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Abstract: A super-diffusive Vicsek model is introduced in this paper that incorporates Levy flights
with exponent α. The inclusion of this feature leads to an increase in the fluctuations of the order
parameter, ultimately resulting in the disorder phase becoming more dominant as α increases. The
study finds that for α values close to two, the order–disorder transition is of the first order, while for
small enough values of α, it shows degrees of similarities with the second-order phase transitions.
The article formulates a mean field theory based on the growth of the swarmed clusters that accounts
for the decrease in the transition point as α increases. The simulation results show that the order
parameter exponent β, correlation length exponent ν, and susceptibility exponent γ remain constant
when α is altered, satisfying a hyperscaling relation. The same happens for the mass fractal dimension,
information dimension, and correlation dimension when α is far from two. The study reveals that the
fractal dimension of the external perimeter of connected self-similar clusters conforms to the fractal
dimension of Fortuin–Kasteleyn clusters of the two-dimensional Q = 2 Potts (Ising) model. The
critical exponents linked to the distribution function of global observables vary when α changes.

Keywords: super-diffusive Vicsek model; Levy flights; second-order phase transition; critical exponents
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1. Introduction

There has been a significant increase in attention towards emergent behaviors, particu-
larly collective motions in active systems [1]. These systems exhibit large-scale cooperative
phenomena and sometimes scale-invariant patterns, resembling the standard theory of
statistical mechanics and critical phenomena. To draw a connection, the concept of “phase”
is assigned to each collective mode of behavior of agents, and the term “phase transition”
is used. Swarming is an example that is observed in various biological systems, e.g., fish
schools with milling dynamics [2], bacterial systems [3–6], biofilm formation [7], and
marching locusts [8]. Observations of self-organized critical behavior in systems such as
midge swarms [9] prompt the question of what the significance of criticality is in these
systems. Among the mathematical models [10], the Vicsek model (VM) [11] serves as a
minimal prototypical example of active systems with self-propelled constituents that show
swarming transition.

The VM is a simple yet extensively studied model due to its ability to exhibit new
features and diverse modes of collective behavior. For example, it was mapped onto
complex networks [12] and XY spin chains [13–15]. Other studies have focused on the
impact of angular noise [16] and hierarchical societies [17], with the aim of uncovering the
key physical factors that contribute to emergent behaviors and its response to additional
interactions/physical parameters; see [18].

Initial studies asserted that the VM exhibits critical behavior at the transition
point [11,13–15], but later research showed that the transition is actually of the first or-
der [19,20]. This discrepancy was attributed to the small finite size effects of the system.
However, other studies suggest that the order of the transition may depend on how noise is
added to the system [21] or could be an artifact of finite size and boundary conditions [22].
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This leaves an important unanswered question: How do the long-range interactions [9],
which lead to criticality in many systems [23–25], impact the collective motion when these
individuals are swarming together?

A recent study [26] found that the lack of fluctuations, or complete synchronization
with the flock, in the VM and other classical models, such as the Cucker–Smale model, can
reduce the adaptive response of a flock, which may be undesirable in certain scenarios. To
increase the adaptive sensitivity to external threats, criticality and correspondingly large
fluctuations are essential, as information corresponding to a local perturbation moves faster
due to the scale-free correlations [27,28]. It is now well known that criticality is a vital
ingredient for a flock state to survive in the presence of external threats [29,30].

We argue that the presence of scale-free stochasticity in, for instance, the flight distance
of the constituents is a crucial factor for achieving criticality, which is absent in classical
counterparts. To establish a closer connection with real-world scenarios, it is essential to
incorporate scale-free stochasticity that generates anomalous diffusion, which is frequently
observed in active systems. Examples include Levy flights of wandering albatrosses [31]
and other animals [32], super-diffusive intracellular transport [33], entangled F-actin net-
works [34], microtubule-associated motors within a living eukaryotic cell [35], living yeast
cells [36], mRNA molecules inside live E. coli cells [37,38], telomeres in the nucleus of
mammalian cells [39], biomolecules in solution and living cells [40], the pathway of an
Adeno-associated virus [41], and epithelial cell migration (with Levy flights as the asymp-
totics of the q-Weibull distributions) [42]. In most cases, super-diffusion is observed, which
enhances the exploration process (e.g., foraging for animals) [31,32]. In this paper, we
investigate the impact of introducing Levy flights into the system dynamics, resulting in
super-diffusive stochasticity. This leads to the criticality of the system for sufficiently small
step exponents (α) of Levy flights.

