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Abstract: Human action recognition is an essential process in surveillance video analysis, which
is used to understand the behavior of people to ensure safety. Most of the existing methods for
HAR use computationally heavy networks such as 3D CNN and two-stream networks. To alleviate
the challenges in the implementation and training of 3D deep learning networks, which have more
parameters, a customized lightweight directed acyclic graph-based residual 2D CNN with fewer
parameters was designed from scratch and named HARNet. A novel pipeline for the construction of
spatial motion data from raw video input is presented for the latent representation learning of human
actions. The constructed input is fed to the network for simultaneous operation over spatial and
motion information in a single stream, and the latent representation learned at the fully connected
layer is extracted and fed to the conventional machine learning classifiers for action recognition. The
proposed work was empirically verified, and the experimental results were compared with those for
existing methods. The results show that the proposed method outperforms state-of-the-art (SOTA)
methods with a percentage improvement of 2.75% on UCF101, 10.94% on HMDB51, and 0.18% on the
KTH dataset.

Keywords: spatial motion cue; directed acyclic graph-based residual 2D CNN; deep learned feature;
KNN classifier

1. Introduction

Recognizing human actions is a vital process in most computer vision applications,
such as violence detection [1,2], surveillance video analysis [3], anomaly detection [4],
video retrieval, video summarization [3], elder care monitoring, and emergency rescue op-
erations [5]. Human action recognition is also applicable to robot-assisted surgical methods.
A hand-gesture-based robot-assisted surgical method, with the support of augmented real-
ity (AR), was proposed by Rong Wen [6]. In their approach, preoperative and intraoperative
information was directly shown over a patient in a projector-based AR environment while
a mobile surgical robot system executed predefined RF needle insertion plans. A Siamese-
oriented region proposal network was presented for visual tracking application in [7]. An
augmented surgical planning approach was proposed with model-section images of a
real patient’s body and direct augmented interactivity. Through the projection, correction,
and registration of surgical models, a projector–Kinect system was presented to create a
surgical environment with spatial augmented reality directly on the patient’s body [8].
Joint similarity measures and an adjustable weight-based stereo-matching algorithm were
proposed in [9]. These methods enhance the matching cost computation to better fit the
color image of the heart’s soft tissue. The approach simultaneously enhances the adaptive
weight by using the concept of graph cutting. In recent years, deep-learning-based human
action recognition [10–13] has had increased attention in the field of computer vision due
to its efficiency in understanding context based on an imitation of our visual cortex. There
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are 2DCNN-based methods that use a two-stream approach and LSTM networks, and there
are 3D CNN-based methods for HAR. Although 3DCNN performed well on a temporal
stream of video, it has its own limitations due to its intensive computational complexity.
This prompted researchers to develop two-stream-based 2DCNN methods. Complexity
still exists in the two-stream approach for traversing twice through the network. There-
fore, a novel single stream, directed acyclic graph-based residual 2D CNN, also known as
HARNet, has been proposed.

The proposed work is motivated by the information bottleneck theory [14], which
argues that the objective of any supervised learning strategy is to extract and competently
represent the significant information content in the input data that correspond to the output
label. According to the interpretation of information theory of minimally sufficient statistics,
input data need to be mapped in a maximally compressed format to the output label by
preserving the information content as much as possible. The proposed work introduces a
novel single-stream learning framework called HARLearning for the prediction of human
action. The proposed method exploits the capability of CNN in learning a maximally
compressed but informative representation by designing a customized, shallow, layered
graph (residual CNN). The shallow network architecture was chosen to guarantee the
optimal performance of the model, even if the training samples were of lesser quality, which
will be helpful to recognize abnormal actions in surveillance videos, where the amount of
abnormal action data is less comparable to that of normal actions. Alternative reasons are
that shallow networks can be easily deployed on edge devices, as the structural simplicity
and the number of convolution layers used in the shallow network are reduced, which
leads to a reduced number of parameters, again diminishing computational complexity and
training time. The term “layered graph-based CNN architecture” means having layers with
multiple inputs or multiple outputs. This effectively means that information from one layer
is directly landing on the next layer, with the exception of the regular flow. This is achieved
by providing residual connections. The learned features have been used to train ML
classifiers, such as support vector machine (SVM), decision tree (DT), linear discriminant
analysis (LDA), naïve Bayes (NB), ensemble, and k-nearest neighbor (KNN), for recognizing
human action. For human action recognition, temporal/motion information is important.
Both spatial and temporal information are combined to construct a novel spatial motion cue.
Spatial information is preserved by gray-level frames, which are combined with optical
flow motion vectors in the band axis for including the temporal aspect.

