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Abstract: Color images have long been used as an important supplementary information to guide
the super-resolution of depth maps. However, how to quantitatively measure the guiding effect of
color images on depth maps has always been a neglected issue. To solve this problem, inspired by the
recent excellent results achieved in color image super-resolution by generative adversarial networks,
we propose a depth map super-resolution framework with generative adversarial networks using
multiscale attention fusion. Fusion of the color features and depth features at the same scale under
the hierarchical fusion attention module effectively measure the guiding effect of the color image
on the depth map. The fusion of joint color–depth features at different scales balances the impact of
different scale features on the super-resolution of the depth map. The loss function of a generator
composed of content loss, adversarial loss, and edge loss helps restore clearer edges of the depth map.
Experimental results on different types of benchmark depth map datasets show that the proposed
multiscale attention fusion based depth map super-resolution framework has significant subjective
and objective improvements over the latest algorithms, verifying the validity and generalization
ability of the model.

Keywords: attention; depth map; fusion; generative adversarial networks; multiscale; super-resolution

1. Introduction

With the increasing emphasis on security, trustworthy artificial intelligence is on the
rise. In trustworthy AI, various 3D applications play a crucial role in scene construction,
understanding the relationship between entities and the scene, and reasoning about invis-
ible factors outside the scene. In the research of stereo image technology, the quality of
depth maps is very significant because the depth value reflects the spatial position of the
object in the scene. However, the resolution of depth maps has been very low due to the
limited capture capability of depth sensors. Therefore, depth map super-resolution (SR)
has become an urgent problem to be solved.

Due to the limited information contained in a single depth map, the corresponding
high-resolution (HR) color image is generally used to guide the super-resolution of depth
maps. Conventional methods use filters or Markov Random Fields (MRF) to implement
depth map super-resolution with the guidance of the color image. Leveraging the HR
color image and the given low-resolution (LR) depth map, Kopf et al. [1] proposed a
joint bilateral filter (JBU) which combines a range filter and a spatial filter to produce very
good full resolution results. Diebel and Thrun [2] first formulated the depth map SR as
a multi-labeling optimization problem based on the MRF model by connecting the color
image and the depth map as the balance factor of the smooth term.

In recent years, due to the rapid development of convolutional neural networks, color-
guided depth map super-resolution methods based on convolutional neural networks have
achieved more remarkable results. Hui et al. [3] proposed a multiscale guided convolutional
network (MSG-Net) for depth map super-resolution which complements low-resolution
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depth features with HR intensity features using a multiscale fusion strategy. Ye et al. [4]
constructed a convolutional neural network architecture to learn a binary map of depth
edge location from a low-resolution depth map and the corresponding color image, and
then proposed a fast edge-guided depth filling strategy to interpolate the missing depth.

However, most color-guided depth map super-resolution methods use color images
directly. How to quantitatively measure the guiding effect of color images on depth map
super-resolution lacks the attention of researchers. In this paper, we propose a depth map
super-resolution framework that uses hierarchical attention fusion modules to measure
the guidance of color features on depth features. Inspired from the recent emergence of
excellent color image super-resolution generative adversarial networks such as SRGAN [5]
and ESRGAN [6], our framework uses relativistic standard generative adversarial networks
as the backbone. In particular, a loss model generator that includes content loss, adversarial
loss, and edge loss helps the proposed generative adversarial networks produce clearer
edges of the depth map.

Our main contributions are as follows: (1) We propose a depth map super-resolution
framework with multiscale attention fusion based generative adversarial networks to
quantitatively measure the effectiveness of color images as a guide to depth map super-
resolution. (2) The hierarchical color–depth attention fusion module measures the guidance
of the color image on the depth map super-resolution and generates fused features of
various scales. (3) The multiscale fused feature balance module evaluates the correlation
between scales and fused features, and integrates fused color–depth features of various
scales proportionally. (4) A loss function consisting of content loss, adversarial loss, and
edge loss helps our method produce clearer edges of the depth map.

We organize the remainder of this paper as follows. After a brief review of related
literature in Section 2, we present the framework and introduce the details of our method
in Section 3. In Section 4, we conduct an ablation study and comparison experiments on
the benchmark depth map datasets, and discuss the performance of our method compared
to other methods. Finally, we conclude the whole paper in Section 6.

2. Related Works

In this section, we introduce color-guided depth map super-resolution and color image
super-resolution generative adversarial networks methods.

2.1. Conventional Color-Guided Depth Map Super-Resolution

Conventional color-guided depth map super-resolution methods can be divided into
three categories: filter based methods, MRF based methods, and sparse representation
based methods.

Filter-based methods [1,7–13] aim to construct upsampling filters to enhance the
depth map resolution with the guidance of the registered color image. Leveraging the
HR color image and the given low-resolution depth map, Kopf et al. [1] proposed a joint
bilateral filter (JBU) which combines a range filter and a spatial filter to produce very good
full-resolution results. In [8], Kim et al. proposed a modified JBU called JABDU that computes
each depth value as the average of neighboring pixels weighted by color and depth intensity
filters, which are formulated as an adaptive smoothing parameter and a control parameter,
respectively. Inspirited from the geodesic distance, Liu et al. [9] advanced the resolution
of a depth map using geodesic paths to the pixels whose depths are known from the low-
resolution ones. A weighted mode filter (WMF) is proposed in [10] by seeking a global mode
on the histogram which uses the weight considering color similarity between the reference and
neighboring pixels on the color image to upsample the depth map. Furthermore, Fu et al. [11]
incorporated a noise-aware filter (NAF) into a WMF. In order to reduce the artifacts such
as texture copy and edge discontinuities, Lo et al. [12] constructed a joint trilateral filtering
(JTF) algorithm for depth image SR considering spatial distance, color difference, and local
depth gradient simultaneously to better preserve the contour information. Filter-based
depth map SR methods can remove the external and internal noise of the depth map, and
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simultaneously preserve contour features of it. However, with the color image guiding
them, these methods can produce texture copy artifacts in smooth regions of the depth map
which correspond to richly textured regions of the color image.

