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Abstract: Marine background noise (MBN) is the background noise of the marine environment, which
can be used to invert the parameters of the marine environment. However, due to the complexity
of the marine environment, it is difficult to extract the features of the MBN. In this paper, we study
the feature extraction method of MBN based on nonlinear dynamics features, where the nonlinear
dynamical features include two main categories: entropy and Lempel–Ziv complexity (LZC). We
have performed single feature and multiple feature comparative experiments on feature extraction
based on entropy and LZC, respectively: for entropy-based feature extraction experiments, we
compared feature extraction methods based on dispersion entropy (DE), permutation entropy (PE),
fuzzy entropy (FE), and sample entropy (SE); for LZC-based feature extraction experiments, we
compared feature extraction methods based on LZC, dispersion LZC (DLZC) and permutation LZC
(PLZC), and dispersion entropy-based LZC (DELZC). The simulation experiments prove that all
kinds of nonlinear dynamics features can effectively detect the change of time series complexity, and
the actual experimental results show that regardless of the entropy-based feature extraction method
or LZC-based feature extraction method, they both present better feature extraction performance
for MBN.

Keywords: marine background noise; feature extraction; nonlinear dynamics feature; entropy;
Lempel–Ziv complexity

1. Introduction

Marine background noise (MBN) is an eternal sound field in the marine environment
that contains information about environmental characteristics such as water body, seabed,
and sea surfaces [1,2]. For sonar with acoustic waves as the main means of detection
and communication, it is necessary to consider the complex sound field with marine
environmental noise as the background. Therefore, the study of ocean background noise,
especially the study of feature extraction, is of great significance to the development of
underwater acoustic weapons [3].

At present, traditional feature extraction methods mainly include frequency domain
and time domain feature extraction methods [4–6], which can only effectively extract
linear and stationary signals. However, MBN is a classic underwater acoustic signal with
nonlinear, nonstationary, and non-Gaussian characteristics [7], and traditional feature
extraction methods cannot effectively reflect its information [8,9]. While deep-learning-
based methods also work well for feature extraction, they often require larger datasets
and higher experimental configurations [10,11]. To address these shortcomings of the
above methods, many scholars have studied a large number of nonlinear feature extraction
methods, among which the mainstream methods are mainly based on two aspects of
entropy and LZC [12,13]. This paper divides nonlinear dynamic features into two categories,
entropy and Lempel–Ziv complexity (LZC), for comparative experimental analysis of MBN.

Entropy can be used to analyze signal complexity by virtue of its ability to characterize
the degree of chaos in a time series [14]. Since the Shannon entropy theorem was put
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forward in 1948 [15], entropy has been widely used in various fields. In 1991, Pincus et al.
first proposed approximate entropy (AE) [16], which improves the dependence of previous
entropy on the length of time series and has a strong general ability. Sample entropy (SE)
was first proposed by Richman et al. in 2000 [17]. Similar to AE, they are functions defined
based on the unit step function, and SE can effectively reflect the information of signals with
data loss. In 2007, Chen et al. proposed fuzzy entropy (FE) by combining the concepts of
SE and fuzzy membership [18], which is an improved AE algorithm that reduces the signal
loss of AE and SE due to the characteristics of unit step function during signal calculation.
Unlike AE, SE, and FE, PE was proposed by Bandt et al. in 2002 [19], which is an improved
entropy based on the Shannon entropy theorem; its calculation process is simple and has
strong anti-noise ability. DE was proposed by Rostaghi et al. in 2016 [20]; it not only has
the advantage of fast calculation speed, but also can reflect the amplitude change of signal,
which is one of the most widely used entropies at present.

LZC is a significant theory in nonlinear dynamics, similar to entropy, and it is often
used to evaluate the disorder and irregularity of signals [21]. The primary LZC algorithm
was proposed by Lempel and Ziv in 1976 [22]. Due to the binary conversion of sequences,
LZC has the advantages of no parameter setting and high computational efficiency, but
the converted 0-1 sequence loses a lot of the original information of the sequence [23,24].
For this reason, Bai et al. [25] first combined LZC with entropy theory and proposed the
permutation LZC (PLZC) by replacing the binary mapping with the permutation pattern
in PE, which inherits the strong anti-noise ability of PE and improves the ability of LZC
to characterize signals [26]. In 2020, Mao et al. [27] were inspired by the advantages
of DE to effectively reflect amplitude information and integrated it into LZC to launch
dispersion LZC (DLZC); the application of DLZC in various fields showed high stability
and separability [28]. Dispersion entropy-based Lempel–Ziv complexity (DELZC) is a
newly proposed complexity measure [29], which makes full use of the more effective
dispersion pattern in DE to reflect more pattern information and further boosts the ability
to capture the dynamic changes of signal.

