ = op

(
T

1
2

)
.

Given assumption (A4) and Lemma A1, it follows that E(Mt(θ)′Mt(θ)) < ∞, re-
sulting in ∑∞

t=1 P(Mt(θ)′Mt(θ)) < ∞. As the {Yt} series is strictly stationary, the event{
‖Mt(θ)‖ > t

1
2

}
occurs only a finite number of times with probability 1.

By a similar reasoning, let M∗T = max1≤t≤T‖Mt(θ)‖, and for any ε > 0, with probabil-
ity 1, there will be only a finite number of T ∈ N such that M∗T > ε

√
T. Consequently:

limsupT M∗TT−
1
2 ≤ ε, a.s.

This result implies that M∗T = op.

Lemma A3. max1≤t≤T
t

∑T
t=1 E(mtimtj)

< ∞, ∀1 ≤ i, j ≤ `+ 1.

The ergodicity property of {Yt} and Lemma A1 lead to:

max1≤t≤T
t

∑T
t=1 E

(
mtimtj

) = max1≤t≤T
t
T
(
E
(
mtimtj

))−1 ≤
(
E
(
mtimtj

))−1
= O(1).

Theorem A2. Given the ergodicity property of {Yt} and Lemma A1, and applying Theorem 14.6
from Davidson [30], we have:

1
T

T

∑
t=2

Mt(θ0)Mt(θ0)
′ a.s.→ E

(
Mt(θ0)Mt(θ0)

′
)

.

LetFn = σ(Y1, Y2, . . . , Yn), M̃ni = ∑n
i=1 mti(θ), 1 ≤ i ≤ `+ 1. For 1 ≤ i ≤ `, we have

E
(

M̃ni

∣∣∣Fn−1

)
= M̃(n−1)i,

+E
((

Yn −
exp[ν(Yn−1; β)]

1 + exp[ν(Yn−1; β)]
Yn−1 − λ

)
exp[ν(Yn−1; β)]

(1 + exp[ν(Yn−1; β)])2
∂ν(y; β)

∂βi
Yn−1

∣∣∣∣∣Fn−1

)
,

= M̃(n−1)i.

Similarly, E
(

M̃n(`+1)

∣∣∣Fn−1

)
= M̃(n−1)(`+1). Thus, for 1 ≤ i ≤ `+ 1,

{
M̃ni,Fn, n ≥ 0

}
is a martingale. Based on this and the ergodicity property of {Yt}, and using Lemmas 2 and 3,
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applying Theorem 25.4 from Davidson [30] establishes that the conditions of Theorem 25.3 in
Davidson [30] are satisfied, resulting in:

1√
T

T

∑
t=2

mti(θ0)
d→ N

(
0,E

(
m2

ti(θ)
))

.

Furthermore, for any (`+ 1)-dimensional vector c 6= 0, we have:

1
T

T

∑
t=2

c′Mt(θ0)
d→ N

(
0, σ2

)
.

Here, σ2 = E
(

c′Mt(θ0)Mt(θ0)
′c
)

. Therefore, we have:

1√
T

T

∑
t=2

Mt(θ0)
d→ N

(
0,E

(
Mt(θ0)Mt(θ0)

′
))

.

In summary, H(θ0)
d→ χ2(`+ 1).

Lemma A4. Let {Yt} be an ergodic stationary random variable sequence; for any i ≥ 2,
E(Yt|Y1, Y2, . . . , Yt−1) = 0, a.s., and E

(
Y2

1
)
= 1. Then:

limsup ∑T
t=1 Yt√

2TloglogT
= 1.

The proof can be found in Stout [31].

Theorem A3. Following steps similar to those in Yu, Wang, and Yang [18] and Qin and Lawless [20],
we can show (by replacing the usage of the double logarithm law with Lemma A4):

γ(θ) =

 1
T

T

∑
t=2

Mt(θ)Mt(θ)
′

 1
T

T

∑
t=

Mt(θ) + o
(

T
1
3

)
.

2LE(θ0) =

 T

∑
t=

Mt(θ0)

′ T

∑
t=2

Mt(θ0)Mt(θ0)
′

−1 T

∑
t=

Mt(θ0)

+ o(1).