Optimization-based single depth map SR methods can be generally divided into
two classes: Markov Random Fields (MRF) [2,14–19] based algorithms and Sparse Rep-
resentation based algorithms. Diebel and Thrun [2] first formulate the depth map SR
as a multi-labeling optimization problem based on the MRF model. The method in [15]
extends the MRF model by presenting a novel data term allowing for adaptive pixel-wise
determination of an appropriate depth reference value. In [14], Zuo et al. proposed a
method to quantitatively measure the inconsistency between the depth edge map and the
color edge map and explicitly embedded the measurement into the smoothness term of
the MRF model. Utilizing the edges of the low-resolution depth image through a Markov
Random Fields optimization in a patch synthesis based manner, Xie et al. [17] constructed
a high-resolution edge map to guide the upscaling of the depth map. By solving an MRF
labeling optimization problem, Lo et al. presented a learning-based depth map super-
resolution framework in [12] which exhibits the capability of preserving the edges of range
data while suppressing the artifacts of texture copy due to color discontinuities. Compared
with filter-based methods, optimization-based methods are more robust to noise. For the
condition that the edges in a depth map correspond to the smooth region of the color image,
blurred edge artifacts can be generated in the SR process due to the inconsistency between
the edges of the depth map and color image at the same location.

Many sparse representation-based depth map SR methods [20–25] have been pro-
posed in the last few years. They usually cut HR color images and LR depth maps into
patches and bind them in pairs to train a dictionary. The depth map SR solutions can be
represented as a linear combination of elements in the learned dictionary. Ferstl et al. [21]
presented a variational sparse representation approach by using a dictionary of edge priors
which learned from an external database of high- and low-resolution examples. In [22],
Xie et al. reconstructed the corresponding HR depth map through a robust coupled dictio-
nary learning method with locality coordinate constraints. Simultaneously, an adaptively
regularized shock filter is introduced to reduce sharpening of the contours and the jagged
noise. Zhang et al. proposed a dual sparsity model based single depth map SR method by
combining the analysis model and synthesis model in [24]. As this category of methods
utilizes amounts of depth map patches in the training stage, the performance of them heav-
ily relies on the selection of external datasets. In addition, few representation-based depth
map SR methods suffer from blurring edge artifacts on the depth edges or the overlapping
regions of adjacent patches similar to the optimization-based depth map SR methods.

Single depth map SR methods can achieve a promising performance in preserving
depth contour while alleviating the noise of the depth map. However, they can produce
texture copy artifacts and blurring edge artifacts derived from the depth discontinuities
that are not consistent with color discontinuities at the corresponding position.

2.2. Neural-Networks-Based Depth Map Super-Resolution

Depth map super-resolution methods based on neural networks have achieved promis-
ing success [3,4,26,27]. The authors of [3] proposed a multiscale guided convolutional
network (MSG-Net) for depth map super-resolution which complements low-resolution
depth features with HR intensity features using a multiscale fusion strategy. Ye et al. [4] con-
structed a convolutional neural network architecture to learn a binary map of depth edge
location from a low-resolution depth map and corresponding color image. They then pro-
posed a fast edge-guided depth filling strategy to interpolate the missing depth constrained
by the acquired edges to prevent predicting across the depth boundaries. Wang et al. [26]
proposed a novel depth upsampling framework based on deep edge-aware learning which
firstly learns edge information of depth boundaries from the known LR depth map and its
corresponding high-resolution (HR) color image as reconstruction cues. Then, two depth
restoration modules, i.e., a fast depth filling strategy and a cascaded restoration network,
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are proposed to recover an HR depth map by leveraging the predicted edge map and the
HR color image. In [28], Zuo et al. proposed a novel DCNN to progressively reconstruct
the high-resolution depth map guided by the intensity image. Specifically, the multiscale
intensity features are extracted to provide guidance for the refinement of depth features as
their resolutions are gradually enhanced. In [27] by Zuo et al., a novel depth-guided affine
transformation is used to filter out the unrelated intensity features, which is further used to
refine the depth features. Since the quality of initial depth features is low, the depth-guided
intensity features filtering and the intensity-guided depth features refinement are iteratively
performed, which progressively promotes the effects of such tasks.

Images at different scales contain different feature information [3]. However, the
guidance of color image features at different scales on depth map super-resolution is not
equal. It is not appropriate to cascade or link them directly. As far as we know, quantitative
evaluation of the correlation between the scales of features and depth map super-resolution
is a topic that has not been discussed. In this article, we use a multiscale fused feature
balance module to measure the correlations between different scale features and depth map
super-resolution, and further fuse the color–depth features at different scales proportionally.

