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Abstract: We develop the notion of Random Domino Automaton, a simple probabilistic cellular
automaton model for earthquake statistics, in order to provide a mechanistic basis for the interrelation
of Gutenberg–Richter law and Omori law with the waiting time distribution for earthquakes. In this
work, we provide a general algebraic solution to the inverse problem for the model and apply the
proposed procedure to seismic data recorded in the Legnica-Głogów Copper District in Poland, which
demonstrate the adequacy of the method. The solution of the inverse problem enables adjustment of
the model to localization-dependent seismic properties manifested by deviations from Gutenberg–
Richter law.

Keywords: modeling; earthquake statistics; magnitude-frequency distribution; modeling Gutenberg-
Richter law; probabilistic cellular automata; solvable models; stochastic processes; toy model of
earthquakes

1. Introduction

Earthquakes are among the most devastating natural phenomena, but their studies
are far from being completed, mainly because the mechanisms of earthquakes are still
not fully understood [1]. They are extremely complex, and investigation of them involves
many different approaches (see, for example, [2]). There is also additional complexity
coming from sensitivity on local geological settings, which are always—to some extent—
unknown. In spite of dependence on local tectonics, there are known universal empirical
laws for earthquakes—Gutenberg–Richter (G-R) law [3], and Omori law [4]. Earthquakes,
being complex systems, exhibit scaling behavior [5], in particular the probability density
function of interevent times can be rescaled into a single function [6–8]. This property
was further investigated in the context of the epidemic-type aftershock sequence (ETAS)
models [9,10]. Other universal behavior of earthquakes was investigated using a concept
of natural time—see [11,12] and references therein.

This article is a contribution toward constructing a mechanistic model in the form of
probabilistic cellular automata (PCAs) for generating interevent time distribution based
on a locally deviated size-frequency distribution (see also [13]). In this paper, we focus on
accurate modeling of the frequency-energy distribution, while time-related issues will be
presented in the next article.

PCAs [14] are simple computational models, yet are capable of simulating complex
phenomena. In particular, cellular automata proved to be useful modeling tools in seis-
mology [15]. The action of CA and PCA is determined by its local transformation rules,
which—in the case of natural phenomena—reflect the physical dependencies crucial for
the phenomenon under investigation. Their relatively simple structure allows for insight
into expected time series and general properties of earthquakes.

Here, we consider abstract representation of earthquake statistics by Random Domino
Automaton (RDA) [16] with a local transformation rule based on a dissipative process
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of slow energy accumulation and abrupt releases understood as quakes. Contrary to the
majority of PCA models, which are investigated mostly by extensive simulations (see, for
example, [17] and also references therein), RDA possesses a unique mathematical structure,
which allows for analytical derivation of several of its properties and constraints in the
form of equations for stationary state.

The plan of this paper is as follows. In Section 2, we introduce the notion of Random
Domino Automaton. Section 3 contains the derivation of equations describing the station-
ary state of the automaton. Some detailed calculations of the derivation are presented in
Appendix A. Next, in Section 4, we formulate and solve the inverse problem for Random
Domino Automaton. Section 5 contains application of the developed framework to ex-
emplary open access data of episode LGCD [18] from LUMINEOS network located in the
Legnica-Glogow Copper District, Poland (for details see [19,20]). Finally, we end with a
discussion in Section 6.

2. The Model
2.1. The Random Domino Automaton

The RDA model [16] is a completely discrete dynamical system, i.e., both independent
and dependent variables are discrete. Space consists of N cells along a line or circle,
if periodic boundary conditions are assumed. This means that a cell has exactly two
neighboring cells. The size of the automaton is N, where we assume N can be arbitrarily big.

Each cell may be empty or occupied by a single ball, which represents the absence
or presence of energy, respectively. If a number i of consecutive cells are occupied, they
belong to a cluster of size i. Clusters are separated by empty clusters—consecutive empty
cells. The size of an empty cluster is equal to the number of cells contained in it. Empty
cells may have zero, one or both neighboring cells occupied, and hence we distinguish
three kinds of them. We will refer to these three kinds of cells as creation, enlarging and
merging cells, respectively. The names originate from the dynamics of the automaton: what
is the influence of the change in the status of the cell (from empty to occupied) on the total
number of clusters?