Furthermore:

√
T
(
θ̂EL − θ0

)
= S−1

22 S21S−1
11

1√
T

T

∑
t=

Mt(θ0) + op(1)
d→ N

(
0, S−1

22

)
,

2LE
(
θ̂EL
)
=

 T

∑
t=

Mt(θ0)

′S3

 T

∑
t=

Mt(θ0)

+ op(1),

where:

S3 = S−1
11

(
I + S12S−1

22 S21S−1
11

)
, S−1

22 =

[
E
(

∂Mt(θ0)

∂θ′

)(
E
(

Mt(θ0)Mt(θ0)
′
))−1

E
(

∂Mt(θ0)

∂θ

)]−1
,

S11 = E
(

Mt(θ0)Mt(θ0)
′
)

, S12 = E
(

∂Mt(θ0)

∂θ′

)
, S21 = S′12.
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Based on this, we perform a Taylor expansion of 2LE

(
θ
(1)
0 , θ̃

(2)
EL

)
− 2LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
at

θ = θ0, γ = 0:

2LE

(
θ
(1)
0 , θ̃

(2)
EL

)
− 2LE

(
θ̂
(1)
EL , θ̂

(2)
EL

)
d→

E(Mt(θ0)Mt(θ0)
′
)− 1

2 1√
T

T

∑
t=1

Mt(θ0)

′(E(Mt(θ0)Mt(θ0)
′
))− 1

2

×
{
E
(

∂Mt(θ0)

∂θ

)[
E
(

∂Mt(θ0)

∂θ′

)(
E
(

Mt(θ0)Mt(θ0)
′
))−1

E
(

∂Mt(θ0)

∂θ

)]−1
E
(

∂Mt(θ0)

∂θ′

)
−

(
∂Mt(θ0)

∂θ(1)

)[
E
(

∂Mt(θ0)

∂θ′
(1)

)(
E
(

Mt(θ0)Mt(θ0)
′
))−1

E
(

∂Mt(θ0)

∂θ(1)

)]−1

E
(

∂Mt(θ0)

∂θ′
(1)

)
×
(
E
(

Mt(θ0)Mt(θ0)
′
))− 1

2

[
E
(

Mt(θ0)Mt(θ0)
′
)− 1

2 1√
T

T

∑
t=2

Mt(θ0)

]
+ op(1).

It is easy to see that

E
(

∂Mt(θ0)

∂θ

)[
E
(

∂Mt(θ0)

∂θ′

)(
E
(

Mt(θ0)Mt(θ0)
′
))−1

E
(

∂Mt(θ0)

∂θ

)]−1
E
(

∂Mt(θ0)

∂θ′

)

−
(

∂Mt(θ0)

∂θ
(1)

)[
E
(

∂Mt(θ0)

∂θ
′
(1)

)
(E(Mt(θ0)Mt(θ0)

′ ))−1E
(

∂Mt(θ0)

∂θ(1)

)]−1

E
(

∂Mt(θ0)

∂θ
′
(1)

)

is a symmetric matrix; we will now show that this symmetric matrix is positive–semi definite:

E
(

∂Mt(θ0)

∂θ

)[
E
(

∂Mt(θ0)

∂θ′

)(
E
(

Mt(θ0)Mt(θ0)
′
))−1

E
(

∂Mt(θ0)

∂θ

)]−1
E
(

∂Mt(θ0)

∂θ′

)

&
[
E
(

∂Mt(θ0)
∂θ

)
E
(

∂Mt(θ0)
∂θ

(1)

)]E
(

∂Mt(θ0)
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here, A & B implies that A − B is positive–semi definite. Therefore, by the result in Rao [32],
we have:
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EL

)
d→ χ2(q).
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Appendix A.2. Complementary Numerical Simulations

Table A1. Parameter Estimation Simulation Results.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 2 β1 = −0.8, λ = 3.5
φt|yt−1 is fixed.

T = 300

BIAS 0.4431 0.3667 −0.1879 −0.1624 −0.0282 −0.0306

RMSE 2.5257 2.7556 1.4189 1.1704 0.2811 0.2811

MAPE 0.4738 0.4791 0.3841 0.3682 0.0637 0.0637

T = 500

BIAS 0.2098 0.2051 −0.0759 −0.0741 −0.0074 −0.0085

RMSE 0.8623 0.8619 0.4246 0.4371 0.2066 0.2062

MAPE 0.3049 0.3041 0.2148 0.2141 0.0475 0.0474

T = 800

BIAS 0.1109 0.1071 −0.0346 −0.0329 −0.0119 −0.0126

RMSE 0.5673 0.5609 0.1646 0.1619 0.1783 0.1775

MAPE 0.2229 0.2208 0.1509 0.1496 0.0404 0.0403

T = 1200

BIAS 0.0862 0.0848 −0.0232 −0.0224 −0.0093 −0.0101

RMSE 0.4491 0.4477 0.1201 0.1193 0.1375 0.1371

MAPE 0.1773 0.1771 0.1169 0.1163 0.0313 0.0311

T = 2000

BIAS 0.0278 0.0269 −0.0119 −0.0115 0.0007 0.0003

RMSE 0.3369 0.3359 0.0889 0.0889 0.1076 0.1074

MAPE 0.1339 0.1333 0.0864 0.0864 0.0246 0.0244

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.5624 0.3983 −0.2331 −0.1424 −0.0404 −0.0203

