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Abstract: Quantum walks (QWs) have a property that classical random walks (RWs) do not possess—the
coexistence of linear spreading and localization—and this property is utilized to implement various
kinds of applications. This paper proposes RW- and QW-based algorithms for multi-armed-bandit
(MAB) problems. We show that, under some settings, the QW-based model realizes higher perfor-
mance than the corresponding RW-based one by associating the two operations that make MAB
problems difficult—exploration and exploitation—with these two behaviors of QWs.
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1. Introduction

Random walk (RW) is one of the most ubiquitous stochastic processes and is employed
for both mathematical analyses and applications, such as describing real-world phenomena
and constructing various algorithms. Meanwhile, along with the increasing interest in
quantum mechanics from both theoretical and applied perspectives, the quantum coun-
terpart of an RW, known as a quantum walk (QW), is also attracting attention [1–4]. A
QW includes the effects of quantum superposition or time evolution. In classical RWs, a
random walker (RWer) selects in which direction to go probabilistically at each time step,
and thus, one can track where the RWer is at any time step. On the other hand, in QWs,
one cannot tell where a quantum walker (QWer) exists during the time evolution, and the
location is determined only after conducting the measurement.

QWs have a property that classical RWs do not possess: the coexistence of linear spread-
ing and localization [5,6]. As a result, QWs show probability distributions that are totally
different from those of random walks, which weakly converge to normal distributions. The
former behavior, linear spreading, means that the standard deviation of the probability
distribution of measurement of quantum walkers (QWers) grows in proportion to the run
time t. In the case of discrete-time RWs on a one-dimensional lattice Z, denoting the random
variable of the position where a walker is measured at time t ∈ N0 = N ∪ {0} by X(RW)

t ,
then the standard deviation is D[X(RW)

t ] = O(
√

t). On the other hand, in discrete-time QWs
on Z, the standard deviation of a walker’s position at time t is D[X(QW)

t ] = O(t), and thus,
discrete-time QWs outperform RWs in terms of the propagation velocity [7]. The latter
behavior, localization, implies that the probability is distributed at a particular position no
matter how long the walk runs. In the classical RWs, the probability distribution becomes
flat despite keeping a bell-shaped curve; that is, localization is not observed.
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QWs were first introduced in the field of quantum information theory [7–9]. The idea
of weak convergence, which is frequently used in probability theory, was introduced to
show the properties of QWs [10,11], and since then, quantum walks have been actively
studied from both fundamental and applied perspectives. In fundamental fields, there
have been many attempts to analyze these evolution models mathematically [6,12–22] due
to varying behavior of QWs depending on the conditions or settings of time and space.
In applied fields, their unique behavior is useful for implementing quantum structures
or quantum analogs of existing models; therefore, various QW-based models have been
considered for subjects such as time-series analysis [23], topological insulators [24,25],
radioactive waste reduction [26,27], and optics [28,29]. In addition, the contribution to
quantum information technology is becoming more prominent these days. QWs have
been applied not only to the principle of technologies such as quantum search, quantum
teleportation [30,31], and quantum key distribution [32] but also to the implementation of
quantum gates themselves [33,34].

Throughout the extensive research conducted, considerable attention has also been
devoted to the models of QWs themselves. Initially, QW models were introduced in the
form of coined QWs, wherein the time evolution of walkers is considered through the
utilization of unitary matrices called coin matrices, analogous to transitions in RWs [9].
According to the No-Go Lemma [35,36], we need the additional subspace, namely the
coin space to each vertex, to construct a non-trivial unitary time evolution on the cycle,
introduced later. This model remains one of the most intuitive models and is widely studied
or applied even in contemporary times. On the other hand, depending on the research
interests, some literature also explores QW models that do not incorporate coins [37–39],
which represent a generalization of quantum cellular automata [35]. The coinless QW
models seem to achieve reduced computational costs, but it is shown that such QW models
are unitarily equivalent to coined QW models [40]. In this paper, we focus on using the
coined QW models because adopting the coined QWs is reasonable when conducting a
comparison with RWs. In the following, when referring to QWs, it indicates the coined QWs.

This paper proposes new solution schemes for multi-armed bandit (MAB) problems [41]
using RWs and QWs. In the MAB problems, we consider a situation where there are
multiple slot machines in an environment, each gives a reward with a probability allocated
to it, and an agent iterates the selection of slot machines and probabilistic gain of the
rewards and tries to maximize the total reward. Initially, the agent has no information
about the probability of giving rewards, especially which slot machine has the maximum
probability, which we call the best slot machine. Thus, it is required to accumulate such
information through a certain number of selections, an action which we call exploration.
On the other hand, too much exploration will use up the opportunities for selecting the
better slot machines that have already been found; that is, it is also necessary to spend some
rounds to bet on slot machines that are reliable based on the information obtained, which
we call exploitation. The difficulty of MAB problems occurs under the balance between
these two operations, known as the exploration–exploitation trade-off [42].