The main contribution of this paper is the study of an MBN feature extraction method
based on nonlinear dynamic features, where the entropy-based features include dispersion
entropy (DE), permutation entropy (PE), fuzzy entropy (FE), and sample entropy (SE), and
LZC-based features include LZC, dispersion LZC (DLZC), permutation LZC (PLZC), and
dispersion entropy-based LZC (DELZC). Lastly, the separability of various types of features
is compared by classification experiments of real MBNs. This paper is organized as follows:
Section 2 provides a brief review of common entropy and LZC and conducts simulation
experiments on their ability to detect time series complexity. In Section 3, we conducted the
feature extraction method of MBN based on nonlinear dynamic features. Sections 4 and 5
present the discussion and conclusions, respectively.

2. Nonlinear Dynamic Features

In this paper, nonlinear dynamic features are divided into two categories: entropy
and Lempel–Ziv complexity (LZC). We introduce the relevant theories of entropy and
LZC, respectively.

2.1. Entropy

Entropy can reflect the complexity of time series, among which SE, FE, PE, and DE
are four common entropies, and their steps are explained in this section. The physical
meanings of SE and FE are similar; these can measure the probability of the occurrence of
new patterns in a time series. The specific steps of SE are as follows:

(1) For a specific time series X = {xi, i = 1, 2, . . . , n}, given an embedding dimension
m, a set of vector sequences

{
xm

i , i = n−m + 1
}

can be obtained, where xm
i can be

expressed as:
xm

i = {xi, xi+1, . . . , xi+m−1} (1)
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(2) Define the absolute value of the maximum difference between the distance between
vectors xm

i and xm
j :

d =
[

xm
i , xm

j

]
= max

∣∣∣xi+k − xj+k

∣∣∣ (2)

where k = 0, 1, . . . , m− 1.
(3) Given xm

i , record the standard deviation of X as Std, count the number of j with d ≤ r
as Bi, 0.1Std ≤ r ≤ 0.25Std, and define Bm

i (r) =
1

n−m−1 Bi.
(4) Bm(r) is defined as:

Bm(r) =
1

n−m

N−m

∑
i=1

Bm
i (r) (3)

(5) Increase the embedding dimension to m + 1, and repeat the above steps to obtain
Bm+1

i (r) and Bm+1(r). The final expression of SE is:

SE(m, r) = lim
n→∞

{
− ln

[
Bm+1(r)

Bm(r)

]}
(4)

where the calculation flow chart of SE is shown in Figure 1.

Figure 1. The calculation flow chart of SE.

FE introduces fuzzy membership degree Dm(n, r) = e−
d2
r based on SE, which can be

expressed as:

FE(m, r) = lim
n→∞

{
− ln

[
Dm+1(r)

Dm(r)

]}
(5)

where m means embedding dimension, and 0.1Std ≤ r ≤ 0.25Std.
The PE and DE are both developed based on Shannon entropy, where PE can be

defined as follows:

(1) For the given time series X = {xe, e = 1, 2, . . . , n}, phase space reconstruction is
performed to obtain Y:

Y =



y1
...

yj
...
yK

 (6)

yj =
{

xj, x(j+t), . . . , x(j+(m−1)t)

}
(7)

where m is the embedding dimension, t is the delay time, and K = n− (m− 1)t.
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(2) Reorder the elements in each reconstructed component in ascending order to obtain:

x(j+(i1−1)t) ≤ x(j+(i2−1)t) ≤ . . . ≤ x(j+(im−1)t) (8)

If x(j+(iq1−1)t) = x(j+(iq2−1)t), then sort according to the size of i, that is, x(j+(iq1−1)t) ≤
x(j+(iq2−1)t).

Finally, the new index of each group of elements is S = {i1, i2, . . . , im}, in which there
are m! different time series, and the probability of each series occurrence are P1, P2, . . . Pl .

(3) According to the Shannon entropy theorem, the expression of PE can be expressed as:

PE(m, t) = −
l

∑
j=1

PjlnPj (9)

where Figure 2 displays the calculation flow chart of PE.