The major contributions are as follows:

• The fusion of spatial and temporal cues, represented by intensity and optical flow
vectors, respectively.

• The proposal of a single-stream shallow network—HARNet Architecture—for extract-
ing deep learned action features.

• The proposal of a KNN-based machine learning framework for classifying up to
101 human actions.

• Experimentation and comparison with SOTA (state-of-the-art techniques) on a bench-
mark dataset.

The organization of the paper is as follows. Section 2 gives the literature related
to the proposed work. Section 3 describes the proposed spatial motion feature learning
framework. Section 4 depicts the experimental details of the network learning setup with
results and discussion. Section 5 gives conclusions and future directions.

2. Related Work

Recently, deep learning networks have been widely used for analyzing events in
videos. One such model was designed using ResNet50 to extract the important features of
each frame of the input, followed by a recurrent neural network (ConvLSTM) for detecting
any abnormal events [2]. A method using a combination of CNN and long short-term
memory (LSTM) for classifying video in a smaller dataset was proposed in [15]. Three
different variants of input were evaluated using Resnet-152 for encoding and decoding
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based on a three-layer LSTM. The first input was the RGB frames, the second was the optical
flow, and the third was the combination of both RGB frames and optical flow. The hybrid
deep learning network (HDLN) proposed in [16] has been used to extract the features from
complex smartphone inertial data. Deep learning models can also be used to automatically
recognize the activity of a single worker. A method integrating CNN with SVM and R-CNN
was proposed in [17]. All of the extracted fine-grained action features were trained using an
action-independent Gaussian mixture model (AIGMM). Spatio-temporal information was
analyzed and the resemblances were preserved. The statistics of AIGMM, such as the mean,
posteriors, and covariance were utilized to create kernels for finding the similarity [18].

Pedestrian attribute recognition (PAR) is very important in the computer vision tech-
niques applicable for video surveillance systems. PAR-based methods have been imple-
mented to provide a comparison between deep learning and conventional algorithms [19].
In order to recognize the group activity of individual interactions with relevant objects,
a method based on skeletal information was proposed [20]. This method used the group
interaction relational network (GIRN) to find the relationships among multiple modules
and to find the interactions among them. To recognize human action from random views,
a two-branch view action generation method built on auxiliary conditional GAN was pro-
posed [21]. Using this approach, action samples were generated for the arbitrary view of
human action and the view ranges of the action sequences were enlarged in the training
set. A method based on the dual-camera framework was implemented to recognize and
track non-driving activities (NDAs). This was achieved by mapping the driver’s gaze
with a non-linear identification model using a deep learning algorithm [22]. Furthermore,
skeleton-based human interaction recognition requires spatial, temporal, and interactive
features. The dyadic relational graph convolutional network (DR-GCN) method was pro-
posed for interaction recognition [23]. In recent works, transformers have been used for
action recognition in videos. A comprehensive survey of approaches using vision trans-
formers for action recognition is given in [24]. Action transformer (AcT), a straightforward,
fully self-attentional architecture that outperforms more complex networks with a combina-
tion of convolutional, recurrent, and attentive layers, was presented in [25]. This approach
took advantage of 2D posture representations during shorter temporal windows to reduce
computing and energy demands.

3. Proposed Spatial Motion Feature Learning Framework

The proposed spatial motion feature learning framework comprises three steps,
namely preprocessing, the design of the neural network, and representation learning
for HAR, as depicted in Figure 1. Preprocessing involves the fusion of spatial information
with motion information. It is performed by concatenating the gray-scale form of video
frames with motion vectors obtained from optical flow computation in the band axis.

3.1. Preprocessing

The input video data are segmented into frames, which are subsampled to reduce
the redundancy. The motion vector is computed by finding the optical flow between the
frames using the Horn and Schunk approach [26]. The intensity image is obtained from the
RGB frame, which is concatenated with the horizontal and vertical vectors of optical flow.
As the constructed input contains both spatial and motion information, it is named spatial
motion fusion data.