One of the purposes of this study is to show that, by utilizing QWs, we can construct an
algorithm to solve the MAB problem. This algorithm can outperform models implemented
by RWs in terms of the total rewards under some settings. Our idea to realize this is to
address this dilemma derived from the exploration–exploitation trade-off by utilizing a
unique property of QWs, i.e., the coexistence of linear spreading and localization. More
precisely, we combine exploration with linear spreading, and exploitation with localiza-
tion, as shown in Figure 1. By utilizing linear spreading, we intend to cover the whole
environment and prevent us from missing some slot machines. In addition, by applying
localization, we intend to mark slot machines that should be recommended with a high
probability distribution. This paper introduces a QW-based algorithm for MAB problems,
which realizes these combinations. Our study focuses on three-state site-dependent QWs
on a cycle. The behavior of these walks corresponds to that of lazy random walks, with
walkers moving clockwise, anti-clockwise, or staying in place in superposition. Giving



Entropy 2023, 25, 843 3 of 20

three states to QWs enables us to obtain a high existence probability at the initial position
of a QWer. In addition, site-dependent coin matrices make it possible to trap or dam the
QWer on certain vertices. By taking advantage of these, we attempt to bring about a high
probability on a vertex whose slot machine should be recommended. To facilitate a clear
comparison, we also construct an RW-based model wherein lazy RWs occur on cycles, and
the transition probabilities depend on the position from which the walkers depart. While
the QW-based model possesses the coexistence of linear spreading and localization, the
RW-one does not; while the results depend on the specifics of the MAB problem, our study
reveals that, for certain settings, the different properties of QWs and RWs also lead to a
significant difference in total rewards between both algorithms.

exploration

exploitation

pro
it-m

aking
f

coverage

Position
Pr

ob
ab

ilit
y

Localization

Linear spreading

RW
QW

Figure 1. Association between the behaviors of quantum walks (linear spreading and localization)
and the operations in MAB problems (exploration and exploitation).

The rest of this paper is organized as follows. First, in Section 2, we present an
algorithm for MAB problems based on the RW, which is more intuitive than the QW-
based one. Then, in Section 3, we introduce a system of discrete-time quantum walks
on a cycle and the QW-based algorithm for MAB problems. In Section 4, we show some
results for numerical simulations of the RW- and QW-based models and compare the
performance between the two models. Section 5 concludes this paper and discusses the
future possibilities of our work.

2. Random-Walk-Based Model for MAB Problem

This section presents an MAB algorithm implemented using a discrete-time random
walk (RW) on cycles. The RW model presented in this paper describes the walkers that
can stay at the same position, which we often call a lazy random walk. First, we present the
mathematical system of the lazy RW, and then we construct the MAB algorithm based on it.

2.1. Random Walk on Cycles

Assume that cycle CN is composed of N vertices and edges. Here vertices are labeled
by set VN := {0, 1, · · · , N − 1}, and the label is ordered clockwise. Thus, the set of edges
is given by EN :=

{
{x, x + 1} | x ∈ VN

}
, where one applies addition and subtraction

modulo N to VN ; i.e., (N − 1) + 1 ≡ 0 and 0− 1 ≡ N − 1. In other words, VN is isometric
to Z/NZ.

We assume that the position of a walker is determined as follows:

• A walker initially exists at position s ∈ VN .
• At each time step, a walker at position x moves one unit clockwise with probability

q(x), moves one unit anti-clockwise with probability q(x) or stays at the current
position with probability 1− 2q(x).

Here the probabilities of moving clockwise and anti-clockwise are equal to each other
in this paper. This is due to correspondence with the setting of the QW presented later;
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therein, the setting of the initial state of the QW gives symmetric probability distribu-
tions when the coin matrix is homogeneous for the space. Note that q(x) should satisfy
0 ≤ q(x) ≤ 1/2 under this condition, and this setting is equivalent to the simple RW on
cycles in the case of q(x) = 1/2 for all x ∈ VN .

Such an RW is mathematically constructed as follows. For N0 = {0, 1, · · · }, let
{Xt}t∈N0 be the sequence of random variables that represent the position of a walker at
time step t. The next position Xt+1 depends on the current one Xt, and the conditional
probability is determined as follows:

P(Xt+1 = x + 1 |Xt = x) = P(Xt+1 = x− 1 |Xt = x) = q(x), (1)

P(Xt+1 = x |Xt = x) = 1− 2q(x) (2)

with x ∈ VN . We recall that VN ' Z/NZ; the equation above includes

P(Xt+1 = N − 1 |Xt = 0) = q(0), (3)

P(Xt+1 = 0 |Xt = N − 1) = q(N − 1). (4)

Here we denote the probability that a walker is at position x at time step t by ν(t)(x):

ν(t)(x) = P(Xt = x). (5)

Then, the relation

ν(0)(x) = δs(x) (6)

holds, where δx′(x) is the delta function: for x′ ∈ VN ,

δx′(x) =
{

1 (x = x′)
0 (otherwise)

. (7)

Moreover, by Equations (1) and (2), ν(t)(x) varies as follows:

ν(t+1)(x) = q(x + 1)ν(t)(x + 1) + (1− 2q(x))ν(t)(x) + q(x− 1)ν(t)(x− 1). (8)

2.2. Random-Walk-Based Algorithm

We consider an N-armed bandit problem with cycle CN ; each vertex x ∈ VN is given
a slot machine that gives a reward with the probability p(x). In the following, each slot
machine is identified by the same label as the corresponding slot machine; for example, we
call the slot machine on the vertex x slot machine x. In addition, we call probability p(x)
the success probability of slot machine x. Moreover, we denote the slot machine with the best
success probability in VN by x∗; that is,

x∗ = arg max
x∈VN

p(x), (9)

and we call it the best slot machine.
The principle consists of the following four steps: [STEP 0] initializing the quantum

walk settings, [STEP 1] running random walks, [STEP 2] playing the selected slot machine,
and [STEP 3] updating the quantum walk settings. After finishing [STEP 3], the process
returns to [STEP 1]. We call the series of the last three steps ([STEP 1–3], shown in
Figure 2) a decision, and decisions are iterated J times over a run. Here, we use the
following notations:
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Agent

[STEP 1]
Select with RW

[STEP 2]
Receive Reward

[STEP 3]
Adjust RW-Setting

Environment (N slot machines)

0

x* ?