2.3. Generative Adversarial Network Based Color Image Super-Resolution

Super-resolution methods for color images based on generative adversarial
networks [5,6,29–31] generate realistic high-resolution color images by means of successive
iterations of mutual adversaries between generators and discriminators.

Denton et al. [29] introduced a generative parametric model capable of producing
high-quality samples of natural images. It uses a cascade of convolutional networks within
a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each
level of the pyramid, a separate generative convnet model is trained using the generative
adversarial networks (GAN) approach (Goodfellow et al.). Samples drawn from their
model are of significantly higher quality than alternate approaches. The key idea of [30] is
to grow both the generator and discriminator progressively: starting from a low resolution
and adding new layers that model increasingly fine details as training progresses. This
both speeds the training up and greatly stabilizes it to produce images of unprecedented
quality. Ledig et al. [5] presented SRGAN, a generative adversarial network (GAN)
for image super-resolution (SR). To our knowledge, it is the first framework capable of
inferring photo-realistic natural images for 4× upscaling factors. To achieve this, they
propose a perceptual loss function which consists of an adversarial loss and a content
loss. The adversarial loss pushes their solution to the natural image manifold using a
discriminator network that is trained to differentiate between the super-resolved images
and original photo-realistic images. The super-resolution generative adversarial network
(SRGAN) is a seminal work that is capable of generating realistic textures during single
image super-resolution. However, the hallucinated details are often accompanied with
unpleasant artifacts. To further enhance the visual quality, Wang et al. [6] thoroughly
studied three key components of SRGAN, network architecture, adversarial loss, and
perceptual loss, and improve each of them to derive an enhanced SRGAN (ESRGAN).

Some excellent methods for color image super-resolution generative adversarial net-
works have emerged. However, they produce more artifacts and textures. Obviously, these
networks are not suitable for depth map super-resolution. Therefore, considering the sharp
edges and smooth interior of the depth map, we propose a multiscale attention fusion based
super-resolution generative adversarial network for depth maps. In particular, building a
generator loss function that includes content loss, adversarial loss, and edge loss facilitates
the generation of sharper edges.

3. Multiscale Attention Fusion for Depth Map Super-Resolution Generative
Adversarial Networks

In this section, we propose a multiscale attention fusion for depth map super-resolution
generative adversarial networks.
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3.1. Framework

The framework of our proposed method is demonstrated in Figure 1. In Figure 1, our
goal is to generate a precise high-resolution depth estimation DHR of the ground truth DG.
The generator consists of four parts: a multiscale color and depth feature extraction module,
a hierarchical feature attention fusion module, a multiscale fused feature balance module,
and a super-resolution module. The multiscale color and depth feature extraction module
extracts different scale features using a low-resolution depth map and the corresponding
color image as inputs. It consists of two convolutional layers and n residual dense blocks
(RDBs), where n is the scale of feature extraction. The settings of RDBs are consistent
with those in [32]. The depth feature and color feature passing through the ith RDB are
represented as Fi

D and Fi
I , respectively. Previous methods have used these to directly

concatenate depth features and color features together. However, the guidance of color
features on depth features should not be just a simple link. How to quantitatively measure
the guidance of color features on depth features has become a key issue. In this article,
we propose using an attention module to measure the guiding effect of color features on
depth features. Fi

D and Fi
I form a color–depth fused feature Fi

f at the ith scale through the

attention module. In this way, we obtain color–depth fused features F1
f , F2

f , . . ., Fn
f at n

scales. Images at different scales contain different geometric structures. The contribution
of fused features at different scales to depth map super-resolution is not equal. We input
F1

f -Fn
f into the multiscale fused feature balance module to evaluate the correlations between

the scales and fused features, and obtain a final fused feature Ff . We choose UPNet as [32]
as the super-resolution module of the generator. The high-resolution depth map DHR is
generated by Ff through UPNet.
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Figure 1. Framework of the multiscale attention fusion for depth map super-resolution generative
adversarial networks. DLR and ILR are the low-resolution depth map and the corresponding down-
sampled color image. DHR is the high-resolution depth map generated by the generator of our
proposed GAN. Furthermore, DG is the ground truth depth map.

3.2. Hierarchical Color and Depth Attention Fusion Module

The details of the proposed hierarchical color and depth attention fusion module are
shown in Figure 2. Before inputting them into the module, we first concatenate the color
feature Fi

I and the depth feature Fi
D at the ith scale to form the merged feature Fi

C. Then, Fi
C
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is fed into global average pooling and global sum pooling, respectively. Global average
pooling and global sum pooling are followed by two convolutional layers and one ReLU,
respectively. By processing the convolutional features through the sigmoid function, two co-
efficient matrices are obtained. By adding and splitting the coefficient matrices in place we
can obtain the weight coefficient vector Ci of Fi

I and Fi
D as in Equation (1).

Ci = fatt

(
Fi

D, Fi
I

)
, (1)

where fatt denotes the color and depth attention fusion module. Multiplying Fi
I and Fi

D
element-wise by the corresponding coefficient vector Ci, we obtain the fused color–depth
fused feature Fi

f at the ith scale as in Equation (2).

Fi
f =

[
Fi

D, Fi
I

]
Ci (2)
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Figure 2. Hierarchical color and depth attention fusion module.

3.3. Multiscale Fused Feature Balance Module

After obtaining the color–depth fused features
{

Fi
f

}
using the n attention modules,

we concatenate these features and denote them as FC
f .