The paper is organized as follows: In the next section we describe our model. Section 3
presents the simulation results, while Section 4 presents the mean field results. Section 5
investigates the geometrical and global features of the model and is divided into two
subsections. The first subsection, Section 5.1, describes the mass fractal dimension and
higher-order dimensions of the density field. In the second subsection, Section 5.2, we
present our contour line analysis for the density field. We conclude the paper with a
summary of our findings in the final section.

2. The Model

In the ordinary VM, the agents (labeled by i ∈ [1, N], where N = ρL2 represents the
total number of active particles, ρ is the density of the particles and L is linear size of the
system) undergo correlated random walks in the system with an interaction range R such
that any active particle inside a disk of radius R is fully seen by the central particle. The
time evolution of the position of the ith particle at time t (xi(t)) is given by

xi(t + ∆t) = xi(t) + vi(t)∆t

θi(t + ∆t) = 〈θt〉|{Ri} + ηζi
(1)

where θi(t) is the direction of motion of the ith particle at time t, vi(t) = vi(cos θi(t), sin θi(t)),
vi∆t is the distance that the ith particle traverses in the time interval [t, t + ∆t], {Ri}
shows the set of particles at a distance less than or equal to R from the ith particle, and

〈θt〉|{Ri} ≡ Arg
[
∑j∈{Ri} eθj(t)

]
. ζi is a uniform random number in the interval [− 1

2 , 1
2 ], and

η is the strength of the disorder.
In the ordinary VM, where the particles have a constant velocity vVM

i = v0 (∀i ∈ [1, N]),

the coherence order parameter defined as φη(t) ≡
∣∣∣ 1

N ∑N
i=1 vi(t)

∣∣∣ is zero (non-zero) in the
disordered (ordered) phase. This indicates that the particles move in a spatiotemporally
coherent (incoherent) fashion [11], and provide information about the degree of orientation
of the particles’ motion. There is a transition point ηc, above (below) which φ(η) ≡

〈
φη(t)

〉
t
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and the systems are in the disordered (ordered) phase. 〈〉t is defined as the time average
over a considerable time interval. In our model, we let the particles’ velocity obey the Levy
flight distribution:

pLevy(v) ∝
1

vα+1 Θ(vmax − v), (2)

where α is a “step index” which generates correlations, and Θ(x) is a step function
(Θ(x) = 1 for x ≥ 0, and zero otherwise).

The occurrence of rare events (long-range) flights in the process introduces correlations
by allowing the particles to access and persist in specific regions of space. Consequently,
correlations in the particles’ positions over time emerge [43]. Θ(x) is considered in our
model to prevent unphysical rare events, such as flights above the threshold speed vmax im-
posed by physical conditions (lmax ≡ vmax∆t), which serves as an IR cut off in the problem.
In the analytical calculations, we require also a UV cutoff ε to ensure that the average flight
l̄α ≡

∫ lmax
ε lpLevy(l)dl = A

α−1
(
ε1−α − l1−α

max
)

is well-defined, where A−1 ≡ 1
α (ε
−α − l−α

max) is a
normalization constant. It is customary to consider this cutoff as the smallest scale in the
problem, e.g., a lattice constant in the models on the lattice. We set it to R, which is the
lattice constant in our setup. For 1 < α < 2, the average length and its variance diverge as
the limits of ε→ 0 or lmax → ∞ are approached, which results in the central limit theorem
being invalid. In this situation, the distribution of the Levy random walkers is described
by α-stable distributions as reported in [44]. We refer to the particles in this regime as
super-diffusive active particles because the diffusion exponent is α

2 > 0.5 [45].
For the ordinary VM, there is a coexistence of ordered and disordered phases at the

transition point (which is of the first order). This leads to the existence of well-defined
phase boundaries, known as phase coexistence [17], and results in a bimodal distribution
function for the order parameter. The bimodal distribution can be either spatial or temporal,
indicating that the two phases may either spatially coexist or dominate during different
time intervals [17,46]. The existence of a bimodal distribution function may directly lead to
a gap for φ(η) at the transition point [47], around which the hysteresis effect is observed. In
this state, the system stays during most of the observation time in the vicinity of one peak
of p(φ) or, in other words, a metastable branch is observed. A hysteresis loop results from
the system’s resistance to entering the new peak [17]. The gap is defined as the difference
between these two peak points exactly at the transition point. This is in accordance with the
discontinuous (first order) phase transitions, where the phases coexist with well-defined
boundaries. However, with the second-order phase transitions, the system shows self-
similar patterns at the transition point, making it challenging to attribute a specific phase to
a part of the system [47]. In our model, the scale-free stochasticity induces the evaporation
of the two phases by promoting “tunneling” between the peaks. The amplitude of this
effect is determined by the value of α.