� 

!(0)

!(x*)

!(1)!( −1)

1 − 1s

START

#($) ?

Figure 2. Single decision on the random-walk-based model for MAB problems.

• sj ∈ VN : Initial position of random walk in the j-th decision.
• qj(x) ∈ [0, 1/2]: Clockwise-transition probability and anti-clockwise-transition prob-

ability in the j-th decision.
• x̂j ∈ VN : Vertex (slot machine) measured in the j-th decision.
• r̂j ∈ {0, 1}: Reward on the j-th decision. This value is probabilistically determined

by the Bernoulli distribution Ber(p(x̂j)); that is,

r̂j :=
{

1 (with prob. p(x̂j))
0 (with prob. 1− p(x̂j))

. (10)

• Hj(x): Number of decisions where the slot machine x is selected until the j-th decision.
• Lj(x): Number of decisions where the slot machine x gives the reward until the

j-th decision.
• p̂j(x): Empirical probability that the slot machine x gives the reward on the j-th decision:

p̂j(x) =


Lj(x)
Hj(x)

(Hj(x) 6= 0)

0 (Hj(x) = 0)
. (11)

[STEP 0] RW-setting initialization
For the first decision, the settings of the random walk are determined as follows:

• Initial position s1: Probabilistically determined by the uniform distribution on VN .
• Transition probability: q1(x) = q◦ ∈ [0, 1/2] for all x ∈ VN .

After finishing this step, the process iterates the following three steps.

[STEP 1] Random walk
Random walks are run over T time steps with the initial position sj and transition probabil-

ity qj(x), and the value x̂j ∈ VN is obtained following probability distribution ν
(T)
j (x).

[STEP 2] Slot machine play
The slot machine x̂j ∈ VN obtained at [STEP 1] is played. Then, the reward (r̂j = 1) is
obtained with probability p(x̂j).

Here H- and L-values are updated. First, the H-value on x̂j is incremented:

Hj(x̂j) = Hj−1(x̂j) + 1. (12)
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If r̂j = 1, the L-value on x̂j is also incremented (otherwise, the value is maintained):

Lj(x̂j) =

{
Lj−1(x̂j) + 1 (with prob. p(x̂j))
Lj−1(x̂j) (with prob. 1− p(x̂j))

. (13)

For x 6= x̂j, the H- and L-values are maintained:

Hj(x) = Hj−1(x), (14)

Lj(x) = Lj−1(x). (15)

Based on that, p̂j(x)s are updated.

[STEP 3] RW-setting adjustment
Using the new p̂j(x)s, the settings of quantum walks are updated for the next decision. The
new initial position is defined as

sj+1 = arg max
x∈VN

p̂j(x). (16)

Moreover, the new transition probabilities are determined as

qj+1(x) = q◦ exp(−a · p̂j(x)b) (17)

where a, b ≥ 1, and q◦ are defined in [STEP 0]. Note that the q-value monotonically
decreases about the empirical success probability; that is, if p̂j(x) is larger, then qj+1(x) is
smaller. By setting the new initial state and q-value in these manners, we aim at confining
walkers to the desired position while concurrently affording them opportunities to depart
when the current decision is uncertain. The parameters a and b control the strength of the
effect by p̂j(x); the details are given in Appendix A.

After this step, the process returns to [STEP 1].

3. Quantum-Walk-Based Model for MAB Problem

This section presents the MAB algorithm implemented by the discrete-time quantum
walk (QW) on cycles. The difference between QW and RW lies in whether one handles
the quantum superposition of states pertaining to the walker’s positions. Herein, the
transition of walkers at each time step is also superposed; that is, it is uncertain even after
the time step which transition occurs: moving clockwise, anti-clockwise, or staying in place.
We introduce probability amplitude vectors and coin matrices in the QW to describe the
quantum superposition and its time evolution.

The QW model employed in our study is a three-state QW on a cycle, which can be
naturally reduced to a finite space from the one-dimensional lattice model [5]; see, for
example, [18,43,44]. First, we explain the definition of our QW in detail, and then we
present the MAB algorithm based on it.

3.1. Quantum Walk on Cycles

Assume that cycle CN is constructed in the same manner as in Section 2; that is,
it is the graph established by the set of vertices VN := {0, 1, · · · , N − 1} and edges
EN :=

{
{x, x + 1} | x ∈ VN

}
, where one applies addition and subtraction modulo N

to VN .
The space of the probability amplitude vectors driving our QW is defined in a com-

pound Hilbert space consisting of the position Hilbert space HP and the coin Hilbert space
HC. The position Hilbert space HP is spanned by the unit vectors corresponding to the
vertices on CN ; i.e., HP = span{|x〉 | x ∈ VN}. Here we require them to be mutually
orthogonal, which is equivalent to satisfying the relation 〈y|x〉 = δy(x) for any x, y ∈ VN ,
where δy is the delta function defined by Equation (7). Then, HP ' CN holds.
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The coin Hilbert space HC pertains to the internal state of walkers. In this model,
we assume that there exist three internal states: clockwise (+), anti-clockwise (−), and
staying (O). We define the three-dimensional unit vectors corresponding to them as
|−〉 = [1 0 0]T, |O〉 = [0 1 0]T, and |+〉 = [0 0 1]T, where a superscript T on a matrix
represents its transpose, and construct the coin Hilbert space as HC = span{|−〉 , |O〉 , |+〉}.
Here you see that HC = C3. Based on HP and HC, the whole system is described by

HPC = HP ⊗HC = span{|x〉 ⊗ |ε〉 | x ∈ VN , ε ∈ {±, O}}. (18)