Figure 2. The calculation flow chart of PE.

DE is an improved algorithm of PE, and its calculation formula is:

DE(m, c, t) = −
cm

∑
u=1

PulnPu (10)

where m signifies the embedding dimension, c represents the number of categories, and t is
the delay time.

2.2. Lempel–Ziv Complexity

Lempel–Ziv complexity is an important branch of nonlinear dynamics, among which
LZC, PLZC, DLZC, and DELZC are the most representative ones. This section gives the
calculation steps of these four LZC-based features.

LZC is the primitive algorithm, which reflects the complexity of time series by counting
the occurrence rate of new patterns in the sequence. The calculation flow chart of LZC is
illustrated in Figure 3, and specific steps are as follows:

(1) For time series X = {xi, i = 1, 2, 3, . . . , N}, each element is converted to 0 or 1 by the
following formula:

yi =

{
0, i f xi < x
1, otherwise

(11)

where x is the mean value of sequence X, then the symbol sequence Y = {yi, i =
1, 2 . . . . . . , N} is obtained.
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(2) Initialize the complexity index c(l) and count value cv to 0 and 1, respectively, and
let S and Q denote the first and second elements in Y. By merging S and Q into SQ,
SQv is obtained by removing the last element of SQ.

(3) Judge whether Q belongs to SQv. If so, update Q by adding the next character.
Otherwise, c(l) = c(l) + 1, S = SQ, and initialize Q = {}. For each judgment that
is performed, the updated SQ and updated SQv are obtained in the same way as
Step (2), and cv = cv + 1.

(4) Judge whether cv exceeds l; if not, return to Step (3); otherwise, the calculation of
complexity is completed.

(5) The normalized result of LZC can be expressed as:

LZC =
c(l) log2 l

l
(12)

Figure 3. The calculation flow chart of LZC.

PLZC, DLZC, and DELZC are presented by improving the mapping of the original
sequence in LZC Step (1). PLZC uses the permutation pattern in PE to generate the symbol
sequence for LZC; DLZC and DELZC increase the number of categories in the symbol
sequence by referring to different steps in DE. The calculation flow chart of PLZC, DLZC,
and DELZC is shown in Figure 4.

For PLZC, the calculation process includes Step (1) and Step (2) of PE in Section 2.1,
then we name the obtained permutation pattern according to the corresponding pattern
category to obtain the symbol sequence; finally, the value of PLZC is obtained according to
LZC Step (2) to Step (5). It is noteworthy that the calculation formula will also change as the
number of element categories in the symbol sequence increases, and the specific formula is
as follows:

PLZC =
c(l) logm! l

l
(13)

where m is the embedding dimension.
For DLZC and DELZC, these two algorithms are proposed by introducing the normal

cumulative distribution function (NCDF) and dispersion pattern in DE into the original
LZC, respectively. DLZC employs NCDF and a rounding function to convert the original
sequence into a symbol sequence with c categories; in DELZC, after the conversion of NCDF
and rounding function, the phase space is reconstructed to obtain a variety of dispersion
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patterns, and then the symbol sequence is obtained in a similar way to PLZC. Through the
above processing, the calculation formulas of DLZC and DELZC are as follows:

DLZC =
c(l) logc l

l
(14)

DELZC =
c(l) logcm l

l
(15)

where c is the number of categories and m is the embedding dimension.

Figure 4. The calculation flow chart of PLZC, DLZC, and DELZC.

2.3. Simulation Experiment Verification

For the nonlinear dynamics characterized in the previous section, the MIX signal is
introduced as a reflection of their ability to detect changes in the degree of chaos of the
time series. The MIX signal consists of a periodic signal X1, a random signal X2, and
a controlling parameter u. By artificially changing the parameter u, we can control the
randomness of the entire synthesized signal. The MIX signal can be defined as follows:

MIX = (1− u)× X1 + u× X2

X1 =
√

2sin 2πt
12

X2 ∈
[
−
√

3,
√

3
] (16)

In the comparative experiments of this subsection, u is linearly decreased from an
initial value of 0.99 to a final value of 0.01. The sampling frequency is 1000 Hz, and the total
length is 20 s. The time domain waveform of the MIX signal is shown in Figure 5, where it
can be visually observed that the signal becomes increasingly stable. In this section, sliding
windows with a length of 1 s and 90% overlap are used to extract sample signals, resulting
in a total of 190 segments. By calculating various entropy values for each segment, the
ability of each type of entropy to detect changes in the chaos of the time series is examined.
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Figure 5. Time domain waveform of the MIX signal.