3. Simulation Results

We simulated the system for L
R = 32, 64, 128 and 256, α ∈ [0.8− 1.95], and ρ = 2. Ad-

ditionally, R and ∆t were set to 1. The active particles were initially distributed randomly in
the system with random uncorrelated movement orientations. For the systems that exhibit
a hysteresis effect, we moved forward (increase η) and backward (decrease η), and for both
cases, we changed η by δη = 3× 10−6 in each time step. To control statistical fluctuations,
we generated three samples at each time step. We used the maximum likelihood estimation
(MLE) method [48] to estimate the best values for the exponent and corresponding error
bars. For the data collapse analysis, we selected the graph of the largest system size as a
base. We calculated the χ2 value for all other graphs by measuring the cumulative distance
of the points from this base graph. The distribution of χ2 values was then used to deter-
mine the best exponents and corresponding error bars. This technique was used to better
understand the relationship between different variables in the system. The density pattern
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of the model in the transition point is strongly dependent on the value of α as shown in
Figure 1.
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Figure 1. A snapshot of the particle density in the ordinary and super-diffusive VM (our model) at
the transition point. A color map for α = 1.5 and α = 1.95 is shown in (a) and (b).

Figure 1 investigates two different scenarios of a physical system with different values
of α. In the first case, α = 1.5, corresponding to Figure 1a, the system displays a self-similar
pattern without any phase separation. The second case, where α = 1.95, corresponding to
Figure 1b, exhibits a strip-like dense (ordered) phase in a background of a dilute (disordered)
phase. The self-similar pattern for α = 1.5 is reminiscent of the second-order transition,
while the phase separation for α = 1.95 is a fingerprint of the first-order transition.

To quantify the order of the transition, we show the time series of φ and the corre-
sponding probability distribution p(φ) in the Figure 2a for η > ηc, η = ηc and η < ηc for
α = 1.5 (left, with a single peak) and α = 1.95 (right, with a bi-modal structure). The single
peak structure was observed for all small enough α values, suggesting that the transition in
our model for these α values does not follow the first-order phase transition paradigm. In
contrast, the transition is discontinuous for α values around two. In Figure 2b, the φ-η plot
for different α values demonstrates that increasing α shifts the graphs to the left, suggesting
that the disordered phase is stabilized by higher α values. The Binder cumulant method
was used to extract the transition points. This method is especially an effective tool for
identifying the type of transition, as it is a continuous quantity for second-order phase
transitions. It is defined as

Gη = 1−

〈
φ4

η

〉
t

3
〈

φ2
η

〉2

t

. (3)

This function shows a sudden deep minimum at the transition point, which is charac-
teristic of first-order phase transitions (upper inset of Figure 2b for α = 1.5). This function
is inspected further in Figure A1a in Appendix A. There, it is shown that the depth of
the valley decreases as α decreases, which reveals the system crossover to regimes with
properties similar to second-order phase transitions in sufficiently small α values. The
observation is consistent with the modal structure of the distribution function, Figure A1b
(see Appendix A for more details). While Gη is theoretically expected to be L-independent
at the second-order phase transitions [49], statistical uncertainties prevent the points from
precisely intersecting at a single point. The method proposed in [50] is utilized to estimate
ηc in the thermodynamic limit. The method relies on identifying the intersection point
(ηc(L, L′)) of two graphs corresponding to two successive Ls and extrapolating the obtained
point to L, L′ → ∞. The resulting transition point ηc is shown in the lower inset of Figure 2b,
exhibiting a decreasing behavior in terms of α, i.e., the disordered phase dominates as
α increases.
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Figure 2. (a) The time series of φ for various amounts of η for L = 256. Left (right) inset shows
the probability distribution of φ(η) for η < ηc, η = ηc and η > ηc for α = 1.5 (α = 1.95). (b) φ-η
graph for various α values, showing the transition structure. Upper inset shows that Binder cumulant
G in terms of η for α = 1.5, which gives the transition point as its coincidence point. Lower inset
shows the transition point in terms of α. (c) φ-η graph for various L values. The coincidence point of
re-scaled φ is shown in the lower inset in terms of η, which determines the transition point. The upper
inset shows how the peak of the distribution functions runs with the system size. (d) log(Lβ/νφ(η))

in terms of log εL1/ν, exhibiting a scaling behavior according to Equation (4). The inset shows the
exponents in terms of α.