3.2. Design of Proposed Network Model

The proposed network is constructed by stacking five stages of convolution layers, as
shown in Figure 2. In the first stage, eight-channel convolution layers, each with kernel
size of 3 and a single stride with the same padding, are used. Each convolution layer is
followed by a batch normalization layer to provide normalization across mini-batches of
data. The ReLU layer is used to retain the zeros and positive values of features alone.



Entropy 2023, 25, 844 4 of 15

Figure 1. The proposed framework for learning deep spatial motion features.

Figure 2. Architecture of the proposed HARNet.

The convolution layers in the following stages of the network have an increasing
number of channels with a scaling factor of 2, but the size of the kernel is fixed at 3× 3.
Similarly, the stride and padding are the same as that of the first-stage convolution layer.
The output feature maps of the ReLU layer of the first stage are added with the output
feature maps of the batch normalization layer of the second stage via (1× 1) convolution
operation for skip connection. Then, the (2× 2) max pooling layer is used to down-sample
the size of the feature map to half of the value and to retain only the dominant features.
Then, the ReLU layer is used in the second stage of the network. The output feature maps of
this layer are added with the combined feature outputs of the third- and fourth-stage layers.
The features of the second-stage ReLU are added with the fourth-stage batch normalization
outputs. Then, the max pooling layer is used to downsize the dimensions of the features.
Then, the ReLU layer is included, which is followed by the final fifth-stage convolution
and batch normalization layers. The output feature maps of ReLU at the fourth stage are
connected with output feature maps of batch normalization at the fifth stage. This is then
followed by an average pooling layer and a fully connected layer. The fully connected layer
receives an input with a size of 8× 8× 128 (8192), and the number of output nodes is chosen
as the number of action classes used to train the network. The fully connected layer is used
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to extract high-level representations of data in a more condensed form. The final layer of the
softmax layer is used only for learning the kernel weights of the proposed network during
the training phase. Categorical cross entropy is used as the loss function while training
the network model. After learning the HARNet kernel weights, the high-level features
learned in the fully connected layer are extracted as representation. These features are used
to train the k-nearest neighbor (k-NN) classifier for inferring the action characterized by
the learned representation.

3.3. Information Bottleneck Principle

The information bottleneck principle is based on information theory, which is used to
extract more significant contents contained by the random input variable X ∈ v, where v
denotes preprocessed video data about the random output variable Y ∈ l, where l denotes
the label of the output action category. Given their transition probabilities p(Y | X), their
joint probability distributions can be computed as

p(X; Y) = p(Y | X)p(X) (1)

Significant average information is given by mutual information as

I(X; Y) = ∑ ∑
[

p(X; Y) log2

(
p(Y | X)

p(Y)

)]
(2)

where statistical dependency between X and Y is assumed. As shown in Figure 2, each
layer of the network operates on inputs obtained from the previous layer, which causes the
neural network to form a Markov chain. Hence, data processing inequality (DPI) results
from the fact that information about Y that is lost in one layer cannot be regained in the
succeeding layers. According to the information theoretic learning principle for deep neural
networks (DNNs), each layer in a DNN processes only inputs from previous layers. There
is a loss of information in the consecutive layers (n ≥ m) as compared to the preceding
layers, as depicted in the below equation. For any succeeding layer n ≥ m, it is given that

I(Y; X) ≥ I(Y; Rm) ≥ I(Y; Rn) ≥ I(Y; Ŷ) (3)

where Rn is the representation at a higher layer, Rm is the representation at a lower layer,
and Ŷ is the predicted label for the true label Y. The equality in the above expression can
be achieved if, and only if, each layer gives sufficient statistics for its input. Hence, it is
necessary to obtain not only the most pertinent representation at each layer, but also the
most compact representation of its input. Hence, a massive layered network may result
in an information bottleneck. This limitation can be overcome by designing a shallow
network. Each layer needs to try to enhance I(Y; Rn) while diminishing I(Rn−1; Rn) as
much as possible. This is achieved with the help of convolution neural network layers.

3.4. Classification

The features learned in a fully connected layer are extracted to train the machine
learning classifiers. The efficacy of the proposed network in latent representation learning
has been analyzed with various ML classifiers, such as support vector machine (SVM),
decision tree (DT), k-nearest neighbor (KNN), linear discriminant analysis (LDA), naïve
Bayes (NB), and ensemble.