Then the total state of our QW at time t ∈ N0 is represented as follows: there exists
|ψ(t)(x)〉 ∈ C3 for each x ∈ VN such that

|Ψ(t)〉 = ∑
x∈VN

|x〉 ⊗ |ψ(t)(x)〉 ∈ HPC. (19)

Here, t ∈ N0 represents time step of QWs, and |ψ(t)(x)〉 ∈ C3 is called the probability
amplitude vector at position x ∈ VN at run time t. We set the initial state as

|Ψ(0)〉 = |Φ〉 := |s〉 ⊗ |ϕ〉 , (20)

where s ∈ VN , and |ϕ〉 ∈ C3 is a constant vector with ‖ϕ‖ = 1. In this paper, we fix |ϕ〉 to
|O〉, realizing a symmetric probability distribution about the initial position when the coin
matrix defined later is homogeneous for positions.

Now, we introduce the time evolution of |Ψ(t)〉 by

|Ψ(t+1)〉 = U |Ψ(t)〉 . (21)

Here U is the unitary operator, referred to as the time evolution operator, and is composed
of shift operator S and coin operator C:

U = SC, (22)

and S and C are given by

S = S† ⊗ |−〉〈−|+ IN ⊗ |O〉〈O|+ S⊗ |+〉〈+| (23)

and

C = ∑
x∈VN

(
|x〉〈x| ⊗ C(x)

)
. (24)

Here S is defined as

S = ∑
x∈VN

|x + 1〉〈x| (25)

and represents the clockwise transition, and then

S† = ∑
x∈VN

|x− 1〉〈x| (26)

indicates the anti-clockwise transition. The identity matrix IN corresponds to staying in
place. Here, note that N ≡ 0 on VN(' Z/NZ); that is, for example, in the case of N = 4,

S = |1〉〈0|+ |2〉〈1|+ |3〉〈2|+ |0〉〈3| (27)
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and

S† = |3〉〈0|+ |0〉〈1|+ |1〉〈2|+ |2〉〈3| . (28)

C(x) is a unitary matrix called a coin matrix, which is defined as follows:

C(x) =


− 1 + cos θ(x)

2
sin θ(x)√

2
1− cos θ(x)

2
sin θ(x)√

2
cos θ(x)

sin θ(x)√
2

1− cos θ(x)
2

sin θ(x)√
2

− 1 + cos θ(x)
2

 (29)

with θ(x) ∈ [0, 2π) for all x ∈ VN . Note that, in the case of cos θ(x) = −1/3, C(x) is
reduced to the Grover matrix, which is important in quantum searching [45].

Let us explain the equivalent expression for the time evolution operator U, which is
useful to understand the dynamics of our QW: by applying the property of the Kronecker
product, we have

U = ∑
x∈VN

(
|x− 1〉〈x| ⊗ P(x) + |x〉〈x| ⊗ R(x) + |x + 1〉〈x| ⊗Q(x)

)
, (30)

where

P(x) = |−〉〈−|C(x) =

 −
1 + cos θ(x)

2
sin θ(x)√

2
1− cos θ(x)

2
0 0 0
0 0 0

, (31)

Q(x) = |+〉〈+|C(x) =


0 0 0
0 0 0

1− cos θ(x)
2

sin θ(x)√
2

− 1 + cos θ(x)
2

, (32)

R(x) = |O〉〈O|C(x) =


0 0 0

sin θ(x)√
2

cos θ(x)
sin θ(x)√

2
0 0 0

. (33)

The matrices P(x), Q(x), and R(x) are considered to be the decomposition elements of
C(x); that is, the relation P(x) + Q(x) + R(x) = C(x) holds. They describe the matrix-
valued weight of a clockwise transition, an anti-clockwise transition, and staying in place,
respectively, corresponding to the transition probabilities of the RW, as shown in Figure 3.

By Equations (21) and (30), we have

|ψ(t+1)(x)〉 = P(x + 1) |ψ(t)(x + 1)〉+ R(x) |ψ(t)(x)〉+ Q(x− 1) |ψ(t)(x− 1)〉 . (34)

Moreover, from the initial state (20), there exists a 2-dimensional matrix Ξ(t)(x) such that

|ψ(t)(x)〉 = Ξ(t)(x) |ϕ〉 . (35)

Here Ξ(t)(x) describes the weight of all the possible paths from the origin to the position x
at run time t. From Equation (34), the following relation holds:

Ξ(t+1)(x) = P(x + 1)Ξ(t)(x + 1) + R(x)Ξ(t)(x) + Q(x− 1)Ξ(t)(x− 1). (36)
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0
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x
x − 1x + 1

P(x)Q(x)

R(x)

N − 1

� 

(Quantum Walk)
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1
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x − 1x + 1

q(x)q(x)

1−2q(x)

N − 1

� 

(Random Walk)
Figure 3. Transition probabilities of RW (left panel) and matrix-valued weights of QW (right panel).

Finally, the measurement probability of the particle at position x at run time t, denoted
by µ(t)(x), is given by

µ(t)(x) := ‖ψ(t)(x)‖2. (37)

Setting random variable Xt following the distribution µ(t), we call Xt the position of a
QWer at time t. This definition is based on the Born probability interpretation in quantum
mechanics. Note that for any t ∈ N0, the following is satisfied:

∑
x∈VN

µ(t)(x) = ∑
x∈VN

‖ψ(t)(x)‖2 = 1. (38)

3.2. Quantum-Walk-Based Algorithm

We consider an N-armed bandit problem with cycle CN ; each vertex x ∈ VN is given
a slot machine that gives a reward with the probability p(x), identically to the RW-based
model in Section 3.