Although the observations mentioned suggest similarities with second-order phase
transition for small enough α values, additional statistical evidence is required to validate
this hypothesis. According to the standard theory of second-order (continuous) phase
transitions, the order parameter and the order parameter fluctuation χφ ≡ L2

[〈
φ2〉− 〈φ〉2]

satisfy the finite size scaling hypothesis [51]:

φη = L−β/νFφ(εL1/ν), χφ(ε) = Lγ/νFχ(εL1/ν) (4)

where ε ≡ ηc−η
ηc

, β and ν and γ are some exponents, and Fφ and Fχ are universal func-

tions with the asymptotic behaviors limx→∞ Fφ(x) = xβ, limx→∞ Fχ(x) = x−γ, and
limx→0

(
Fφ(x), Fχ(x)

)
= constant. These exponents are related via a hyperscaling rela-

tion [51]
νd = γ + 2β, (5)

where d is the Euclidean dimension of space, which is two here. In the main part of
Figure 2c and its upper inset, we show the finite size dependence of φ in terms of η and
p(φ) at ηc for α = 1.5, respectively. While the peak goes to the left as L increases, Lβ/νφ is
L-independent exactly at η = ηc as is shown in the lower inset of Figure 2c. The values of ηc
obtained through this data collapse analysis agree remarkably well with those determined
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via the Binder cumulant method. The results of the data collapse analysis presented in
Figure 2d confirm that our model obeys finite size scaling relations for sufficiently small α
values in accordance with second-order phase transitions. Note that the exponents β and
ν are robust against changes in α, and also χ2 of the fitting increases as α increases (the
worse fitting is for α = 1.95 in our α set), showing that the scaling hypothesis works for
sufficiently small α values, and the finite-size scaling Equation (4) is not appropriate for
large α values. One may use the theory of finite-size scaling for first-order transitions [47]
for those cases, which is outside the scope of the present study. χφ is reported in Figure 3a,
exhibiting a pronounced peak at the transition point. χmax (the amount of χφ at its peak)
also scales with L by the exponent γ/ν. Figure 3b displays the α dependence of χφ and
χmax, indicating that an increase in α corresponds to an increase in fluctuations of φ, which
is the reason why increasing α favors the disordered phase. A data collapse according to
Equation (4) for χφ is presented in Figure 3c, giving γ for all α values. The γ exponent is
found to be in the interval [1.4–1.6] for all α values, which agrees with the hyperscaling
relation Equation (5).

Figure 3. χ in terms of η, exhibiting a divergent behavior at the transition point (a) for various system
sizes and α = 1.5 and (b) various α values and L = 128. The inset of (a) is log χmax in terms of log L
the slope of which is γ/ν, and the inset of (b) is χmax in terms of α. (c) re-scaled χ in terms of re-scaled
η with the slope −γ.

The behavior of the system in terms of density is crucial in understanding the emergent
collective behaviors of self-propelled particles. We found evidence regarding the density-
driven order–disorder transition for super-diffusive active particles by inspecting the
properties of φ in terms of ρ. We first considered the transition in terms of η for low
density regime (ρ = 0.3). In this case, similar properties, such as high density limit ρ = 2,
were observed, shown in Appendix A (Figure A2). We also found also a density-driven
order–disorder transition, which is depicted in Figure 4, showing this transition in terms of
ρ for α = 1.5 and η = 3. The critical density in this case was found to be ρc = 1.16± 0.01,
and the exponents of the transition were βρ = 0.16± 0.02 and νρ = 1.32± 0.14. Again, the
transition showed similarities with the second-order phase transition paradigm (such as
the finite size scaling, based on which we extracted the exponents using the data collapse
analysis) but was not completely fitted to it.

To conclude this section, we observed that our model undergoes an order–disorder
phase transition for all α values, and ηc decreases as α increases. Our findings reveal that the
phase transition is of the first order for large α values, similar to the ordinary Vicsek model.
Conversely, when α decreases sufficiently, the transitions align better with second-order
phase transitions, or at least show similarities with second-order phase transitions. We
observed a crossover from first-order to second-order transition by decreasing α.
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Figure 4. φ in terms of ρ for η = 3 and α = 1.5 for various L values (up to L = 128). Inset: The data
collapse analysis for φ in terms of ρ for η = 3, where the reduced density is defined as ρ̃ ≡ ρc−ρ

ρc
.