• k-Nearest Neighbor classifier: k-NN is practically applicable for recognizing patterns
of human actions, as it is non-parametric, which means that it does not assume
the distribution of data. Hence, it works well in our proposed approach. The k-
NN classifier stores all cases of training data and tries to classify test data based on
similarity measures. Euclidean distance is considered as a similarity measure for
finding the neighbors in our experiment. The number of neighbors included for
classifying the test sample is one.
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• Support Vector Machine: Complex data transformation is performed by SVM based
on the chosen kernel function. With the help of those transformations, the separation
boundary between data is maximized.

• Decision Tree: The decision tree is a systematic approach used for multi-class clas-
sification problems. A set of queries in relation to the features of a dataset is posed
by DT. It is visualized using a binary tree. Data on the root node are again split into
two different records that have different attributes. The leaves represent the classes of
the dataset.

• Naïve Bayes: Bayes theorem is the basis of the naïve Bayes classification method.
The naïve Bayes method is used because of the assumption that there is independence
between every pair of features in the data.

• Linear Discriminant Analysis: The linear discriminant analysis (LDA) classification
method is used in our experiments. It assumes that data of different classes are based
on different Gaussian distributions. LDA uses the estimated probability that a piece
of test data belongs to a particular class for classifying it. The class with the highest
probability is predicted as the output class of the given sample.

• Ensemble: The adaptive boosting multi-class classification method is used as an
ensemble aggregation approach for our experimentation. The number of learning
cycles used in our experiments is 100, with the same learning rate for shrinkage.

In order to train the classifiers, the latent representations are retrieved from the training
dataset. The classes of representations that were learned for the test dataset are then
predicted using the trained models. The hyperparameters of the k-NN classifier are tuned
while training machine learning classifier models with KTH, as shown in Table 1; the results
of hyperparameter tuning experiments have also been listed.

Table 1. Tuning of hyperparameters of ML classifiers.

Model Hyper Parameter Tuning Accuracy (%)
before Tuning

Accuracy (%)
after Tuning

k-NN

Hyperparameter K Distance metric

95.58 97.49Tuning range [1–100]

Euclidean, Cityblock,
Minkowski, Chebychev,
Hamming, Spearman,
Cosine, Mahalanobis

Tuned value 1 Euclidean

SVM

Hyperparameter Box
constraint

Coding Kernel
scale

95.93 97.16
Tuning range [0–1000] 1-vs-1,

1-vs-all
[0–1000]

Tuned value 1 1-vs-1 1

DT

Hyperparameter Minimum leaf size

94.26 96.50Tuning range [1–300]

Tuned value 1

LDA

Hyperparameter Delta Gamma

93.78 95.93Tuning range [1 × 10−6, 1 × 103 ] [0–1]

Tuned value 0 0.002

NB

Hyperparameter Distribution Width

92.96 95.76Tuning range Normal, kernel [0–10]

Tuned value Normal -

Ensemble

Hyperparameter Number of learning cycles Learning rate

94.05 96.64Tuning range [1–400] [0–1]

Tuned value 100 1
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4. Experimental Details on Network Learning Setup

The overall training regime of the HARNet is described in this section. Video sequences
are preprocessed to obtain the fusion of spatial and motion information. The input to the
network is downsized to 64× 64× 3. The convolution layer that comes after the input
layer has weights that are initialized using the Glorot initializer, which helps to stabilize the
training phase and shorten the training time. The kernel weights of size 3× 3 are updated
with a stochastic gradient descent. The first convolution layer has eight channels, and
this number is doubled in the following convolution layers. Each kernel moves along its
input with a single stride in all of the convolution layers of the network. The size of all
max pooling layers in the model is 2× 2 with a stride of 2. The hyperparameters of the
proposed HARNet are tuned through experimentation by changing them in the linear range,
as shown in Table 2. Following tuning process, the initial learning rate, the momentum,
and the mini-batch size are set as 0.01, 0.5, and 32, respectively. The three-phase approach,
comprising training, testing, and validation, is used to prevent the network from overfitting.
The data split ratio used for implementing the three-phase approach was 70:15:15, and
all experimentation was performed three-fold. The data split of 70:15:15 was carried out
on a video-wise basis to provide a sufficient amount of video samples for training. The
training set of video data was used to train the network model for learning kernel weights
and validation data were used during training to improve the performance of the network.
The testing set of video data was passed over the trained model to predict the action
category of unseen data.