FC
f =

[
F1

f , F2
f , . . . , Fi

f , . . . , Fn
f

]
(3)

Then FC
f is fed to the multiscale fused feature balance module.

W f = fbal

(
FC

f

)
(4)

where W f is a vector of balance factors and fbal is the multiscale fused feature balance
module. The multiscale fused feature balance module is used to evaluate the correlations
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between the scales and the fused features as shown in Figure 3. It consists of two branches.
These two branches start with a global average pooling and a global sum pooling, sepa-
rately, followed by two convolutional layers, a ReLU layer, and a sigmoid function. FC

f
generates two weight coefficient matrices through these two branches. The two weight
coefficient matrices are summed and separated to obtain W f . The balanced multiscale
color–depth feature Ff is generated by multiplying the concatenated sequence FC

f with the
corresponding balance factor vector as in Equation (5).

Ff = FC
f W f (5)
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Figure 3. Details of multiscale fused feature balance module.

3.4. Relativistic Standard Generative Adversarial Networks

In the standard GAN, the discriminator outputs the probability that the input image is
real to determine whether the input is real or fake. The type of GAN can be defined with the
discriminator. In general, the discriminator loss of a standard GAN with the assumption of
cross-entropy loss can be expressed as follows:

LD = Exr∼P[ f1(D(xr))] +Ex f ∼Q
[

f2

(
D
(

x f

))]
(6)

where xr and x f indicate the real depth map and the fake one, respectively. The adversarial
loss of the generator is expressed as

LG = Exr∼P[g1(C(xr))] +Ex f ∼Q
[

g2

(
C
(

x f

))]
, (7)

where

f1(D(x)) = g2(D(x)) = − log(D(x))
f2(D(x)) = g1(D(x)) = − log(1 − D(x))

(8)
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D(x) is the activation function of the non-tranformed layer C(x) as in Equation (9).

D(x) = sigmoid(C(x)) (9)

In the discriminator, DG and DHR are input as xr and x f . Because the gradient of g1 is
0, only half of the generator is involved during the training process.

In this paper, we adopt the relativistic standard GAN (RGAN) [33] structure to achieve
the full participation of the generator. The discriminator of RGAN estimates the probability
that the given real data is more realistic than a randomly sampled fake data. It is denoted
as Equation (10).

D
(

xr, x f

)
= sigmoid

(
C(xr)− C

(
x f

))
(10)

Correspondingly, the loss of the discriminator is expressed as follows:

LD = −E(xr ,x f )∼(P,Q)

[
log
(

sigmoid
(

C(xr)− C
(

x f

)))]
−E(xr ,x f )∼(P,Q)

[
log
(

1 − sigmoid
(

C
(

x f

)
− C(xr)

))]
(11)

The adversarial loss of the generator is expressed as Equation (14).

LG = −E(xr ,x f )∼(P,Q)

[
log
(

1 − sigmoid
(

C(xr)− C
(

x f

)))]
−E(xr ,x f )∼(P,Q)

[
log
(

sigmoid
(

C
(

x f

)
− C(xr)

))]
(12)

The discriminator extracts features using the RDBs, and then performs a discriminant
classification using the sigmoid function to determine whether the input depth map is fake
or real. Compared to the standard GAN, the relativistic GAN can generate high-resolution
depth maps from relatively small samples. Furthermore, the training time to achieve
optimal performance is significantly reduced.

Due to the fact that depth maps are a kind of piece-wise smooth images, they are
characterized by sharp edges and smooth interiors. Conventional GAN-based color image
super-resolution methods that only use mean squared error (MSE) as content loss are not
suitable for depth map super-resolution. In order to improve the edge sharpness of the
generated high-resolution depth maps, we propose a loss function consisting of content
loss, adversarial loss, and edge loss, which is expressed by Equation (13).

L̃G = LC + µLG + γLe (13)

where

LC =
1
N

N

∑
i=1

(
DHR − DG

)2

Le =
1
N

N

∑
i=1

(
eHR − eG

)2
(14)

µ and γ are the scale factors which balance the adversarial loss and the edge loss.

4. Experimental Results
4.1. Parameter Setting

We train our network with 80 color and depth pairs. In the training dataset, 52 color–depth
pairs are from the Middlebury dataset and others are from the MPI Sintel depth dataset.
The color images are downsampled to the images of corresponding scale factor by interval
interpolation. The patch size is 128 × 128 and the batch size is 16. To enrich data diversity,
we flip the patches horizontally and vertically, and rotate them by 90◦. The kernel size of
all convolution layers is 3 and the channels of the feature map number 64. We take ReLU
function as the activation function after all convolution layers. Adam is set as the optimizer
with β1 = 0.9 and β2 = 0.999. Our proposed method is implemented on two Nvidia RTX
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2080ti GPUs. We train our network for 1000 epochs, and the initial learning rate is 10−4

and halved every 200 epochs.

4.2. Datasets
Training Datasets

In the training phase, we use two datasets, the Middlebury datasets and the MPI
Sintel depth dataset. The Middlebury datasets [34] are a stereo dataset widely used in
applications related to stereo matching, 3D reconstruction, and stereo quality evaluation. It
consists of five versions constructed in different years, namely the 2001 dataset, 2003 dataset,
2005 dataset, 2006 dataset, 2014 dataset, and 2021 moving dataset. We randomly selected
52 datasets from the Middlebury datasets of different view, size, illuminations, and exposures.