2.2. Evolution Rules

Discrete time dynamics is defined as follows. In each time step one cell is chosen. We
assume that every cell has the same chance of being selected.

• If the chosen cell is empty, then it becomes occupied with some fixed probability,
depending of the type of the cell. The value of probability is: c0 for a creation cell, c1
for an enlarging cell, and c2 for a merging cell. The state of the chosen cell remains
unchanged (i.e., empty) with probability (1− c0), or (1− c1), or (1− c2), respectively.

• If the chosen cell is occupied, and it belongs to the cluster of size i, the whole cluster is
removed (i.e., each cell in the cluster is emptied) with probability µ(i) = µi depending
on the size i of the cluster. The state of the chosen cell stays the same (i.e., occupied)
with probability (1− µi).

The removed cluster forms an avalanche of size equal to the size of the removed cluster.
For µ = constant the RDA model is equivalent to the Drossel–Schwabl forest fire

model [21].

3. Equations
3.1. Variables

The number of clusters of size i in the system is denoted by ni, and the number of
empty clusters of size i by n0

i . Both nis and n0
i s depend on time; however, we will refer to

these variables as describing a stationary state, thus constant [22]. Note that these constant
values are average values over time, and hence they are non-negative real numbers, not
necessarily integers.
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The density of the system, a ratio of the number of occupied cells to the size of the
system, is thus given by

ρ =
1
N ∑

i≥1
ini. (1)

Energy of a cluster of size i is equal to i statutory units, and hence ρN refers to the total
energy contained in the system. The total number of clusters is

n = ∑
i≥1

ni. (2)

The total number of empty clusters n0 is defined in the same way.
We assume periodic boundary conditions, i.e., assume that the last cell is adjacent

to the first one, and also, that there are at least one cluster and at least one empty cluster
present in the system. These assumptions make n and n0 equal to each other, because each
cluster is followed by an empty cluster. Without these assumptions, the actual values of
n and n0 can either be equal to each other or may differ by one. For the large size of the
system N, and large values of n and n0, such a difference is negligible.

There are three kinds of empty cells, distinguished according to the number of occu-
pied neighbors. An empty cell may be a neighbor for 0, 1 or 2 occupied cells. The total
number of such empty cells in the system is denoted by x0, x1 and x2, for these three kinds,
respectively. Therefore, it follows

∑
i≥1

in0
i = x0 + x1 + x2 = (1− ρ)N. (3)

An empty cell can change its state to occupied, according to specific evolution rules
defined below. In such a case, there are three different situations, depending on the number
of its occupied neighbors. Occupation of an empty cell with no occupied neighbor results in
the creation of a new cluster (of size 1). Other results are: enlarging of an existing adjacent
cluster and merging of two adjacent clusters. Hence, empty cells are named: creating,
enlarging and merging, respectively.

The following expressions for xi, i = 0, 1, 2 follow directly from the definitions

x0 = ∑
i≥3

(i− 2)n0
i = (1− ρ)N − 2n + n0

1, (4)

x1 = 2 ∑
i≥2

n0
i = 2(n− n0

1), (5)

x2 = n0
1. (6)

The first one comes from counting empty cells from interiors (inner cells, without those on
ends) of empty clusters and the second from counting the remaining end cells.

We point out the identity

n =
1
2
(x1 + 2x2), (7)

which reflects the fact that each cluster has two empty cells as neighbors. These cells are of
enlarging or merging type, and each merging cell is a neighbor for two clusters. Obviously,
the constraint expressed by the Equation (7) follows also from Equations (5) and (6).

3.2. Equations

The RDA is a Markov chain, and its space of states is irreducible, aperiodic and
recurrent [22]. Thus, statistically stationary state is well defined, and it is possible to derive
respective balance equations by using the “flow in = flow out” principle, and counting
respective probabilities.

Below, we present the balance equations for ρ, n, xi and ni for the statistically stationary
state of the automaton in mean field approximation for the special choice c0 = c1 = c2 = c,
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while details of the derivation in the general case (arbitrary c0, c1 and c2) are presented in
Appendix A.