Various entropy change curves of the MIX signal are shown in Figure 6, including DE,
PE, SE, and FE, and Table 1 shows the parameter settings of these four entropies. From
Figure 6, it can be seen that all the entropy value curves generally decrease as the complexity
of the MIX signal decreases, indicating that various entropies can reflect changes in the
degree of chaos in the time series. Among these, the curves of DE and PE are relatively
stable, indicating strong stability of the entropy values, while FE and SE exhibit larger
fluctuations but are able to more clearly reflect changes in the degree of chaos in the signal
during the early stages. In conclusion, all four entropies can effectively reflect changes in
the degree of chaos in the time series.

Figure 6. Various entropy change curves of MIX signal.

Table 1. The parameter settings of four entropies.

Feature
Parameter

m c r t

DE 4 6 − 1
PE 4 − − 1
FE 4 − 0.25 −
SE 1 − 0.25 −
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Similarly, we conducted the same experiments for four types of LZCs, including LZC,
PLZC, DLZC, and DELZC; the obtained complexity value curves are shown in Figure 7,
and their parameters are also shown in Table 2. From Figure 7, it can be observed that
as the complexity of the MIX signal continuously decreases, the change curves of all four
LZCs also show a decreasing trend, while the remaining three complexities except LZC
also show a strong stability in characterizing the degree of MIX signal confusion. Therefore,
it can be concluded that all four complexities can also effectively reflect the change of the
chaos degree of the time series.

Figure 7. Various complexity change curves of MIX signal.

Table 2. The parameter settings of four LZCs.

Feature
Parameter

m τ c

LZC − − −
PLZC 4 1 −
DLZC − − 6

DELZC 4 1 6

3. Feature Extraction of MBN Based on Nonlinear Dynamic Features
3.1. Marine Background Noise

Four types of measured MBN are selected from the dataset of the National Marine
Park Service [30] to study and compare the feature extraction method based on nonlinear
dynamic features, including heavy rain on the sea surface, light wind on the sea surface,
moderate wind on the sea surface, and wind and ship noise on underwater hydrophones,
named H-R, L-W, M-W, and W-S, respectively. For each type of MBN, 100 samples are
randomly selected, where each sample contains 4096 sampling points, and the normalized
MBN is shown in Figure 8.
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Figure 8. The normalized MBN.

3.2. Feature Extraction and Analysis Based on Entropy

In this experiment, four common entropies including DE, PE, FE, and SE are selected
for feature extraction experiments of MBN.

3.2.1. Parameter Setting of Entropy Features

To effectively compare the effect of four entropies on feature extraction for MBN, we
selected the parameters when DE, PE, FE, and SE have the best effect on feature extraction
for four MBN, in which the parameters of DE and PE are m = 4, t = 1, respectively, and
the parameter of DE is c = 6; the parameters of FE and SE are set to r = 0.25, and m is
4 and 1, respectively. The specific details are the same as in Table 1.

3.2.2. Single Feature Extraction and Classification

To verify the advantages and disadvantages of the four entropies, feature extraction
methods based on DE, PE, FE, and SE are used to carry out single feature extraction
experiments for four MBN. Figure 9 displays the feature distribution of the four entropies
for MBN.
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As you can see in Figure 9, the four entropies can distinguish at least one MBN, and
M-W and W-S are the most difficult to identify for all sub-figures; for DE, its ordinate
range is the smallest, and of the feature values of the four MBN, it is the densest; from the
feature distribution figure of PE, it can be seen that the entropy values of three MBN are
mixed together, which is the most overlapping part of all sub-figures; for FE and SE, their
differentiation effect on the four MBN is almost the same, and the overlap of the four MBN
similar to DE is less. It can be concluded that among all feature extraction methods, the
feature extraction method based on DE has the best effect for four MBN, and the feature
extraction method based on PE is the worst.

To compare the recognition results of each entropy more easily for four MBN, a K-
nearest neighbor (KNN) classifier is applied to classify and identify four MBN. For each
entropy, 50 samples of each MBN are randomly selected as training samples, and then the
remaining 50 samples are used as test samples. Figure 10 presents the confusion matrix of
four entropies for MBN, and we further calculate the recognition rate of four entropies to
MBN. Table 3 shows the recognition rate of four entropies.
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Figure 10. The confusion matrix of four entropies for MBN.