Table 2. Tuning of hyperparameters of HARNet.

Model Hyperparameter Tuning

HARNet
Hyperparameter Momentum Initial learning rate Mini-batch size

Tuning range [0–1] [0.001–1] [16–64]
Tuned 0.5 0.01 32

4.1. Datasets for HAR

Three standard HAR datasets considered for experimentally evaluating the perfor-
mance of the proposed work are HMDB51, UCF101, and KTH. The various features of
the datasets, such as the number of video clips, frame rate, number of action categories,
challenges, and variations in data capture are listed in Table 3.

Table 3. Various features of datasets.

Dataset
Features

Number of
Video Clips

Frame Rate
in Frames per Second

Number of
Action Categories Challenges Variations in Data Capturing

HMBD51 6849 30 51 Camera movement Camera view point, different video quality

UCF101 13320 25 101 Cluttered background,
camera movement

Pose and appearance of object in
varying scale, different illumination
conditions and view points

KTH 2391 25 6 Presence of shadow,
low-quality video

Scale variation, subjects with different
clothes, indoors, outdoors

HMDB51 [27] is a large-scale human motion database containing 6849 videos of
51 action classes. Actions are categorized into five major groups, common body movement
actions, common facial actions, body movement actions with an object, facial actions
with an object, and human interactions with body movements. The UCF101 [28] dataset
comprises 13320 videos under 101 action categories with enormous diversity in actions.
There are large variations in the pose and appearance of objects in different scales, view
points, and illumination conditions, potentially with camera motion or different cluttered
backgrounds. The KTH dataset [29] contains 2391 video clips captured over a uniform
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background using a static camera at a frame rate of 25 frames per second. The dataset
includes six actions, namely boxing, running, jogging, walking, hand clapping, and hand
waving. Videos are captured in four different scenarios, indoors, outdoors, outdoors with
different scales, and outdoors with different clothes.

4.2. Results and Discussion

To quantitatively assess the performance of the proposed network model, the standard
evaluation metrics for assessing the accuracy of human action recognition are calculated
for the overall model using Equation (4).

AccuracyModel =
TP + TN

(TP + TN + FP + FN)
(4)

The other performance evaluation metrics of precision, recall, specificity, and F1-score
are evaluated in order to compare the performance of different classification models, as
well as to analyze the performance of the same model by varying different parameters [30].
The performance evaluation metrics of precision, recall, specificity, and F1-score have been
defined for multi-class action recognition problems as an average of those metrics per class.
The evaluation metrics per class are defined by assuming them to be a binary classification
problem, such that the class under consideration is taken to be a positive case, and all other
classes as negative cases, formulated using Equations (5)–(8).

PrecisionPerClass =
TP

(TP + FP)
(5)

RecallPerClass =
TP

(TP + FN)
(6)

Speci f icityPerClass =
TN

(TN + FP)
(7)

F1scorePerClass =
(2 ∗ TP)[

(2 ∗ TP) + FP + FN
] . (8)

By taking the macro average, which is the arithmetic mean of the performance metric
over each class, the evaluation metrics are computed for multiple classes.

4.2.1. Evaluation on UCF101

The proposed network model was trained with preprocessed UCF101 video clips for
categorizing 101 action classes. After learning the weights and latent representation of
data, the features were extracted from the fully connected layer of the proposed network.
The extracted features were used to train conventional ML classifiers for evaluating the
efficacy of the network in learning latent representation. Human actions in the test data
were predicted by the trained ML models with an average classification accuracy of 98.33%
with LDA, 93.73% with NB, 93.04% with ensemble, 99.56% with DT, 99.98% with SVM, and
99.99% with KNN. A detailed classification report listing all of the standard multi-class
performance metrics is given in Table 4. KNN yields the maximum values of 0.9999 for
precision, 0.9990 for recall, unity for specificity, and 0.9999 for F1-score. From the values
observed in Table 3, it is inferred that the proposed method works well on UCF101 data in
classifying actions. Values for other metrics of precision, recall, specificity, and F1-score are
also high irrespective of the ML classifier.
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Table 4. Comparison of the influence of ML classifiers on UCF101.