RMSE 2.0828 1.1916 1.2894 0.4719 0.2807 0.2534

MAPE 0.4877 0.4146 0.4355 0.3232 0.0641 0.0581

T = 500

BIAS 0.1717 0.1399 −0.0712 −0.0593 −0.0028 0.0079

RMSE 0.8577 0.7919 0.3289 0.2552 0.2153 0.1982

MAPE 0.3028 0.2852 0.2125 0.2012 0.0496 0.0543

T = 800

BIAS 0.1036 0.0809 −0.0317 −0.0285 −0.0124 −0.0039

RMSE 0.5735 0.5538 0.1547 0.1499 0.1725 0.1563

MAPE 0.2212 0.2158 0.1458 0.1427 0.0405 0.0036
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Table A1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 1200

BIAS 0.0531 0.0367 −0.0152 −0.0131 −0.0114 −0.0067

RMSE 0.4479 0.4334 0.1217 0.1196 0.1445 0.1303

MAPE 0.1785 0.1723 0.1177 0.1167 0.0331 0.0301

T = 2000

BIAS 0.0453 0.0385 −0.0143 −0.0129 −0.0048 −0.0029

RMSE 0.3493 0.3429 0.0912 0.0898 0.1091 0.0903

MAPE 0.1389 0.1354 0.0885 0.0871 0.0248 0.0231

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows an exponential distribution.

T = 300

BIAS 0.5805 0.4213 −0.2463 −0.1944 −0.0092 0.0232

RMSE 2.2029 2.0433 1.0969 1.0533 0.2702 0.2058

MAPE 0.5443 0.4843 0.4557 0.3986 0.0614 0.0466

T = 500

BIAS 0.1923 0.0879 −0.0723 −0.0451 −0.0131 −0.0071

RMSE 1.0283 0.8006 0.2859 0.2364 0.2127 0.1601

MAPE 0.3299 0.2888 0.2236 0.1963 0.0483 0.0359

T = 800

BIAS 0.1439 0.0929 −0.0464 −0.0336 −0.0061 0.0047

RMSE 0.6386 0.5709 0.1855 0.1605 0.1724 0.1293

MAPE 0.2456 0.2238 0.1653 0.1497 0.0389 0.0291

T = 1200

BIAS 0.0699 0.0416 −0.0201 −0.0167 −0.0095 0.0025

RMSE 0.4731 0.4405 0.1242 0.1169 0.1404 0.1049

MAPE 0.1869 0.1744 0.1172 0.1123 0.0322 0.0239

T=2000

BIAS 0.0519 0.0319 −0.0151 −0.0111 −0.0049 0.0007

RMSE 0.3669 0.3435 0.0976 0.9161 0.1106 0.0818

MAPE 0.1442 0.1369 0.0955 0.0908 0.0251 0.0185

Parameter : β0 = 2, β1 = −0.8, λ = 3.5
φt|yt−1 follows a chi−square distribution.

T = 300

BIAS 0.9824 0.4063 −0.5663 −0.1282 −0.0098 0.0078

RMSE 3.3564 2.2437 1.6833 0.6341 0.3081 0.1569

MAPE 0.8569 0.5793 0.7361 0.3699 0.0696 0.0361

T = 500

BIAS 0.4831 0.2249 −0.1805 −0.0621 −0.0202 −0.0068

RMSE 1.4549 0.9875 0.8114 0.2533 0.2293 0.1187

MAPE 0.4856 0.3749 0.3716 0.2354 0.0514 0.0269
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Table A1. Cont.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

T = 800

BIAS 0.2344 0.0869 −0.092 −0.0305 −0.008 0.0036

RMSE 1.0181 0.7138 0.4998 0.1758 0.1916 0.0962

MAPE 0.3477 0.2792 0.2501 0.1712 0.0433 0.0221

T = 1200

BIAS 0.1382 0.0428 −0.041 −0.015 −0.014 −0.0021

RMSE 0.6592 0.5481 0.1766 0.1351 0.1557 0.0782

MAPE 0.2531 0.2164 0.1649 0.1325 0.0353 0.0181

T = 2000

BIAS 0.0751 0.0438 −0.0269 −0.0161 −0.0011 0.0019

RMSE 0.5081 0.4318 0.1322 0.1079 0.1211 0.0611

MAPE 0.2017 0.1713 0.1279 0.1061 0.0277 0.0141

Table A2. Simulation Results for Parameter Estimation under Model Misspecification. With likelihood
function settled as φt|yt−1 it follows a chi-squared distribution.