Table 3. The recognition rate of four entropies for MBN.

Feature
Category of Signal Average

Recognition RateH-R L-W M-W W-S

DE 88.0% 100.0% 80.0% 98.0% 91.5%
PE 100.0% 80.0% 60.0% 48.0% 72.0%
FE 88.0% 100.0% 72.0% 72.0% 83.0%
SE 90.0% 100.0% 68.0% 98.0% 89.0%

As can be seen from Figure 10 and Table 3, corresponding to the feature distribution
figure, each entropy has a recognition rate of 100% for one MBN; L-W is the easiest to
recognize, and only 10 samples are identified incorrectly for all entropy indexes; for PE,
except for the H-R, all MBN have the largest number of false identification samples, and
W-S is the most difficult to identify; for all confusion matrix figures, only the number of
samples for correct identification of each signal in Figure 10a is not less than 40; Table 2
shows that DE has the highest recognition rate for the four MBN and PE has the lowest
recognition rate. In short, compared with other feature extraction methods, the feature
extraction method based on DE has the best recognition effect for four MBN.

3.2.3. Multiple Feature Extraction and Classification

Although single feature extraction has achieved good results, it still cannot fully
identify the different types of MBN. To further improve the feature extraction effect for MBN,
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we perform multiple feature extraction, extracting two, three, and four features, respectively.
The highest recognition rates of four entropies under multiple feature extraction are listed
in Table 4.

Table 4. The highest recognition rates of four entropies under multiple feature extraction.

Number of Extracted Features

Two Three Four

Highest recognition rate 97.5% 97.5% 96.5%
Selected features DE, PE DE, FE, SE All features

As seen from Table 4, multiple feature extraction methods significantly improve the
recognition rate of single feature extraction methods, and the highest recognition rate of
97.5% is achieved when two or three features are extracted, which is 6% higher than the
highest recognition rate for the single feature extraction methods. Moreover, in multiple
feature extraction, regardless of how many features are extracted, the selected features
all contain DE. However, the recognition rate does not always increase as the number
of extracted features increases. When four features are extracted, the recognition rate
decreases instead.

3.3. Feature Extraction and Analysis Based on LZC

In this section, we select another kind of nonlinear dynamic feature to extract the
features of MBN and analyze them, including LZC, PLZC, DLZC, and DELZC.

3.3.1. Parameter Setting of LZC-Based Features

For the purpose of comparing the performance of four LZC-based features in MBN
feature extraction, we set the common parameters of these features to be consistent. Among
them, LZC does not need parameter settings; the time delay τ and the embedding dimen-
sion m of PLZC and DELZC are set to 1 and 4, respectively; the number of categories c of
DELZC and DLZC is uniformly set to 6, and the specific details are the same as in Table 2.

3.3.2. Feature Extraction and Classification

To intuitively show the feature extraction effect of four LZC-based features on different
MBN, this section gives the feature distributions of each LZC-based feature. Figure 11
shows the feature distributions of four LZC-based features for MBN.

According to the observations in Figure 11, it can be seen that for the four LZC
features, the distribution of the L-W signal samples is the messiest and accompanied by
large fluctuation; for PLZC, the aliasing phenomenon of feature distribution is the most
serious, and the samples of L-W, M-W, and W-S almost completely overlap; compared with
LZC, DLZC and DELZ can better distinguish H-R from the other three signals due to fewer
overlapping samples. To sum up, DLZC and DELZC have stronger recognition ability for
four MBN.

From the Figure 11 and the above analysis, it is obvious that only relying on the feature
distribution cannot determine which LZC-based features perform best in feature extraction.
For this reason, we used a KNN classifier to classify different types of MBN, and the number
of misclassified samples and recognition rate are used as the criteria for evaluating the
effect of each LZC-based feature. Figure 12 and Table 5 illustrate the confusion matrix of
four MBN and the recognition rate of four MBN, respectively.
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Figure 11. The feature distributions of four LZC-based features for MBN.

Figure 12. The confusion matrix of four LZC-based features for MBN.
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Table 5. The recognition rate of four LZC-based features for MBN.