ML Classifier Accuracy Precision Recall Specificity F1-Score

LDA 98.33 0.9826 0.9834 0.9998 0.9826
NB 93.73 0.9392 0.9390 0.9994 0.9361
Ensemble 93.04 0.9114 0.8934 0.9993 0.8906
DT 99.56 0.9953 0.9951 1 0.9951
SVM 99.98 0.9998 0.9998 1 0.9998
KNN 99.99 0.9999 0.9990 1 0.9999

4.2.2. Evaluation on HMDB51

Standard metrics such as accuracy, precision, recall, F1-score and specificity for the
HMDB51 dataset are listed in Table 5. The proposed method recognizes human actions
with an accuracy of 86.39% with LDA, 79.16% with NB, 77.97% with ensemble classifier,
88.01% with SVM classifier, 86.51% with DT, and 89.41% with KNN classifiers. From the
values listed in Table 4, it reveals that the KNN classifier yields maximum values for various
metrics, such as a precision of 0.8943, recall of 0.8933, specificity of 0.8999, and F1-score
of 0.8938.

Table 5. Comparison of influence of ML classifiers on HMDB51.

ML Classifier Accuracy in % Precision Recall Specificity F1-Score

LDA 86.39 0.8680 0.8573 0.8993 0.8620
NB 79.16 0.7911 0.7846 0.8978 0.7857
Ensemble 77.97 0.8260 0.7416 0.8975 0.7722
SVM 88.01 0.8819 0.8767 0.8996 0.8792
DT 86.51 0.8638 0.8596 0.8993 0.8615
KNN 89.41 0.8943 0.8933 0.8999 0.8938

4.2.3. Evaluation on KTH Dataset

The performance of the proposed approach had been experimentally evaluated on
the untrimmed KTH dataset, which has six action classes. As this dataset contains frames
with and without humans in the foreground, a preprocessing step of detecting people with
the Gaussian mixture model was used. After detecting humans in the foreground, the frame
was converted to a spatial motion cue, which was further processed by the network model
for learning latent representation. The learned representation was used to train ML classifier
models and then the test dataset was used to assess the prediction accuracy, precision, recall,
specificity, and F1-score. Table 6 lists the values of the performance metrics computed on
the KTH dataset. The proposed work yields an average classification accuracy of 95.93%
with LDA, 95.76% with NB, 96.64% with ensemble, 96.50% with DT, 97.16% with SVM and
the maximum performance with the KNN classifier of 97.49%. KNN results in a precision
of 0.9667, recall value of 0.9623, specificity of 0.9951, and F1-core of 0.9644.

Table 6. Comparison of influence of ML classifiers on KTH.

ML
Classifier Accuracy Precision Recall Specificity F1-Score

LDA 95.93 0.9561 0.9372 0.9918 0.9450
NB 95.76 0.9468 0.9382 0.9916 0.9420
Ensemble 96.64 0.9564 0.9524 0.9934 0.9543
DT 96.50 0.9546 0.9505 0.9931 0.9525
SVM 97.16 0.9628 0.9586 0.9944 0.9606
KNN 97.49 0.9667 0.9623 0.9951 0.9644

The results shown in Tables 4–6 indicate that the proposed method yields a high
precision value irrespective of classifier. It implies that more positive predictions made
by the proposed methodology are correct, which shows the efficiency of the proposed
work in learning representations of human action. The high recall values reveal that most
of the positive predictions made by the model are correct, out of all the actual positive



Entropy 2023, 25, 844 10 of 15

samples. The high specificity values of all ML classifiers suggest that the trained models
classify more negative samples in test data correctly. As the F1-score is the harmonic mean
of precision and recall, a high F1-score demonstrates that the classifiers predict the test
sample correctly by considering both false-positive and false-negative results. The high
values of these metrics depict the strong robustness of the proposed representation learning
for HAR.