The balance equation for density ρ reflects an equilibrium condition between all
processes—creating, enlarging, merging and triggering avalanches, and hence it is

c(x0 + x1 + x2) = ∑
i≥1

µinii2. (8)

The balance equation for the number of clusters n is

c(x0 − x2) = ∑
i≥1

µinii. (9)

All processes, except for enlarging, make a change to the number of clusters.
These two equations are exact, contrary to the following equations, whose derivation

uses the mean field approximation (see Appendix A). It follows that the balance equation
for creating cells x0, enlarging cells x1 and merging cells x2 are of the form

3cx0 = ∑
i≥1

µinii2 +
x1

n ∑
i≥1

µinii, (10)

2c(x0 − x1) =
x1 − 2x2

n ∑
i≥1

µinii, (11)

c(x1 − x2) =
2x2

n ∑
i≥1

µinii. (12)

Remark 1. Not all of the equations derived above are independent. Because of the relation (3),
a combination of Equations (10)–(12) gives the Equation (8) for the density ρ. The relation (7),
implies that a combination of Equations (11) and (12) must be consistent with the Equation (9) for
the total number of clusters n.

Finally, the balance equations for ni’s are as follows:

n1 =
1

µ1 + 2
(cx0), (13)

n2 =
1

2µ2 + 2

(
cx1

n1

n

)
, (14)

ni =
1

iµi + 2

(
cx1

ni−1

n
+ cx2

i−2

∑
k=1

nk
n

ni−k−1
n

)
for i ≥ 3. (15)

Remark 2. Equations (13)–(15) sum up to balance Equation (8) for ρ.

4. Inverse Problem
4.1. Formulation

The inverse problem for RDA [23] is to find the rebound parameters (probabilities
µi and ci) that result in the given stationary distribution of avalanches wi. Here, wi is a
frequency of appearance of avalanches of a given size i.

The probability of an avalanche of size i is proportional to the number of cells contained
in clusters of size i (i.e., i · ni) times respective rebound parameter µi, hence

wi ∼ µinii, (16)

and we assumed a normalization ∑i wi = 1 .
A key observation for solving the inverse problem is that it is possible to express

parameters of µi as functions of ni and xi, using Equations (13)–(15). Moreover, the set of
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Equations (26)–(28), which are shown below, allows us to calculate wi from ni sequentially.
In order to achieve this goal, we need one more step, namely defining “unit-less” variables.

Consideration of the stationary state makes the “speed” of time flow irrelevant, and
thus the stationary state of RDA is influenced by ratios of probabilities rather then values
of rebound parameters itself. Similarly, considering relative frequencies of avalanches, we
may remove the dependence of numbers of avalanches and clusters in favor of ratios of
respective variables in a way analogous to definition “intensive” (as opposite to “extensive”)
variables in thermodynamics and statistical physics. Thus, we define

n̂i :=
ni
n

, x̂i :=
xi
n

, and µ̂i :=
µi
c

. (17)

Note 0 ≤ x̂1 ≤ 2, 0 ≤ x̂2 ≤ 1, and x̂0, µ̂ are non-negative.
Using these “unit-less” variables, we define

I := ∑
i≥1

µ̂in̂ii, and J := ∑
i≥1

µ̂in̂ii2, (18)

where we assume both sums are convergent. Notice that the average size of avalanche
η :=< iw > is

η :=< iw >=
∑i µinii2

∑i µinii
=

∑i µ̂in̂ii2

∑i µ̂in̂ii
=

J
I

. (19)

Obviously η ≥ 1.
In view of Remark 1 and the relation (7)

x̂1 = 2(1− x̂2), (20)

which allows us to eliminate the variable x̂1, the set of balance equations is reduced to
three independent equations. The balance Equations (8)–(12) (for the density ρ, for the total
number of clusters n, and for the number of merging cells x2) expressed in normalized
variables are of the form

2 + x̂0 − x̂2 = J,

x̂0 − x̂2 = I,

2− 3x̂2 = 2x̂2 I.