The MPI Sintel depth dataset [35] is a synthetic stereo dataset which provides natural-
istic video sequences. The depth values in the MPI Sintel depth dataset are returned from
Blender with an additional Z-buffer pass, similar to the optical flow.

Testing Datasets

Among the Middlebury Stereo Datasets [34], we use six color–depth pairs as the
testing samples. They are Art, Books, Moebius, Reindeer, Laundry, and Dolls. To better
demonstrate the effectiveness of our method, we also conduct experiments on the Multi-
view depth (MVD) test sequences [36] and ToFMark dataset [37].

The Multi-view depth (MVD) test sequences consist of multi-view video sequences
and corresponding pixel-by-pixel depth information to support flexible synthesis of virtual
views during rendering. It is widely used in studies on 3D applications such as free-view
video, binocular stereoscopic video, and naked eye 3D stereo video, making it the most
promising form of 3D video data representation today.

ToFMark dataset containes three real-scene depth maps captured by ToF sensors. The
low-resolution depth maps in it were acquired using the PMD Nano ToF camera with a
resolution of 120 × 160, and the high-resolution color images were acquired using the
CMOS camera with a resolution of 810 × 610.

4.3. Evaluation Metrics

For reconstructed and enhanced images, many studies have proposed many objective
evaluation criteria [38,39]. In this paper, we take three metrics to evaluate the performance
of our proposed method in depth map super-resolution. They are RMSE, MAD, and PSNR.

RMSE stands for root mean squared error, as in Equation (15).

RMSE =

√√√√ 1
N

N

∑
i=1

(
DHR − DG

)2
(15)

MAD represents Mean Absolute Difference, described by Equation (16).

MAD =
1
N

N

∑
i=1

∣∣∣DHR − DG
∣∣∣ (16)

Peak Signal to Noise Ratio (PSNR) is also a commonly used objective criterion for evaluating
image quality,

PSNR = 10 × log10

(
(2n − 1)2

MSE

)
(17)

where MSE is mean squared error in Equation (18), which is the square of RMSE.

MSE =
1
N

N

∑
i=1

(
DHR − DG

)2
(18)
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4.4. Comparison of Different Numbers of RDBs

In this subsection, we explore the correlation between the quantity of scales in the
multiscale fusion attention module on the performance of the depth map super-resolution.
We tested the experimental results on the Middlebury datasets for four quantities of RDBs:
10, 16, 20, and 22. The selection type of GAN is RGAN and the loss of the generator is
set to content loss + edge loss. The experimental results are shown in Table 1. We can see
that as the quantity of RDBs increases, the RMSE of the generated depth map decreases.
However, after the number of scales exceeds 16, the effect of depth map super-resolution is
not significantly improved. Considering the increased storage and computing consumption,
we believe that 16 is the most reasonable number of RDBs.

Table 1. Quantitative comparison of depth upsampling results (RMSE) on the Middlebury datasets
regarding the quantity of RDBs.

Algorithm
Art Book Moebius Reindeer Laundry Dolls

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

RDB_10 1.19 2.40 3.13 3.84 0.79 1.26 1.58 2.31 0.52 0.81 1.27 1.69 1.45 1.71 2.48 3.35 1.32 1.75 2.16 3.09 0.87 1.13 1.37 1.69
RDB_16 0.81 2.15 2.81 3.47 0.49 0.94 1.30 1.83 0.29 0.58 0.95 1.52 1.28 1.49 2.18 3.03 1.11 1.47 1.96 2.80 0.61 0.84 1.03 1.46
RDB_20 0.79 2.13 2.78 3.43 0.46 0.91 1.27 1.80 0.26 0.55 0.90 1.48 1.24 1.45 2.16 2.98 1.06 1.45 1.92 2.78 0.59 0.82 0.98 1.43
RDB_22 0.78 2.10 2.76 3.39 0.44 0.89 1.25 1.79 0.23 0.52 0.87 1.46 1.21 1.42 2.15 2.97 1.03 1.44 1.90 2.75 0.56 0.81 0.96 1.38

4.5. Comparison of GAN Types

In this subsection, we compare the depth map SR results with different kinds of GANs.
Table 2 demonstrates the experimental results of our proposed method with GAN and
RGAN. We choose 16 as the number of scales in the multiscale fusion attention module and
MSE + edge loss as the loss of generator. It can be seen that the RMSE of our method with
RGAN is better than that with GAN. This shows that our method uses RGAN to generate
high-resolution depth maps that are closer to the real depth maps.

Table 2. Quantitative comparison of depth upsampling results (RMSE) on the Middlebury datasets
regarding GAN types.