4.2.4. Results of the Ablation Study

The ablation study was conducted to determine the importance of each layer in
influencing the performance of the proposed network model. It was implemented by
removing certain layers from the proposed model; the experimental results are listed in
Table 7. In the first study, to understand the importance of residual connections, the skip
connections via 1× 1 convolution and addition layers were removed, with the result being
named HARNet_without Residual. The outcomes demonstrate that the removal of residual
connections drops the maximum performance of the original model with the KNN classifier
by 0.86% on HMDB51, 1% on UCF101, and 11.28% on KTH. In the second study, the max
pooling layers alone were removed from the original, referred to as HARNet_without
Maxpooling, by keeping the residual connections and addition operations to understand
their contributions. It can be observed that the removal of max pooling layers reduces
the performance of the proposed network model in learning representation by 0.59%
on HMDB51, 0.97% on UCF101, and 3.33% on KTH, as shown in Figure 3. The results
confirm that the residual connections and max pooling layers are significant in learning
representation for human action recognition.

Table 7. Performance in the ablation study.

Model ML Classifier HMDB51 UCF101 KTH

HARNet

KNN 89.41 99.89 97.50
SVM 88.01 99.78 97.16
DT 86.51 99.56 96.50
LDA 86.39 98.33 95.9
NB 79.16 93.73 95.8
Ensemble 77.97 93.04 96.6

HARNet_without Residual

KNN 88.65
(0.86% ↓)

98.89
(1% ↓)

86.50
(11.28% ↓)

SVM 87.01 98.79 86.33
DT 85.43 98.19 75.65
LDA 87.50 99.21 82.3%
NB 84.70 94.81 80.8%
Ensemble 85.63 98.65 84.97%

HARNet_without Maxpooling

KNN 88.88
(0.59% ↓)

98.92
(0.97% ↓)

94.25
(3.33% ↓)

SVM 87.49 98.90 94.18
DT 84.69 98.42 92.90
LDA 88.56 98.83 92.36
NB 85.45 92.79 90.9
Ensemble 86.86 98.82 93.5
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Figure 3. Comparison of the ablation study with six classifiers on three datasets.

4.3. Comparison with State-of-the-Art Methods

The efficacy of the proposed network in representation learning has been analyzed
and compared with other existing methods on the three benchmark datasets of UCF101,
HMDB51, and KTH. Since state-of-the-art (SOTA) methods often employ a data split of
70:30, the proposed method also uses this split in order to compare with SOTA techniques.
The results of action recognition experiments using the proposed network features classified
by k-NN are compared with earlier studies, and are listed in Tables 8–10. It can be inferred
from Table 8 that the proposed methodology increases performance on UCF101 over the
existing approach [31] (Twostream) by 2.75%. Table 9 compares the performance of the
proposed work with that of existing works on the HMDB51 dataset and shows that the
mean prediction accuracy of the proposed method on HMMDB 51 is improved by 10.94%
compared with the best-performing existing work [32]. The results on the KTH dataset
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are compared with those of existing works in Table 10. These results suggest that the
proposed approach yields a 0.18% improvement in performance compared with the existing
method [33]. The proposed HARNet features have also been trained with the two latest
variants of k-NN, centroid displacement based on the k-Nearest Neighbor [34] and ensemble
k-nearest neighbor based on centroid displacement (ECDNN) [35]. This experimentation
shows that there is a minimal improvement in accuracy of 0.02% with CDNN and ECDD on
UCF101, there is a considerable improvement in accuracy of 0.86% with CDNN and 1.36%
with ECDNN on KTH, whereas a relatively lower accuracy (1.5% less with CDNN and
0.23% less with ECDNN) was found for HMDB51. The total number of learnable parameters
in the proposed and existing deep neural networks are listed in Table 11. As the proposed
network has only five 3× 3 convolutional layers, three 1× 1 convolution layers, and a fully
connected layer with a number of action classes (N_c) times 8192 weights with N_c count
of bias terms, the proposed HARNet model includes 525,779 kernel weight and bias terms.
These weights are added along with 496 offset and scale parameters from the five stages of
batch normalization layers, resulting in a total of 526,275 parameters. When compared with
the best existing method [36], this is lower by 83.12%.

Table 8. Comparison with existing works on UCF101.