Feature
Category of Signal Average

Recognition RateH-R L-W M-W W-S

LZC 82.0% 98.0% 56.0% 64.0% 75.0%
PLZC 94.0% 72.0% 36.0% 18.0% 55.0%
DLZC 88.0% 100% 60.0% 78.0% 81.5%

DELZC 92.0% 100% 82.0% 96.0% 92.5%

From Figure 12 and Table 5, it can be concluded that different LZC-based features
have different recognition effects on various MBN; of all LZC-based features, PLZC has the
most misclassified samples and the lowest average recognition rate for the four MBN; for
DELZC, its distinguishing effect on the four MBN is significantly better than LZC, PLZC,
and DLZC, and the average recognition rate is at least 11% higher than the other three
features. On the whole, the recognition result conforms to the situation shown by the
feature distribution, and it can be concluded from the recognition result that DELZC has
the most outstanding performance in feature extraction of four MBN.

3.3.3. Multiple Feature Extraction and Classification

As with entropy, to further improve the performance of feature extraction, we also
carry out multiple feature extraction experiments and extracted two, three, and four fea-
tures, respectively. Table 6 presents the highest recognition rate of four LZC-based features
under multiple feature extraction.

Table 6. The highest recognition rate of four LZC-based features under multiple feature extraction.

Number of Extracted Features

Two Three Four

Highest recognition rate 95.5% 95.0% 95.5%
Selected features LZC, DELZC LZC, PLZC, DLZC All features

From Table 6, the highest recognition rate is achieved when two features or four
features are extracted, reaching 95.5%, which is significantly higher than the highest recog-
nition rate of single feature extraction methods. As with entropy-based multiple feature
extraction experiments, it is not the case that the higher the number of features extracted,
the higher the recognition rate.

4. Discussion

In this paper, we carry out the experiments of MBN feature extraction based on entropy
and LZC in the experimental part, in which the entropy of comparison includes DE, PE,
FE, and SE, and the LZC of comparison includes LZC, PLZC, DLZC, and DELZC. Finally,
the classification algorithm KNN is used to calculate recognition effects. In future research,
we will use new deep-learning-based methods for classification and recognition [31,32]. To
further compare the effect of different nonlinear dynamic features on feature extraction,
Figure 13 shows the average recognition rate of feature extraction methods based on eight
nonlinear dynamic features for MBN.

It can be seen from Figure 13 that DELZC has the highest recognition rate of 92.5%,
and PLZC has the lowest recognition rate of 55%; for the entropy-based feature extraction
method, the recognition rate is higher than 70%, and DE has the highest average recognition
rate; in addition, for the LZC-based feature extraction method, except for PLZC, the
recognition rate based on other features is higher than 75%; last but not least, regardless
of entropy-based feature extraction method or LZC-based feature extraction method, they
both have their own advantages, and both show better feature extraction performance for
marine background noise signals.
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Figure 13. The average recognition rate of feature extraction methods based on eight nonlinear
dynamic features for MBN.

In addition, to further explore the effect of multiple feature extraction, we also conduct
hybrid multiple feature extraction, i.e., mixing entropy and LZC together as the subjects of
feature extraction at the same time. Table 2 demonstrates the highest recognition rate for
hybrid multiple feature extraction.

It is clear from Table 7 that hybrid multiple feature extraction is significantly more
effective than extracting only entropy or LZC, and the highest recognition rate can reach
98% when the number of extracted features is between two and six. As with the entropy-
based and LZC-based multiple feature extraction experiments, the recognition rate does
not always increase as the number of extracted features increases. The recognition rate
stays the same at first, but eventually the recognition rate drops instead. The more features
extracted, the higher the recognition rate, but it is not the case that the more features, the
better. When a few features can obtain the highest accuracy, the more features are selected,
the more redundant they are, resulting in a decrease in recognition rate. Therefore, there
will be a phenomenon where the more features extracted, the lower the recognition rate.

Table 7. The highest recognition rate for hybrid multiple feature extraction.