Sample Size β(CLS)
0 β(CML)

0 β(CLS)
1 β(CML)

1 λ(CLS) λ(CML)

Parameter : β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T = 300

BIAS 0.0865 −1.8661 −0.0456 −1.5741 0.0046 0.4508

RMSE 0.8065 4.647 0.2301 5.3142 0.1454 0.4777

MAPE 0.6267 2.7518 0.2865 3.1747 0.0964 0.3757

T = 500

BIAS 0.0312 −2.0474 −0.0228 −0.788 0.0043 0.4587

RMSE 0.5636 5.0468 0.1567 5.2847 0.1052 0.4753

MAPE 0.4493 2.5831 0.2046 1.9182 0.0703 0.3823

T = 800

BIAS 0.0292 −2.1058 −0.0165 −0.3596 0.0038 0.4548

RMSE 0.4503 3.2688 0.1244 3.0257 0.0852 0.4657

MAPE 0.3587 2.3491 0.1651 1.2312 0.0563 0.3789

T = 1200

BIAS 0.0249 −2.1077 −0.0127 −0.0739 0.0003 0.4558

RMSE 0.3513 2.6833 0.0971 1.7031 0.0689 0.4641

MAPE 0.2815 2.1461 0.1289 0.7674 0.0464 0.3799

T = 2000

BIAS 0.0062 −2.0216 −0.0041 0.0766 0.0016 0.4546

RMSE 0.2735 2.2846 0.0749 1.0373 0.0529 0.4591

MAPE 0.2165 2.0256 0.0983 0.5483 0.0353 0.3788
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Table A3. Empirical Likelihood Test for the λ Parameter. The significance level is set at 0.05.

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 is fixed.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.537 0.705 0.865 0.995 1

H0 : λ = 1.35 0.235 0.263 0.375 0.542 0.757

H0 : λ = 1.2 (true) 0.038 0.045 0.043 0.052 0.055

H0 : λ = 1.05 0.176 0.33 0.415 0.593 0.823

H0 : λ = 0.9 0.554 0.806 0.96 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a uniform distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.461 0.754 0.905 0.984 1

H0 : λ = 1.35 0.212 0.304 0.417 0.54 0.786

H0 : λ = 1.2 (true) 0.059 0.06 0.062 0.059 0.05

H0 : λ = 1.05 0.167 0.321 0.407 0.588 0.845

H0 : λ = 0.9 0.645 0.845 0.975 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows an exponential distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.495 0.722 0.943 0.991 1

H0 : λ = 1.35 0.171 0.31 0.505 0.593 0.844

H0 : λ = 1.2 (true) 0.049 0.046 0.055 0.058 0.047

H0 : λ = 1.05 0.235 0.286 0.442 0.605 0.884

H0 : λ = 0.9 0.57 0.815 0.972 1 1

Parameter: β0 = 1, β1 = −0.6, λ = 1.2
φt|yt−1 follows a chi−square distribution.

T 300 500 800 1200 2000

H0 : λ = 1.5 0.478 0.648 0.852 0.951 1

H0 : λ = 1.35 0.195 0.334 0.491 0.612 0.807

H0 : λ = 1.2 (true) 0.086 0.088 0.079 0.054 0.051

H0 : λ = 1.05 0.115 0.225 0.318 0.515 0.795

H0 : λ = 0.9 0.417 0.635 0.859 0.946 1

Table A4. Empirical Likelihood Test for β1 with a True Value of 0.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 follows an exponential distribution, significance level 0.05.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.437 0.446 0.416 0.51 0.427

H0 : β1 = −0.1 0.71 0.787 0.863 0.954 0.982

H0 : β1 = −0.2 0.813 0.933 0.989 0.997 1

H0 : β1 = −0.3 0.912 0.983 1 1 1

H0 : β1 = −0.4 0.945 0.982 1 1 1
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Table A4. Cont.

Parameter : β0 = 1, β1 = 0, λ = 1.2
φt|yt−1 follows an exponential distribution, significance level 0.10.

T 300 500 800 1200 2000

H0 : β1 = 0 (true) 0.543 0.544 0.517 0.613 0.55

H0 : β1 = −0.1 0.797 0.846 0.93 0.982 0.993

H0 : β1 = −0.2 0.872 0.957 0.988 1 1

H0 : β1 = −0.3 0.945 1 1 1 1

H0 : β1 = −0.4 0.971 0.985 1 1 1

Appendix A.3. Complementary Figure
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