Algorithm
Art Book Moebius Reindeer Laundry Dolls

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

GAN 0.96 2.37 3.02 3.68 0.61 1.25 1.58 2.19 0.46 0.73 1.21 1.74 1.50 1.81 2.49 3.27 1.45 1.75 2.32 3.33 0.92 1.14 1.49 1.87
RGAN 0.81 2.15 2.81 3.47 0.49 0.94 1.30 1.83 0.29 0.58 0.95 1.52 1.28 1.49 2.18 3.03 1.11 1.47 1.96 2.80 0.61 0.84 1.03 1.46

4.6. Comparison of Generator Losses

In this subsection, we compare the experimental results with generator losses of
MSE loss and MSE loss + edge loss, besides adversarial loss, to verify the necessity of
edge loss. The general color image super-resolution generative adversarial networks are
reconstructed based on MSE loss, which can obtain closer objective experimental results
to the ground truth. However, the visual performance of the image generated in this way
is not perceptually the closest to ground truth. Therefore, we propose a generator loss
function that includes an edge loss for the characteristics of the clear edges and the smooth
interior of the depth maps. As shown in Table 3, the RMSE of the depth maps generated by
RGAN with edge loss is very close to the RMSE of those generated by a network containing
only MSE. However, Figure 4 shows the comparison of two sets of super-resolution results
on Art. We can see that the network containing edge loss generates high-resolution depth
maps with clearer edges compared to the GAN containing only MSE, thereby verifying the
effectiveness of edge loss in generating perceptually high-quality depth maps.
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(a) (b) (c) (d)

Figure 4. Visual comparison of Art with cropped zoomed regions (scaling factor = 4). They are
(a) depth map, (b) ground truth, (c) our method with MSE loss, (d) our method with MSE + edge loss.

Table 3. Quantitative comparison of depth upsampling results (RMSE) on the Middlebury datasets
regarding generator loss.

Algorithm
Art Book Moebius Reindeer Laundry Dolls

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

MSE 0.79 2.13 2.75 3.42 0.48 0.91 1.26 1.80 0.25 0.54 0.93 1.48 1.21 1.46 2.13 3.00 1.06 1.45 1.92 2.77 0.58 0.81 1.01 1.44
MSE + Edge 0.81 2.15 2.81 3.47 0.49 0.94 1.30 1.83 0.29 0.58 0.95 1.52 1.28 1.49 2.18 3.03 1.11 1.47 1.96 2.80 0.61 0.84 1.03 1.46

4.7. Experimental Results on Middlebury Datasets

Our baseline state-of-the-art methods are joint bilateral upsampling (JBU) [1], noise-
aware filter (NAF) [40], anisotropic diffusion [41], Markov random field (MRF) [2], guided
image filtering (GIF) [42], SRF from [43], edge weighted NLM regularization (Edge) [44],
joint geodesic filtering (JGF) [9], total generalized variation (TGV) from [37], four deep
learning method SRCNNs from [45], deep joint image filter (DJIF) from [46], deep edge-
aware network (DSR) from [26] and cross-guided network for depth map enhancement
(CGN) from [27], two GAN-based color image super-resolution methods for a super-
resolution generative adversarial network (SRGAN) from [5], enhanced SRGAN (ESRGAN)
from [6], and dictionary learning method JESR from [20] that are used in comparison to
evaluate the performance of our method. We set the number of RDBs to 16 and the type of
GAN to RGAN in our method. The depth map upscaling factors are set to 2, 4, 8, and 16.

In Tables 4 and 5, we can see that both DSR and CGN obtain top-ranked experimental
results. Compared with the other two color image super-resolution GAN methods, our
proposed method gains the lowest RMSE and MAD. This is because SRGAN and ESRGAN
are designed for color images with a structure that produces more texture. However, they
are not suitable for the internal smoothing properties of depth maps.

Figure 5 shows the visual comparison of the state-of-the-art baselines with our method.
It can be seen that our method produces clearer and sharper edges, and avoids artifacts of
blurred edges and texture transfer.
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Table 4. Quantitative depth upsampling results (RMSE) on Middlebury datasets.

Algorithm
Art Book Moebius Reindeer Laundry Dolls

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

JBU [1] 3.49 5.08 6.26 9.74 1.78 2.50 2.97 5.44 1.50 2.14 2.99 4.29 2.46 3.29 4.08 5.86 2.42 3.08 4.12 5.84 1.38 1.77 2.43 3.30
NAF [40] 3.52 5.10 6.39 10.45 1.85 2.44 3.03 5.76 1.51 2.27 3.01 4.38 2.48 3.36 4.49 6.34 2.49 3.13 4.44 6.20 1.45 1.96 2.83 3.51
AD [41] 4.16 4.88 6.65 9.71 1.66 2.23 2.95 5.28 1.44 2.15 3.11 4.40 2.59 3.35 4.51 6.37 2.51 3.17 4.25 5.96 1.31 1.80 2.69 3.59
MRF [2] 3.74 4.75 6.48 9.92 1.73 2.35 3.17 5.34 1.40 2.11 3.17 4.48 2.58 3.29 4.41 6.26 2.54 3.17 4.19 5.92 1.32 1.79 2.66 3.55
GIF [42] 3.15 4.11 5.73 8.53 1.41 2.03 2.58 3.67 1.15 1.65 2.58 4.12 2.19 2.98 4.44 6.58 1.88 2.60 4.02 5.89 1.18 1.67 2.10 3.24
SRF [43] 2.65 3.89 5.51 8.24 1.06 1.62 2.38 3.41 0.90 1.37 2.06 2.99 1.95 2.84 4.10 5.97 1.61 2.40 3.50 5.24 1.14 1.39 1.98 2.79