Author Method Year Accuracy (%)

Simonyan, K. and Zisserman, A. [37] Two-stream (fusion by SVM) 2014 88.00
Du et al. [38] C3D (Fine tuned from I380k) 2015 85.20
Wang, et al. [36] TSN 2016 94.2
Qiu et al. [39] Pseudo 3D 2017 93.70
Zhou et al. [40] Mixed 3D/2D conv Tube (MiCT) 2018 88.90
Tran et al. [31] R(2 + 1)D-RGB(Kinetics) 2018 96.80
Tran et al. [31] R(2 + 1)D-TwoStream(Kinetics) 2018 97.30
Tu et al. [41] ActionS-ST-VLAD 2019 95.60
Li et al. [42] DANet 2020 86.70
Perrett et al. [43] TRX 2021 96.10
Yongmei Zhang [5] STFusionNet 2022 93.20
Chen [44] 2L-Attention-s3DResNet 2023 95.68
Proposed HARNet + KNN - 99.98

Table 9. Comparison with existing works on HMDB51.

Author Method Year Accuracy (%)

Simonyan, K. and Zisserman, A. [37] Two stream(fusion by SVM) 2014 59.40
Wang, et al. [36] TSN 2016 68.50
Zhou et al. [40] Mixed 3D/2D conv Tube (MiCT) 2018 63.80
Tran et al. [31] R(2 + 1)D-RGB (Kinetics) 2018 74.50
Tran et al. [31] R(2 + 1)D-TwoStream (Kinetics) 2018 78.70
Tu et al. [41] ActionS-ST-VLAD 2019 71.40
Li et al. [42] DANet-50 2020 54.30
Rehman, Inzamam [32] 3DCF+NFC 2021 82.55
Perrett et al. [43] TRX 2021 75.60
Omi et al. [45] Multi-Domain 2022 75.62
Chen [44] 2L-Attention-s3DResNet 2023 72.60
Proposed HARNet + KNN - 91.58

Table 10. Comparison with existing works on KTH.

Author Method Year Accuracy (%)

Bregonzio et al. [46] Appearance + distribution −MKL Fusion 2012 94.33
Shuiwang et al. [47] 3DCNN 2013 90.20
Cho [48] Local motion + full motion 2014 89.70
Yao [49] STB + Pool 2016 95.83
Zhang et al. [50] SIFT + BoW + SVM 2018 94.69
Zhang et al. [33] 3D Deconvolution NN2 2020 97.40
Mishra [51] FEA + RBF-SVM 2022 96.20
Proposed HARNet + KNN - 97.58
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Table 11. Comparison with existing works in Parameters *.

Author Method Pretraining Dataset Year Parameters (M)

Simonyan, K.
and Zisserman, A. [37] Two stream ImageNet 2014 25

Du et al. [38] C3D Kinetics400 2015 34.6
Wang, et al. [36] TSN ImageNet 2016 24.3
Qiu et al. [39] Pseudo 3D ImageNet /Kinetics400 2017 25.4
Zhou et al. [40] Mixed 3D/2D conv Tube (MiCT) Kinetics400 2018 50.2
Li et al. [42] DANet - 2020 36.26
Wang [52] TDN Kinetics400 + ImageNet 2021 52.3
Omi et al. [45] Multi-Domain Kinetics400 2022 32.02
Chen [44] 2L-Attention-s3DResNet Kinetics400 2023 3.08
Proposed HARNET HMDB51 - 0.52

* As the datasets used in this experiment are different, this comparison is given for information only.

5. Conclusions and Future Directions

In this work, a representation learning model of HARLearning based on the informa-
tion bottleneck principle is proposed. It was implemented by designing a novel directed
acyclic graph-based residual CNN named HARNet. It was built by stacking convolution
layers followed by a batch normalization layer and ReLU with max pooling layers after
residual connection via (1× 1) convolution. The network was trained for learning the latent
representations of input and recognizing human actions. The fusion of spatial and motion
information was performed by concatenating the form of the frame with optical flow vec-
tors. Using the advantages of batch normalization and residual connections, the network
was able to better understand the distinct features of human actions. The efficiency of the
network in learning features to recognize actions with fewer parameters was achieved by
the use of the max pooling layer and (1× 1) convolution. The learned features were used to
train ML classifiers. HARNet features with the KNN classifier yielded an improvement in
performance in terms of accuracy by 2.75% on UCF101, 10.94% on HMDB51, and 0.18% on
KTH compared with SOTA methods. The other metrics demonstrate the robustness of the
proposed method on HAR with far fewer network parameters, which aids in implementing
the proposed model on edge devices. The proposed work can be extended to unsupervised
models for HAR to enable them to classify unseen data during surveillance. The model can
be trained with a large new dataset, such as kinetics 700, in order to include more actions.
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