The principle is also similar to the RW-based model: First, the QW settings are initial-
ized ([STEP 0]), and then decisions are iterated ([STEP 1–3]) J times over a run. As shown
in Figure 4, the QW-based model controls the coin matrix C(x) by adjusting the value of
the parameter θ(x) instead of the transition probability q(x) in the RW-based model. Here
we use the following notations:

• |Φj〉 ∈ HPC: Initial state of quantum walk on the j-th decision.
• sj ∈ VN : Initial position of quantum walk on the j-th decision.
• θj(x) ∈ [0, 2π): Parameter of Equation (24) on vertex x on the j-th decision; then the

coin matrix there is C(x).
• x̂j ∈ VN : Vertex (slot machine) measured on the j-th decision.
• r̂j ∈ {0, 1}: Reward on the j-th decision, which follows the Bernoulli distribution

Ber(p(x̂j)):

r̂j :=
{

1 (with prob. p(x̂j))
0 (with prob. 1− p(x̂j))

. (39)

• Hj(x): Number of decisions in which slot machine x is selected until the j-th decision.
• Lj(x): Number of decisions in which slot machine x gives the reward until the

j-th decision.
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• p̂j(x): Empirical probability that slot machine x gives the reward on the j-th decision:

p̂j(x) =


Lj(x)
Hj(x)

(Hj(x) 6= 0)

0 (Hj(x) = 0)
. (40)

Agent

[STEP 1]
Select with QW

[STEP 2]
Receive Reward

[STEP 3]
Adjust QW-Setting

Environment (N slot machines)

0

x* ?

� 

!(0)

!(x*)

!(1)!( −1)

1 − 1s

START

#($) ?

Figure 4. Single decision on the quantum-walk-based model for MAB problems

[STEP 0] QW-setting initialization
For the first decision, the settings of the quantum walk are determined as follows:

• Initial state: |Φ1〉 = |s1〉 ⊗ |O〉. Here the initial position s1 is probabilistically deter-
mined by the uniform distribution on VN .

• Parameter of coin matrices: θ1(x) = θ◦ ∈ [0, 2π) for all x ∈ VN .

After finishing this step, the run iterates the following three steps.

[STEP 1] Quantum walk
Quantum walks are run over T time steps with the initial position sj and the parameter
θj(x). After running T steps of time evolution, the QWer is measured to obtain the value

x̂j ∈ VN following probability distribution µ
(T)
j (x).

[STEP 2] Slot machine play
The slot machine x̂j ∈ VN obtained at [STEP 1] is played. Then, the reward (r̂j = 1) is
obtained with probability p(x̂j).

Here H- and L-values are updated. First, the H-value on x̂j is incremented:

Hj(x̂j) = Hj−1(x̂j) + 1. (41)

If r̂j = 1, the L-value on x̂j is also incremented (otherwise, the value is maintained):

Lj(x̂j) =

{
Lj−1(x̂j) + 1 (with prob. p(x̂j))
Lj−1(x̂j) (with prob. 1− p(x̂j))

. (42)

For x 6= x̂j, the H- and L-values are maintained:

Hj(x) = Hj−1(x), (43)

Lj(x) = Lj−1(x). (44)

Based on that, the p̂j(x) values are updated.
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[STEP 3] QW-setting adjustment
Using the new p̂j(x)s, the settings of quantum walks for the next decision are updated. The
new initial state is defined as

|Φj+1〉 = |sj〉 ⊗ |O〉 , (45)

where sj is the provisionally best machine:

sj = arg max
x∈VN

p̂j(x). (46)

Moreover, the new parameters of the coin matrices are determined as

θj+1(x) = θ◦ exp(−a · p̂j(x)b) (47)

where a, b ≥ 1, and θ◦ are defined in [STEP 0]. Note that the θ-value is defined similarly to
the q-value in the RW-based model; that is, if p̂j(x) is larger, then θj+1(x) is smaller. When
the θ-value at a certain position xL ∈ VN is updated, the difference between C(xL) and C(x)
with x = xL ± 1 emerges, wherein xL is often called a defect. If a defect exists at the initial
position, the coin matrix, depending on the θ-value, controls the strength of localization
there. Incidentally, when p̂j(x) is large, θj+1(x) can be almost 0. If θ(x) in Equation (24)
is exactly 0, then C(x) is the identity matrix. This means that, if the initial position of the
walker has a coin matrix with θ(x) = 0, the walker is completely trapped there because the
internal state is set to be |O〉. Thus, a larger empirical success probability indicates a strong
localization if it is provisionally best. However, if p̂j(x) is not large, this phenomenon is
relaxed. In short, this θ-value plays a role corresponding to the q-value in the RW-based
model; that is, it confines walkers to the desired position while concurrently affording them
opportunities to depart when the current decision is uncertain. Regarding the analysis of
θ-values, also see Appendix A.

After this step, the process returns to [STEP 1].

4. Numerical Simulations

In this section, we give and compare simulation results for the RW- and QW-based
models. Assume that the RW- and QW-based models are run in parallel K times, respec-
tively, and each run is labeled by the set {1, 2, · · · , K}. We indicate that the parameters are
in the k-th run by a subscript next to the number of iterations; for example, the reward in
the j-th decision in the k-th run is denoted by r̂j, k.