Number of Extracted Features

Two Three Four Five Six Seven Eight

Highest recognition rate 98.0% 98.0% 98.0% 98.0% 98.0% 97.5% 96.0%

5. Conclusions

This paper studies the feature extraction method of MBN based on nonlinear dynamic
features, especially the feature extraction methods based on entropy or LZC and compares
the different feature extraction methods through measured MBN. The main conclusions are
as follows: (1) for entropy-based MBN single feature extraction methods, the feature extrac-
tion method based on dispersion entropy has the highest recognition rate of 91.5%, which
is 19.5%, 8.5%, and 2.5% higher than the recognition rates of PE, FE, and SE, respectively;
(2) for LZC-based MBN single feature extraction methods, the feature extraction method
based on DELZC has the highest recognition rate of 92.5%, which is 17.5%, 37.5%, and
11% higher than the recognition rates of LZC, PLZC, and DELZC, respectively; (3) whether
for entropy-based multiple feature extraction method or LZC-based multiple feature ex-
traction method, they both significantly improve the recognition rate of single feature
extraction methods; and (4) it is not the case that the higher the number of features ex-
tracted, the higher the recognition rate, and as the number of features continues to increase,
the recognition rate may remain the same or even decrease.



Entropy 2023, 25, 845 16 of 17

Author Contributions: Methodology, G.J. and Y.W.; Formal analysis, G.J.; Writing – original draft,
G.J.; Visualization, Y.W.; Supervision, F.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Youth Innovation Team of Shaanxi Universities (2022-77).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dietrich, W.; Max, S. Propeller cavitation noise and background noise in the sea. Ocean Eng. 2016, 120, 116–121.
2. Wenz, G.M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 1962, 34, 1936–1956. [CrossRef]
3. Lu, L. The design and implementation of ocean ambient noise acquisition system based on the underwater glider. J. Acoust. Soc.

Am. 2016, 140, 3409. [CrossRef]
4. Wang, Q. Underwater bottom still mine classification using robust time-frequency feature and relevance vector machine. Int. J.

Comput. Math. 2009, 86, 794–806. [CrossRef]
5. Rioul, O.; Vetterli, M. Wavelets and signal processing. IEEE Signal Process. Mag. 1991, 8, 14–38. [CrossRef]
6. Li, Y.; Tang, B.; Geng, B.; Jiao, S. Fractional Order Fuzzy Dispersion Entropy and Its Application in Bearing Fault Diagnosis.

Fractal Fract. 2022, 6, 544. [CrossRef]
7. Wu, Y.; Li, Y.; Chen, J. Prediction of underwater acoustic signal based on neural network. Microprocessors 2006, 27, 47–48.
8. Li, Y.; Jiao, S.; Geng, B.; Zhang, Q.; Zhang, Y. A comparative study of four nonlinear dynamic methods and their applications in

classification of ship-radiated noise. Def. Technol. 2022, 18, 183–193. [CrossRef]
9. Li, Y.; Jiang, X.; Tang, B.; Ning, F.; Lou, Y. Feature extraction methods of ship-radiated noise: From single feature of multi-scale

dispersion Lempel-Ziv complexity to mixed double features. Appl. Acoust. 2022, 199, 109032. [CrossRef]
10. Zhang, J.; Zhang, K.; An, Y. An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation

Learning Under Imbalanced Sample Condition. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–12. [CrossRef]
11. Zhang, J.; Tian, J.; Li, M. A Parallel Hybrid Neural Network With Integration of Spatial and Temporal Features for Remaining

Useful Life Prediction in Prognostics. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [CrossRef]
12. Li, Y.; Tang, B.; Jiao, S. SO-slope entropy coupled with SVMD: A novel adaptive feature extraction method for ship-radiated noise.

Ocean Eng. 2023, 280, 114677. [CrossRef]
13. Li, Y.; Jiao, S.; Geng, B. Refined composite multiscale fluctuation-based dispersion Lempel–Ziv complexity for signal analysis.

ISA Trans. 2022, 133, 273–284. [CrossRef]
14. Li, Y.; Geng, B.; Tang, B. Simplified coded dispersion entropy: A nonlinear metric for signal analysis. Nonlinear Dyn. 2023,

111, 9327–9344. [CrossRef]
15. Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [CrossRef]
16. Pincus, S. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]
17. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.

Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]
18. Chen, W.; Wang, Z.; Xie, H. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil.

Eng. 2007, 15, 266–272. [CrossRef]
19. Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102.

[CrossRef]
20. Rostaghi, M.; Azami, H. Dispersion Entropy: A Measure for Time-Series Analysis. IEEE Signal Process. Lett. 2016, 23, 610–614.