The set can be solved explicitly

x̂0 =
2

η − 1
+

2
3

(
1− 4

3η + 1

)
, (21)

x̂2 =
2
3

(
1− 4

3η + 1

)
, (22)

x̂1 =
2
3

(
1 +

8
3η + 1

)
. (23)

and
I =

2
η − 1

, J =
2η

η − 1
. (24)

Note that the limit η −→ ∞ gives x̂i = 2/3 for i = 1, 2, 3. Note also that the average size of
empty clusters is

< i0n >= 2 +
2

η − 1
. (25)
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We can also see that, from the equations of the distribution of clusters (13)–(15), by
removing denominators and rearranging, one can obtain

n̂1 =
1
2
(x̂0 − w1 I), (26)

n̂2 =
1
2
(x̂1n̂1 − w2 I), (27)

n̂i =
1
2

(
x̂1n̂i−1 + x̂2

i−2

∑
k=1

n̂kn̂i−k−1 − wi I

)
for i ≥ 3. (28)

Summing up these equations for all i, one can obtain the identity 0 = 0.

4.2. The Procedure of the Solution to the Inverse Problem

With equations of the previous subsection, we can formulate the following procedure
of solving the inverse problem.

• Take wi from data and normalize ∑i wi = 1.
• Calculate the average size of avalanche η =< iw >.
• From Equation (24), calculate I.
• From (21)–(23), calculate x̂0, x̂1 and x̂2.
• From Equations (26)–(28), calculate n̂i.
• Rebound parameters µi follow from the formula (16), namely µ̂i := Iwi

n̂i i
.

5. Applications
5.1. Exponential Tail

First, we apply the proposed above framework to an avalanche distribution, given by
a geometric relation:

wi =
(

1−q
q

)
qi, 0 < q < 1, i = 1, 2, . . . (29)

We set q = 99/100, which implies the average size of avalanche η = 100, and having
performed computations using rational values, one can obtain the following exact values:

I =
2

99
, x̂0 =

20204
29799

, x̂1 =
206
301

, x̂2 =
198
301

. (30)

The distribution of clusters n̂i is displayed in Figure 1 on the left side. The starting two
values equal n̂1 = 10,201/30,100 and n̂2 = 104,979,699/906,010,000. The sequence of param-
eters µi obtained accordingly is calculated up to i = 10.000 and presented in Figure 1 on
the right side.

1 10 100 1000 104
i

10-41

10-31

10-21

10-11

0.1

n(i)
A)

1 10 100 1000 104
i

2.×10-4

5.×10-4

0.001

μ(i)
B)

Figure 1. The distribution of clusters n̂i (A) and the distribution of rebound parameters µi (B) calcu-
lated for avalanche size distribution wi given by geometric series of Equation (29) with q = 99/100.
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Starting with obtained values of rebound parameters µi and calculating values of wi
from respective equations, we reconstruct the values of avalanche distribution. Due to the
usage of computations with rational numbers, which contain no approximation errors, the
distribution fits to the geometric series (29) with value q = 99/100 exactly. This property,
that geometric extinction can be calculated exactly, makes it useful for serving as a smooth
cut-off of any real data, which always are given within some finite range of values.

5.2. Seismic Data from LUMINEOS Network

Next-generic-example deals with exemplary data [18] recorded by LUMINEOS Seis-
mic Network in the Legnica-Głogów Copper District in Poland. The open-access data
were downloaded from and are available on the EPISODES platform [19] within LGCD
episode [20]. The data set contains 6095 items, with 32 different values of magnitude,
ranging from M0.9 to M4.0, rounded to the nearest 0.1. The catalogue completeness
threshold—i.e., the minimal value of magnitude above which 100% of the earthquakes
are detected—is estimated to M1.7. This value is relatively high as for the local seismic
network, and it reflects the influence of high noise levels generated by industrial activity
nearby. We emphasize that the modeling data below the catalog completeness threshold
do not reflect the physical properties of the system. However, we also model these data to
show the scope of the model’s capabilities.