As figures-of-merit, we define quantities M(j), ρ(j), and CDR(j):

M(j) :=
1
K

K

∑
k=1

j

∑
`=1

r̂`, k, (48)

ρ(j) :=
1
K

K

∑
k=1

j

∑
`=1

(p(x∗)− p(x̂`, k)), (49)

CDR(j) :=
1
K

K

∑
k=1

δx∗(x̂j, k). (50)

M(j) indicates the mean of total rewards until the j-th decision over K runs. The aim of
the proposed models is to make M(j) as large as possible. ρ(j) is the mean of cumulative
regret until the j-th decision over K runs. The cumulative regret is equal to the difference
in expectations of total reward between the case where only the best machine is selected
until the j-th decision and that of actual selections until then. CDR(j) is the correct decision
rate of the j-th decision, which is the ratio of the number of runs in selecting the best slot
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machine to the total number of runs K. Herein, δy for y ∈ VN is the delta function defined
by Equation (7).

The parameter values used for this series of simulations are summarized in Table 1.
The success probabilities of slot machines are given as shown in Figure 5; that is,

p(x) =


0.9 (x = 14)
0.1 (x = 15)
0.7 (x : even except for 14)
0.5 (x : odd except for 15)

. (51)

Herein, the best slot machine is x∗ = 14. Recall that the agent cannot directly access all
information regarding the success probabilities of the slot machines above. The tuples for
the QW- and RW-based models are selected as one of the best performers in a certain range
of parameters on each model. The details about parameter-dependencies of both models
are found in Appendix A.

Table 1. Parameter values used for numerical simulation of decision making.

Parameter Symbol Value

Number of slot machines N 32
Number of runs K 500

Number of decisions for a single run J 5000
Parameters for the QW-based model (a, b, θ◦) (5, 6, 5π/16)
Parameters for the RW-based model (a, b, q◦) (9, 6, 0.5)

The blue and orange curves in Figure 6a–c demonstrate the performances of RW- and
QW-based models as the variations of the mean of total reward M(j), the cumulative regret
ρ(j), and the maximum value of CDR over the number T of time steps of walks for single
decision-making, respectively. The total reward and the cumulative regret are taken for the
final decision J = 5000. The maximum value of CDR is taken over J decisions; that is,

max(CDR) := max
j=1, ··· , J

CDR(j). (52)

For T ≥ 4, we observe that M(5000) and max(CDR) of the QW-based model are larger
than those of the RW-based model. On the other hand, for the cumulative regret ρ(5000),
the value for the QW-based model is lower than that for the RW-based model. Both results
indicate that the performance of the QW-based model is superior to that of the RW-based
model. You see the particular difference in the growth of M(5000) and max(CDR) over
the variation of T between the QW- and RW-models; the gradient of the orange curves
(QW) in the range of 2 ≤ T ≤ 8 in M(5000) and max(CDR) is larger than that of the
blue curve (RW). In addition, the QW-based model has higher suprema of M(5000) and
max(CDR) than the RW-based model. Similar discussions are also made for regret ρ(5000).
In both the RW- and QW-models ρ(5000) decreases over the variation of T in the range of
2 ≤ T ≤ 8, but the gradient of the QW-model is steeper than that of the RW-one. Moreover,
the QW-based model has a lower infimum than the RW-based model.

These results depend on a variety of choices; in particular, the casino setting and the
parameters a and b. Indeed, the QW-based model shows a faster growth in reward for
many of a and b compared to the RW-based model (see Appendix A). However, there are
also settings where this relationship is reversed. We have also observed that in the limit of
very large a and b, when fine-tuned to a specific casino setting, the performance of both
RW and QW can grow even faster than the results shown in Figure 6. We speculate that
linear spreading and localization may lose their advantage for certain settings.
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Figure 5. Success probability p(x) for slot machine x ∈ VN . The number of slot machines N is set to
32, and the best slot machine is x∗ = 14.
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Figure 6. Comparison of (a) mean of total reward M(J), (b) cumulative regret ρ(J), and (c) the
maximum value of CDR over the variation of final time step T of walks between the RW- and
QW-based models. Parameters are determined as shown in Table 1.

You can see the contribution of linear spreading and localization from the behavior of
variation of decision-making and probability distributions for making a decision, which
is particularly apparent for smaller T. Figures 7 and 8, respectively, show the precise
performances of runs of the RW- and QW-based models whose resultant total rewards
M(J) were almost equal to the average value. Herein, the number of time steps T is set to
be 8 for each model, and the other parameters are set as in Table 1. Figure 7a,b indicate
the relationship between the decision j and the selected slot machine x̂j for the RW- and
QW-based models, respectively. From this figure, you can see that the decision-making in
the QW-based model almost converges to x = x∗ near j = 1200, while that in the RW-based
model does so near j = 1400. This means that exploration in the QW-based model is
more successful than that in the RW-based model. Linear spreading makes the probability
distribution of QWs wider, whose variance is larger than that of RWs, which results in
faster exploration of the QW-based model. Moreover, the behavior of the QW-based model
after finding x = x∗ is more stable than that of the RW-based model, which indicates that
the QW-based model also realizes more effective exploitation than the RW-based one for
this set of parameters.

These behaviors are interpreted by the variations of the probability distributions of the
RW(ν(T)j )- and QW(µ(T)

j )-based models over decision j shown in Figure 8a,b, respectively.
You see that, for smaller j, the probability of QW is more widely distributed than that of
RW, although the values are quite small except for a certain position. It is important that
the probabilities are distributed in a wider range even if they are quite small because it
indicates that the agent has more selections, which is crucial to realize exploration. As a
result, the QW-based model can obtain a high measurement probability of the best slot
machine at j = 1200 at the latest, while the RW-based model does at j = 1400, which
corresponds to the convergence of the decision-making shown in Figure 7. After beginning
the concentrated investment to x = x∗, the measurement probability of walkers on the
QW is almost 1, while the corresponding probability on the RW is around 0.9, which
shows that strong localization occurs on vertex x∗ after finding the slot machine there. This
phenomenon contributes to exploitation; as you see in Figure 7, the QW-based model after
finding the best slot machine is much more likely to select it than the RW-based one, and
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we can understand that it comes from the difference in probability distributions between
the two models.