[CrossRef]
21. Cui, L.; Gong, X.; Zhang, J. Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the

Lempel-Ziv complexity. J. Sound Vibr. 2016, 385, 372–388. [CrossRef]
22. Lempel, A.; Ziv, J. On the complexity of finite sequences, Inform. Theory IEEE Trans 1976, 22, 75–81. [CrossRef]
23. Mekler, A.; Borisenok, S. The revealing of periods in Lempel-Ziv complexity of EEG signal. Int. J. Psychophysiol. 2018, 131, S116.

[CrossRef]
24. Simons, S.; Abásolo, D. Distance-Based Lempel–Ziv Complexity for the Analysis of Electroencephalograms in Patients with

Alzheimer’s Disease. Entropy 2017, 19, 129. [CrossRef]
25. Bai, Y.; Liang, Z.; Li, X. Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic an aesthetics.

Physiol. Meas. 2015, 36, 2483–2501. [CrossRef]
26. Shumbayawonda, E.; Tosun, P.; Fernández, A.; Hughes, M.; Abásolo, D. Complexity Changes in Brain Activity in Healthy Ageing:

A Permutation Lempel-Ziv Complexity Study of Magnetoencephalograms. Entropy 2018, 20, 506. [CrossRef]

https://doi.org/10.1121/1.1909155
https://doi.org/10.1121/1.4970952
https://doi.org/10.1080/00207160701704572
https://doi.org/10.1109/79.91217
https://doi.org/10.3390/fractalfract6100544
https://doi.org/10.1016/j.dt.2020.11.011
https://doi.org/10.1016/j.apacoust.2022.109032
https://doi.org/10.1109/TNNLS.2022.3232147
https://doi.org/10.1109/TIM.2022.3227956
https://doi.org/10.1016/j.oceaneng.2023.114677
https://doi.org/10.1016/j.isatra.2022.06.040
https://doi.org/10.1007/s11071-023-08339-4
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1109/TNSRE.2007.897025
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1109/LSP.2016.2542881
https://doi.org/10.1016/j.jsv.2016.09.008
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1016/j.ijpsycho.2018.07.314
https://doi.org/10.3390/e19030129
https://doi.org/10.1088/0967-3334/36/12/2483
https://doi.org/10.3390/e20070506


Entropy 2023, 25, 845 17 of 17

27. Mao, X.; Shang, P.; Xu, M. Measuring time series based on multiscale dispersion Lempel-Ziv complexity and dispersion entropy
plane. Chaos Solitons Fractals 2020, 137, 109868. [CrossRef]

28. Jiao, S.; Geng, B.; Li, Y. Comparative Study of Feature Extraction and Classification Based on Dispersion Lempel-Ziv Complexity.
Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 35, e2949.

29. Li, Y.; Geng, B.; Jiao, S. Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis. Chaos Solitons Fractals
2022, 161, 112400. [CrossRef]

30. National Park Service. Available online: https://www.nps.gov/glba/learn/nature/soundclips.htm (accessed on 29 December 2022).
31. Zhang, J.; Li, X.; Tian, J.; Jiang, Y.; Luo, H.; Yin, S. A variational local weighted deep sub-domain adaptation network for remaining

useful life prediction facing cross-domain condition. Reliab. Eng. Syst. Saf. 2023, 231, 108986. [CrossRef]
32. Zhang, J.; Li, X.; Tian, J.; Luo, H.; Yin, S. An integrated multi-head dual sparse self-attention network for remaining useful life

prediction. Reliab. Eng. Syst. Safety 2023, 233, 109096. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.chaos.2020.109868
https://doi.org/10.1016/j.chaos.2022.112400
https://www.nps.gov/glba/learn/nature/soundclips.htm
https://doi.org/10.1016/j.ress.2022.108986
https://doi.org/10.1016/j.ress.2023.109096

	Introduction 
	Nonlinear Dynamic Features 
	Entropy 
	Lempel–Ziv Complexity 
	Simulation Experiment Verification 

	Feature Extraction of MBN Based on Nonlinear Dynamic Features 
	Marine Background Noise 
	Feature Extraction and Analysis Based on Entropy 
	Parameter Setting of Entropy Features 
	Single Feature Extraction and Classification 
	Multiple Feature Extraction and Classification 

	Feature Extraction and Analysis Based on LZC 
	Parameter Setting of LZC-Based Features 
	Feature Extraction and Classification 
	Multiple Feature Extraction and Classification 


	Discussion 
	Conclusions 
	References