The notion of Random Domino Automaton assumes that the sizes of avalanches and
clusters correspond to energy, thus we convert magnitudes M to energies E using the
formula [24]

E = C · 101.5M, (31)

where C is a constant, and its value depends on units of energy. Assigning a value of
energy to a single occupied cell is arbitrary, so we use this freedom and set C = 0.05. This
choice gives for the lowest recorded magnitude value M = 0.9 the value of E = 1.1, for
the catalog completeness threshold M = 1.7 it gives E = 17.7, and E = 5 · 104 for the
highest magnitude value M = 4.0. We interpret a magnitude M as cumulative value for the
interval (M− 0.05, M + 0.05), so the maximal value of energy is 59,425. On the other side,
with the resulting low resolution for the smallest energies—which are also well bellow the
catalog completeness threshold—the first two values corresponding to M0.9 and M1.0 we
treat as a contributing to a single record.

Next, we take these 31 values as a basis for piece-wise linear interpolation at [1, 59,425],
and we treat the obtained spline function as frequency distribution. It is also possible to
choose another interpolation, however for our purpose to show possibility of reproducing
variability of energy-frequency distribution, this is not of the primary importance. The
piece-wise interpolation contains artificially created abrupt changes in the decrease rate,
which is rather more difficult to reproduce, then only smooth changes.

Then, we fit inverse power distribution to the spline starting with value i = 42, which
is equivalent to magnitude M1.95, and even slightly more than the provided catalog
completeness threshold M1.7. We use the procedure of [25], to fit a truncated power-law,
by logarithmic binning, maximizing the highest-likelihood estimator with data values
parametrized along, to fit the distribution at the theoretical centers of weight of 18 intervals
with the downhill simplex numerical method (see [25] for details). We obtain the following
inverse-power distribution:

f (i) = 53122.9 · i−1.854. (32)

Next, we add an exponential tail g(i) = γe−δ(i−a) starting from a = 59,426. We require
f (a) = g(a) and f ′(a) = g′(a) in order to have a smooth transition in the neighborhood of
a. This condition allows us to calculate γ and δ in terms of α and λ, so g(i) = f (a) · e−λ i−a

a .
Thus, we obtain augmented avalanche distribution wi, consisting of the spline and the
exponential tail. All the data and results of the subsequent steps described above are
presented in Figure 2. The average size of the avalanche is < iw >= 215.
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Figure 2. The augmented distribution of avalanches wi, up to i = 140,000, obtained from the LGCD
episode from Legnica-Głogów Copper District in Poland. The recorded data (blue dots) were adjusted
to the resolution of RDA model (green dots gradually turning into a line) and the exponential tail
(thicker green line) was added using the auxiliary inverse-power fit (violet dashed line). See the main
text for explanations.

Then, we follow the procedure described in Section 4.2. The value of I is set to 1/107,
we assume ĉ = 1. The density is ρ ≈ 0.9891589, and x̂0 = 0.6718844, x̂1 = 0.674922, and
x̂2 = 0.662538. The obtained distributions of n̂i and µ̂i, being a solution of the inverse
problem, are presented on the left part of Figure 3. It is clear from the picture, that the “jump”
of the distribution of avalanches—i.e., a large difference between the values for successive
points i = 59,425 and i = 59,426—reflects in the respective “jump” of the distribution of
rebound parameters µi, and the variability of the distribution of clusters remains small.

Next, we calculate the distribution of avalanches wi starting from the obtained dis-
tribution of rebounds parameters µi, i.e., we solve the direct problem. Comparison of the
initial and the calculated distributions of avalanches wi is presented in Figure 3 on the
right side. These two distributions overlap, confirming the ability of the Random Domino
Automaton model to reproduce exact shape of relatively variable distribution of seismic
data from LGCD episode.

A)

Figure 3. (A) Distribution of clusters ni and rebound parameters µi obtained from solution of
the inverse problem for the augmented distribution of avalanches presented in Figure 2. The left
axis refers to the values of ni, and the right axis refers to values of the µi. (B) Comparison of the
initial distribution of avalanches form Figure 2 with the distribution of avalanches obtained from
the solution of the direct problem, i.e., calculated based on the calculated values of µi. These two
distributions overlap in the whole range, which confirms the accuracy of the proposed procedure.
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6. Discussion and Conclusions

The article develops the notion of Random Domino Automaton [16] and presents—
anticipated earlier in [23]—a solution of the inverse problem for this model. To that aim,
we introduced normalized variables (17) and solved the problem algebraically. Then, we
applied the procedure to exemplary data [18] recorded in the Legnica-Głogów Copper
District in Poland, in order to demonstrate the efficiency of the approach.