Edge [44] 2.58 3.24 4.30 6.03 1.21 1.52 1.93 2.60 0.86 1.27 1.99 2.68 1.96 2.89 3.58 3.99 1.62 2.39 3.22 4.29 1.12 1.32 1.51 2.20
JESR [20] 2.63 3.66 5.13 7.05 1.05 1.59 1.83 2.91 0.87 1.21 1.59 2.24 1.95 2.69 3.55 4.88 1.61 2.34 2.84 4.44 1.13 1.32 1.67 2.25
JGF [9] 3.08 3.94 5.25 7.13 1.32 1.82 2.38 3.49 1.14 1.59 2.34 3.47 2.17 2.78 3.50 4.46 1.87 2.59 3.68 5.24 1.13 1.50 1.98 2.71

TGV [37] 2.60 3.34 4.10 6.43 1.20 1.47 1.82 2.63 0.82 1.22 1.64 2.41 1.80 2.71 3.15 4.60 1.61 2.39 2.64 4.17 1.01 1.31 1.61 2.22
SRCNN [45] 2.63 3.53 5.34 7.68 1.20 1.47 1.84 2.84 0.86 1.20 1.87 2.67 2.07 2.78 3.54 4.86 1.67 2.18 2.78 4.49 1.15 1.33 1.66 2.64
SRGAN [5] 2.02 3.57 4.25 5.90 1.08 1.43 1.85 2.79 0.78 1.23 1.60 2.38 1.86 2.68 3.43 4.37 1.54 2.06 2.75 3.96 1.16 1.37 1.64 2.21

ESRGAN [6] 1.76 3.29 3.86 5.49 0.75 1.37 1.69 2.58 0.65 1.01 1.42 2.12 1.73 2.51 3.19 4.08 1.45 1.99 2.52 3.72 0.97 1.25 1.48 2.02
DJIF [46] 1.83 3.46 4.07 4.70 0.77 1.50 1.78 2.61 0.56 1.04 1.47 2.09 2.15 2.59 3.24 4.12 2.04 2.23 2.86 3.88 0.91 1.16 1.45 1.94
DSR [26] 1.41 3.03 3.59 4.02 0.63 1.36 1.62 2.38 0.48 0.85 1.29 1.94 1.52 1.98 2.82 3.89 1.64 1.97 2.41 3.56 0.86 1.04 1.27 1.77
CGN [27] 1.27 2.91 3.46 3.88 0.68 1.25 1.55 2.16 0.33 0.79 1.13 1.71 1.49 1.70 2.65 3.62 1.48 1.72 2.35 3.19 0.75 1.02 1.25 1.73

Ours 0.81 2.15 2.81 3.47 0.49 0.94 1.30 1.83 0.29 0.58 0.95 1.52 1.28 1.49 2.18 3.03 1.11 1.47 1.96 2.80 0.61 0.84 1.03 1.46

Table 5. Quantitative depth upsampling results (MAD) on Middlebury datasets.

Algorithm
Art Book Moebius Reindeer Laundry Dolls

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

JBU [1] 0.72 1.13 1.95 3.47 0.30 0.41 0.69 1.21 0.31 0.41 0.69 1.24 0.53 0.65 0.94 2.06 0.43 0.64 1.12 2.03 0.33 0.44 0.63 1.18
NAF [40] 0.72 1.24 1.98 3.68 0.30 0.40 0.67 1.24 0.31 0.41 0.61 1.26 0.54 0.65 0.98 2.04 0.45 0.69 1.13 2.01 0.31 0.45 0.66 1.27
AD [41] 0.75 1.22 2.06 4.29 0.33 0.45 0.85 1.54 0.35 0.45 0.74 1.56 0.50 0.64 1.09 2.17 0.48 0.70 1.05 2.75 0.38 0.47 0.81 1.40
MRF [2] 0.80 1.29 2.15 4.25 0.36 0.47 0.86 1.58 0.37 0.43 0.70 1.50 0.52 0.62 1.04 1.96 0.51 0.79 1.10 2.29 0.30 0.46 0.88 1.35
GIF [42] 0.63 1.01 1.70 3.46 0.22 0.35 0.58 1.14 0.23 0.37 0.59 1.16 0.42 0.53 0.88 1.80 0.38 0.52 0.95 1.90 0.28 0.35 0.56 1.13
SRF [43] 0.46 0.97 1.83 3.44 0.15 0.32 0.59 1.12 0.14 0.32 0.51 1.10 0.30 0.55 1.04 1.85 0.23 0.54 1.06 1.99 0.20 0.35 0.56 1.13

Edge [44] 0.41 0.65 1.03 2.11 0.17 0.30 0.56 1.03 0.18 0.29 0.51 1.10 0.20 0.37 0.63 1.28 0.17 0.32 0.54 1.14 0.16 0.31 0.56 1.05
JESR [20] 0.45 0.76 1.51 2.98 0.15 0.27 0.48 0.90 0.16 0.30 0.44 1.01 0.31 0.47 0.69 1.42 0.23 0.50 0.96 1.47 0.20 0.32 0.51 0.92
JGF [9] 0.29 0.47 0.78 1.54 0.15 0.24 0.43 0.81 0.15 0.25 0.46 0.80 0.23 0.38 0.64 1.09 0.21 0.36 0.64 1.20 0.19 0.33 0.59 1.06