(a) RW-based Model

(b) QW-based Model
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Figure 7. The red markers show the variation of the selected slot machine x̂j over decision j for
single runs of the (a) RW- and (b) QW-based models. For both settings, the number of time steps
T is set to 8, and other parameters are determined as in Table 1. Each run is selected as the one
whose resultant total rewards M(J) were almost equal to the average value: M(J) = 4063 in (a), and
M(J) = 4200 in (b). The black, sky blue, gray, and light green lines indicate the slot machines whose
success probabilities are 0.9, 0.7, 0.5, and 0.1, respectively.
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Figure 8. Cont.
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(a) RW-based Model
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Figure 8. The probability distributions regarding the selected slot machine x̂j where walkers exist
after T steps of walk in the j-th decision with j = 1, 500, 1000, 1100, 1200, 1300, 1400, 1500 for single
runs of the (a) RW- and (b) QW-based models. The settings are the same as in Figure 7; that is, for
both settings, the number of time steps T is set to 8, other parameters are determined as in Table 1,
and each run is selected as the one whose resultant total rewards M(J) were almost equal to the
average value: M(J) = 4063 in (a), and M(J) = 4200 in (b).

5. Conclusions and Discussion

This paper has proposed new solution schemes for multi-armed bandit (MAB) prob-
lems using random walks (RWs) and quantum walks (QWs). We demonstrated that we
could find parameter regimes where the QW-based model performs better than the RW-
based model by addressing the exploration–exploitation dilemma by utilizing a unique
property of QWs, i.e., the coexistence of linear spreading and localization. Our idea was to
combine exploration with linear spreading and exploitation with localization. By utilizing
linear spreading, we expect the QWs to cover the whole environment to prevent it from
missing some slot machines. In addition, by applying localization, we expect the QWs to
identify the slot machine that should be recommended with a high probability distribution.
Indeed, we showed that, under some settings, linear spreading contributes to exploring
the environment and quickly finding the best slot machine, and localization contributes to
exploiting the best slot machine more frequently.

The positive results obtained in this study open the possibility for further extensions of
this approach. First, can we apply this algorithm to the case of multi-agent systems such as
competitive or adversarial bandit problems [46–48] with some revision? Especially for the
QW-based model, we will examine its application to the use of coin matrices implemented
by multiple registers or to drive walkers on a torus. Moreover, there are possibilities for
constructing application models in the single-agent case. For example, we may construct
an evolved version of the QW-based model, including a quantum version of the optimal
stopping problem.

Moreover, analyses of our models are also important. The performances obtained in
Section 4 should depend on the number of slot machines (i.e., vertices) N, the true success
probability p(x), and the parameter settings (a, b, q◦) or (a, b, θ◦). Obtaining theoretical
formulae for the figures-of-merit would be desirable, which would make our results more
confident. Specifically, it is not immediately evident, given the parameter configurations
outlined in this paper, that the QW-based model outperforms the RW-based model in
general. Our investigations have focused solely on pairs (a, b) with small values; in the
event that larger values are assigned to either a or b, the RW-based model can exhibit
superior performance compared to any QW-based model (assuming the parameters are
chosen correctly for a specific casino setting). Indeed, we have confirmed that the RW-based
model with tuple (a, b, q◦) = (50, 20, 0.5) performs as well as the QW-based one with
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tuple (a, b, θ◦) = (50, 20, 29π/64), and in both results, the mean of total reward is around
4320 even in setting the number of time steps T to 8 (better than the results for small a and
b as shown in Figure 6). However, sufficiently addressing the parameter dependency and
its interplay with the casino settings is a highly complex problem at this stage. We provide
our existing analysis in Appendix A.

Several factors contribute to the complexity of a rigid mathematical treatment of this
problem, but the one that should be remarked on is the position-dependency of the coin
matrices in the QW-based model. Solving QW-based models with site-dependent coins is
very difficult, in general. While some studies have addressed this matter for the case where
the coin matrix only on the origin differs from the others [6,22] or that the coin matrices
are controlled by the trigonometric function whose input is in proportion to the label
position [12,14,21], the generalized case remains an open problem. To conduct a thorough
analysis of this model, it is necessary to accumulate analytical results for site-dependent
quantum walks over an extended period of time.
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Appendix A. Parameter-Dependencies of RW- and QW-Based Models

We analyze the (a, b, q◦)-dependency of the RW-based model and the (a, b, θ◦)-
dependency of the QW-based model.

First, we introduce the function f : [0, 1]→ R defined as follows:

f (u) = c exp(−aub) (A1)

with a, b ≥ 1 and c ≥ 0. Variance u corresponds to empirical success probability p̂j(x) in
both cases, and f (u) to qj+1(x) and θj+1(x) in Equations (17) and (47), respectively. Note
that qj+1(x) and θj+1(x) are controlled by position x through p̂j(x); in that sense, they are
the functions of the empirical success probability. Additionally, parameter c is represented
by q◦ and θ◦ in the RW- and QW-based models, respectively.

By the property of exponential functions, f (u) monotonically decreases; the maximum
and minimum of f (u) are f (0) = c and f (1) = c exp(−a), respectively. This indicates that,
if c is fixed, the minimum of f (u) is determined by a and smaller in larger a as shown in
Figure A1a. Furthermore, if both a and c are fixed, the maximum and minimum of f (u) are
constant; b solely governs how f (u) decreases along with the growth of u. Precisely, larger
b makes the gradient of f (u) negatively larger as shown in Figure A1b.