The chosen exemplary data are quite challenging, because of the lowered number
of records for small magnitudes due to a relatively high catalog completeness threshold
and substantial variability for larger magnitudes, due to smaller number of entries. Never-
theless Random Domino Automaton proved to be able to reproduce these variable data
very accurately.

We also propose a procedure to deal with a problem of data cut-off. Having recorded
data for phenomena following fat-tail distributions, such as, for example, earthquakes, one
might expect the appearance of events bigger then those already recorded. From the other
side, it is clear that inverse-power distribution can not be valid up to infinity. Thus, we
balance these two points by addition of a tail, which smoothly changes from inverse-power
to exponential decay.

The next step for extending the RDA model is to introduce aftershocks following the
Omori law into the system in order to investigate the waiting time distribution (compare [9]).
From the other side, the form of the distribution [8] has been connected with the timing
of stress-redistribution events and it leads to so-called anomalous diffusion—see [26,27]
and references therein. Extending the RDA model, we aim at providing a mechanistic
model connecting the above-mentioned ideas. The solution of the inverse problem for
RDA presented in this article is a necessary step for consideration of localization-specific
deviations from Gutenberg–Richter law.

Finally, let us note that Random Domino Automaton, in a specific setting, can lead to
Motzkin numbers recurrence [28], and give rise to similar construction for more widely
known Catalan numbers recurrence [29]. Moreover, in spite of its relatively simple evolution
rules, the RDA exhibit complex behavior for which a spontaneous migration between two
SOC-like states was discovered [30].
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Appendix A. Derivation of the System Equations

Here, we present a complete derivation of the equations of one-dimensional Random
Domino Automaton in a general case for arbitrary rebound parameters.

In order to make a description short, we use a symbol ci → cj to refer to a transition
of a cell of one type i to another type j, and a symbol µi → c0 to refer to a transition of an
occupied cell to a creating cell, since after an avalanche occupied cells become creating cells
only. Occupation of an empty cell of type i is denoted by ci → µj.
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Appendix A.1. Balance Equation for ρ

In a single time step, the number of occupied cells may stay unchanged (when the
new ball is reflected) or may increase by one (when a chosen empty cell becomes occupied)
or decrease by i (when tan avalanche of size i is triggered). Probability rates for specific
types of empty cells (i.e., creating, enlarging, merging) to be occupied are

c0 → µi : c0
x0

N
; c1 → µi : c1

x1

N
; c2 → µi : c2

x2

N
.

The probability of relaxation of a cluster of size i is µi(ini/N). Clusters of arbitrary size i
contribute, thus the expected value of the change in the number of occupied cells is

µi → c0 : ∑
i≥1

nii
N
· µi · i.

Hence, the balance equation for density ρ is

c0x0 + c1x1 + c2x2 = ∑
i≥1

µinii2. (A1)

This equation includes no approximations, thus it is exact.

Appendix A.2. Balance Equation for n

The number of clusters may increase (by 1 in a single time step) only if a new cluster is
created, i.e., for c0 → µi. The number of clusters may decrease (by 1) by the joining of two
clusters (i.e., c2 → µi), and by triggering an avalanche (of arbitrary size), which happens
with the probability

∑
i≥1

µi
ini
N

.

Hence, the equation is
c0x0 − c2x2 = ∑

i≥1
µinii. (A2)

This equation is exact, too.

Appendix A.3. The Balance Equations for xi’s

In the derivation below it is necessary to take into account the sizes of adjacent clusters
and empty clusters, which in our framework are not traced. Thus, from this place, we
assume there is no correlation between these sizes. This simplification is a version of the
mean field approximation.