TGV [37] 0.45 0.65 1.17 2.30 0.18 0.27 0.42 0.82 0.18 0.29 0.49 0.90 0.32 0.49 1.03 3.05 0.31 0.55 1.22 3.37 0.21 0.33 0.70 2.20
SRCNN [45] 0.22 0.53 0.77 2.13 0.09 0.22 0.40 0.79 0.10 0.22 0.42 0.89 0.32 0.47 0.68 1.77 0.24 0.50 0.96 1.54 0.23 0.33 0.57 1.09
SRGAN [5] 0.19 0.48 0.70 2.05 0.16 0.28 0.40 0.74 0.15 0.26 0.47 0.81 0.27 0.46 0.65 1.19 0.28 0.44 0.60 1.15 0.20 0.31 0.53 0.88

ESRGAN [6] 0.15 0.36 0.62 1.69 0.14 0.21 0.37 0.65 0.14 0.23 0.42 0.76 0.24 0.43 0.60 1.08 0.23 0.39 0.52 1.08 0.15 0.27 0.48 0.75
DJIF [46] 0.16 0.38 0.68 1.83 0.18 0.25 0.39 0.68 0.19 0.22 0.40 0.73 0.23 0.39 0.52 1.04 0.20 0.30 0.53 1.12 0.18 0.28 0.45 0.79
DSR [26] 0.13 0.31 0.57 1.46 0.15 0.22 0.34 0.61 0.12 0.20 0.37 0.66 0.21 0.37 0.50 0.96 0.15 0.28 0.46 1.07 0.15 0.24 0.42 0.69
CGN [27] 0.11 0.25 0.48 1.39 0.12 0.18 0.30 0.57 0.13 0.18 0.35 0.62 0.18 0.35 0.46 0.83 0.12 0.26 0.43 1.05 0.14 0.23 0.40 0.65

Ours 0.09 0.23 0.42 1.25 0.09 0.14 0.25 0.48 0.10 0.15 0.26 0.47 0.12 0.24 0.39 0.67 0.11 0.21 0.38 0.94 0.08 0.18 0.33 0.61

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5. Visual comparison of Moebius with cropped zoomed regions (scaling factor = 4). They are
(a) depth map, (b) ground truth, (c) JBU [1], (d) MRF [2], (e) TGV [37], (f) ESRGAN [6], (g) DJIF [46],
(h) DSR [26], (i) CGN [27], and (j) ours.

4.8. Experimental Results on Real Datasets

Since depth maps are acquired by depth sensors in real scenes, we not only com-
pare experimental results on the Middlebury datasets, but also conduct experiments and
comparisons on real scene depth map datasets. In this article, we selected the ToFMark
dataset captured by the ToF sensor and the multi-view depth (MVD) test sequences [36] as
the test sets. Our comparison methods are bicubic, joint geodesic filtering (JGF) [9], total
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generalized variation (TGV) from [37], SRGAN from [5], enhanced SRGAN (ESRGAN)
from [6], deep joint image filter (DJIF) from [46], deep edge-aware network (DSR) from [26],
and cross-guided network for depth map enhancement (CGN) from [27]. The depth map
upscaling factors are set to 2, 4, 8, and 16.

Tables 6 and 7 demonstrate the quantitative depth upsampling results on ToFMark
dataset and MVD dataset, respectively. Our proposed method shows the best objective
performance over other the state-of-the-art methods.

Table 6. Quantitative depth upsampling results (in MAD) on ToFMark dataset.

Books Devil Shark

Bicubic 16.23 17.78 16.66
JGF [9] 17.39 19.02 18.17

TGV [37] 12.80 14.97 15.53
SRGAN [5] 11.76 12.80 13.92

ESRGAN [6] 10.44 12.16 13.03
DJIF [46] 10.85 11.63 13.50
DSR [26] 10.32 10.41 12.59
CGN [27] 10.01 10.23 11.87

Ours 9.69 9.14 11.44

Table 7. Quantitative depth upsampling results (average PSNR) on the MVD test sequences Door-
flowers, PoznanStreet, and PoznanCarpark.

Doorflowers PoznanStreet PoznanCarpark

Bicubic 38.12 45.09 35.15
JGF [9] 38.36 45.28 35.13

TGV [37] 38.42 45.50 35.18
SRGAN [5] 39.95 45.67 36.60

ESRGAN [6] 40.81 47.73 38.09
DJIF [46] 40.67 47.69 38.26
DSR [26] 41.38 48.33 39.21
CGN [27] 41.80 48.72 39.66

Ours 41.95 49.11 39.84

5. Discussion

In this section, we briefly discuss our proposed method and the directions we can
focus on in the future. In the edge region of the depth map, the introduced color image
corresponds to a smooth region, resulting in the generated high-resolution depth map with
occasional edge blurring. In the future, we will focus on introducing color image edges
aligned with the edges of the depth map into the framework to achieve more accurate
depth map super-resolution as well as to generate sharper edges.

6. Conclusions

In this paper, we propose a multiscale attention fusion based depth super-resolution
generative adversarial networks for 3D reconstruction in trustworthy AI. Specifically, a
hierarchical color–depth attention fusion module measures the guidance of the color image
on the depth map super-resolution and generates fused features of various scales. The
multiscale fused feature balance module evaluates the correlation between scales and fused
features, and integrates fused color–depth features at different scales in a proportional man-
ner. By constructing a loss function model consisting of content loss, adversarial loss, and
edge loss, our proposed generative adversarial networks produce high-resolution depth
maps with sharper edges. The robustness and generalization of the model is demonstrated
by extensive experiments that show satisfactory subjective and objective results of our
proposed method on several types of depth map datasets.
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