In the following, we fix the number T of time steps of the walk for single decision-
making to 32; the tendency is common for any T. The numbers of slot machines, runs,
and decisions for a single run are equal to those of the simulation in Section 4; that is,
(N, K, J) = (32, 500, 5000).
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Figure A1. Variance of function f (u). (a) Difference among the cases of a = 1, 3, 5, 7, 9 when b is
fixed to 4. (b) Difference among the cases of b = 2, 4, 6 when a is fixed to 5. For both figures, c is
fixed to 1.

In the RW-based model, f (u) directly controls the behavior of walkers as the q-value
given by Equation (17), which indicates the transition probability clockwise and anti-
clockwise. By iterating the decision-making, the empirical success probability p̂j(x) is
likely to be p(x) given by Equation (51). Especially, the algorithm should experience many
plays with slot machine x with p(x) = 0.9 or 0.7; that is, considering f (0.9) and f (0.7) is
particularly important. First, f (0.9) should be smaller because one demands walkers stay
at x = x∗ once they find the slot machine due to exploitation. To realize it, larger a and
smaller b are desirable. On the other hand, f (0.7) should be larger because one requires
walkers to be active and explore more. To realize it, the opposite of the previous condition
is desirable; i.e., smaller a and larger b. Here exploration–exploitation trade-off emerges
as the balance of a and b. That is, it is required to choose a and b with an appropriate
proportion (and this balance depends on the casino setting). If a is large, this leads to a
small f (u) on slots with high p̂j(x), making it likely for the walker to stay on that slot and
play that machine. This way, one can realize the exploitation of the best slot machine, but it
may also lead to the over-exploitation of a non-best slot machine. Importantly, if b is large,
one can save walkers from sticking to a non-best slot machine, but this also may result in
over-exploration even after finding the best slot machine.

Figure A2 demonstrates the performance of the RW-based model depending on tu-
ple (a, b, q◦). You see that the larger b becomes, the larger a is required for improve-
ment of the performance, which matches the analysis of f (u) above. If the value of a
is small under the large value of b, the algorithm conducts exploration too much. On
the other hand, setting a too large is not demanded; this case results in over-exploitation.
Indeed, you see that the performance of (a, b, q◦) = (9, 2, 0.5) is worse than that of
(a, b, q◦) = (7, 2, 0.5). In our results, the best performance is obtained for the case of
(a, b) = (9, 6), where max(CDR) is over 0.95 for q◦ ≥ 0.25 in Figure A2(c3). In Section 4,
we selected tuple (a, b, q◦) = (9, 6, 0.5) as the representative of this range for the analysis
in the main manuscript.

In the QW-based model, f (u) contributes to controlling the behavior of walkers as the
θ-value given by Equation (47), which plays the role of the phase of the coin matrix. The
measurement probability on the defect strongly depends on the coin matrices on the defect
and its neighborhood, and thus, θ◦ pertains to the performance much more than q◦ for the
RW-based model. Moreover, the measurement probability of the defect is not monotonic
over θ-values, whose analysis is still open. However, what we can say from f (u) is that the
exploitation will be frequently conducted if a is small b is large, which is the same as the
RW-base model because the θ-value near 0 distributes the probability of almost 1 on the
defect as mentioned on [STEP 3] in Section 3.2.
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Figure A2. Comparison of the (a) mean of total reward M(J), (b) cumulative regret ρ(J), and (c) the
maximum value of CDR on the RW-based model.

Figure A3 demonstrates the performance of the QW-based model depending on tuple
(a, b, θ◦). You see that some cases exhibit extreme results; the results can be both almost
the same as the worst one in the RW-based model and better than any in the RW-based
model. We observe that when setting a = 1, θ◦ makes the performance worse with violent
oscillations. Especially, the case of (a, b, θ◦) = (1, 6, 29π/64) performs worst due to over-
exploitation, which is almost the same as the worst one in the RW-based model. For other
cases of a, performance tends to improve over the growth of θ◦. Especially in the case of
b = 6, max(CDR) is almost 1 for the sufficiently large θ◦ as shown in Figure A3(c3), which
is better than any case in the RW-based model. This indicates that exploration should be
introduced by large b-values. Particularly, the case of (a, b) = (5, 6) realizes performs very
well. Based on the above, it is important to choose the appropriate tuples for obtaining
the result of the QW-based model that outperforms the RW-based model. In Section 4, we
selected tuple (a, b, θ◦) = (5, 6, 5π/16) as the representative of this case.

As mentioned in the conclusions of the main manuscript, we have confirmed that the
RW-based model with tuple (a, b, q◦) = (50, 20, 0.5) performs as well as the QW-based one
with tuple (a, b, θ◦) = (50, 20, 29π/64), and in both results, the mean of total reward is
around 4320 even in setting the number of time steps T to 8 (better than the results for small
a and b as shown in Figure 6. In this case, f (u) is basically a step-function with f (0.9) ' 0
and f (0.7) ' 1, leading to walkers basically ignoring any position except the one optimal
slot. It should be remarked that the discussion of f (u) above strongly depends on the
setting of success probability p(x) given by Equation (51). For example, if we consider the
setting where even the best slot machine has a success probability of 0.7, and the other ones
have lower success probabilities, then f (0.7) should be smaller. As mentioned in Section 5,
the dependency on the settings regarding slot machines is a heavily complex problem and
needs detailed discussions as future tasks.
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Figure A3. Comparison of the (a) mean of total reward M(J), (b) cumulative regret ρ(J), and (c) the
maximum value of CDR on the QW-based model.
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