The equation for the number of creating cells x0. Four transitions contribute here:
avalanche µi → c0, a removal of the adjacent cluster c1 → c0, occupation of the empty cell,
c0 → µi and occupation of a neighboring empty cell c0 → c1. The expected values (which
are the same as probabilities in this case) are

c1 → c0 : x1 ∑
i≥1

ni
n

i
N

µi, c0 → c1 : x0
2
N

c01,

where c01 is unknown value of probability of occupation of a neighbor of the empty cell of
c0 type. It is a weighted (somehow) average of c0 and c1. Note, for c1 → c0, a ratio ni/n
gives the probability that the neighboring cluster is of size i, and iµi/N is the probability,
which it is removed from the system. Thus, the balance equation for the number of creating
cells x0 is

(c0 + 2c01)x0 = ∑
i≥1

µinii2 +
x1

n ∑
i≥1

µinii. (A3)
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The equation for the number of enlarging cells x1. The following transitions contribute:
c0 → c1, c2 → c1, c1 → µ, c1 → c0, and c1 → c2, and because the following rates are

c2 → c1 : 2x2 ∑
i≥1

ni
n

i
N

µi, c1 → c2 : x1
1
N

c12,

where c12 is an unknown value of probability of occupation of a neighbor of the empty cell
of c1 type. Again, it is a weighted average of c0 and c1. The equation is

2c01x0 − (c12 + c1)x1 =
x1 − 2x2

n ∑
i≥1

µinii. (A4)

The equation for the number of merging cells x2. The following transitions contribute:
c1 → c2, c2 → µ, and c2 → c1, and the equation is

c12x1 − c2x2 =
2x2

n ∑
i≥1

µinii. (A5)

Remark A1. Not all of the equations derived above are independent. As one may expect, because of
the relation (3), a combination of Equations (A3)–(A5) gives the Equation (A1) for the density ρ.

Remark A2. Because of the relation (7), a combination of Equations (A3)–(A5) must be consistent
with the Equation (A2) for the total number of clusters n .

2c01x0 + c12x1 = 2c0x0 + c1x1. (A6)

For the approximation that there are no correlations between empty cells, both c01 and c12
are assumed as

c01 = c12 =
2c0x0 + c1x1

2x0 + x1
. (A7)

It follows from the argument that any given empty cell of c0 type is a neighbor for two
empty cells (thus contributes twice), while any given empty cell of c1 type is a neighbor for
only one empty cell. For the Formula (A7), Equation (A6) is satisfied, and a combination of
Equations (A4) and (A5) gives Equation (A2) for the total number of clusters n.

Appendix A.4. Equations for the Distribution of Clusters ni

The creation of 1-cluster happens with the probability of transition c0 → µi. The
creation of i-cluster by enlarging of (i− 1)-cluster for i ≥ 2 happens with the probability

c1
x1

N
ni−1

n
.

The merging of two clusters of size k ∈ 1, 2, . . . , (i− 2), and of size (i − k − 1), for
i ≥ 3, separated by a merging cell happens with probability

c2
x2

N

i−2

∑
k=1

nk
n

ni−1−k
n

.

The removing of i-cluster happens with the probability

µi
ini
N

.
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The enlarging of i-cluster to any bigger cluster may happen as a result of occupation
of neighboring enlarging or merging cell. The respective probabilities are

c1
x1

N
ni
n

, 2c2
x2

N
ni
n

,

where factor 2 comes from the number of neighboring clusters of the empty cell.
Thus, the balance equations for ni’s are

n1 =
1

µ1 + Y
(c0x0), (A8)

n2 =
1

2µ2 + Y

(
c1x1

n1

n

)
, (A9)

ni =
1

iµi + Y

(
c1x1

ni−1

n
+ c2x2

i−2

∑
k=1

nk
n

ni−k−1
n

)
for i ≥ 3, (A10)

where
Y =

1
n
(c1x1 + 2c2x2). (A11)

Remark A3. Equations (A8)–(A10) sum up to balance Equation (A1) for ρ.

Remark A4. It is possible to generalize these equations for the case of a fixed number of possible
neighbors bigger then two (RDA on Bethe lattice with coordination number ≥ 3). For example, for
a coordination number equal to 3, the set is supplemented by an analogous equation for i ≥ 4 with
an additional triple sum.
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