4. Mean Field Arguments

To comprehend the impact of α on our model’s characteristics, especially to address
why the disordered phase becomes increasingly stable with increasing α, we develop a
mean field theory. We consider a swarmed cluster with an average radius r, and study
the dynamics of the particles that leave or enter the cluster as an impact of Levy flights.
We quantify the rate of particle movement out of (or into) the system with nout (nin), and
define the density of the population within (or outside of) the swarmed cluster as ρin (ρout).
These mean field quantities are obtained through a straightforward argument illustrated
in Figure 5. nin is not sensitive to the movement of the swarmed cluster since the Levy
distribution is nearly invariant under a small boost. Therefore, we use the setup in Figure 5a
for determining nin as follows (noting that on average the fraction 1

4 of particles go to a
required direction):

nin(r) =
πρout

2

∫ lmax

ε
(r + v)pacu(l > v)dv (6)

where pacu(l > r) ≡
∫ ∞

r pLevy(l)dl is the Levy accumulated probability density. To calcu-
late nout, we allow the swarmed cluster to move by a distance of l̄α during a single time
step. The preferred direction 〈θ〉 can be calculated by the previous step given in Figure 5b.
To calculate nout, we note that the particles in the horizontal distance y′ (on the green
bar) with a flight length l̄α − (r + y′) < l < l̄α + (r− y′) remain in the coherent swarmed
cluster. Based on this, we calculate the number of particles that leave this area. Noting that

the required accumulated probability is pacu(r, l̄α, y′) ≡
∫ l̄α+(r−y′)

max{l̄α−(r+y′),ε} pLevydl, and also

(noting that on average the fraction 1
2 of particles go to a required direction),

nout = rρin

{
4r−

∫ r

−r
pacu(r, l̄α, y′)dy′

}
, (7)

we finally find the relations

nin =
πAρoutl2−α

max
4α

{
ε̃(2x + ε̃) +

α[(α− 1)− 2x(2− α)] + 2ε̃1−α[(2− α)x− (α− 1)ε̃]
(2− α)(α− 1)

}
nout = rρin

{
4r− A

α

[
1

α− 1

(
ε1−α +

(
l̄α + 2r

)1−α − 2l̄1−α
α

)
+ ε−α(2r− l̄α)

]}
,

(8)
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where x ≡ r/lmax and ε̃ ≡ ε/lmax. To obtain the mean field relations for ρin and ρout, we
use the following argument: In the ordered phase, there are typically multiple particles
inside a disk with area πR2, whereas in the disordered phase, particles are unlikely to
encounter each other within a single Levy flight, resulting in no particles within an area of
l̄αR. This leads to the relation ρin ≈

(
l̄α

πR

)
ρout. It is worth noting that the relationship is not

qualitatively dependent on the power used in the equation. This, along with conservation
of the total number of particles r2ρin + (l2

max − r2)ρout = ρl2
max, gives the following relation:

ρin =
ρ(

1− πR
l̄α

)
x2 + πR

l̄α

, ρout =

πR
l̄α

ρ(
1− πR

l̄α

)
x2 + πR

l̄α

. (9)

Noting that n ≡ nin − nout is the rate of change of the average number of active particles
inside the swarmed cluster, one can determine the dynamical behaviors of the model in
terms of r. The average r (which we call r∗) is the fixed point of the dynamical behavior
of n, i.e., n(r∗) = 0. The average size of the swarmed clusters, indicated by r∗, is used to
determine the stability of each phase for a given value of α.

Figure 5. Schematic representation of the mean field method. (a) A static swarmed cluster (the
yellow area shows), where r is its average radius, and the red and blue rings indicate the number
of particles entering nin and leaving nout the cluster, respectively. (b) The coherent movement of
the swarmed cluster in the preferred direction 〈θ〉. The green bar moves from y′ = −r to y′ = r
running over the area inside the swarmed cluster. The active particles with Levy flights in the
range [l̄α − (r + y′), l̄α + (r− y′)] remain inside the swarmed cluster if the average radius r remains
approximately unchanged during the process. The number of such particles is N − nout, where N is
the number of particles inside the cluster in the previous step.

The relationship between the average size of the swarmed clusters and the parameter
α is presented in Figure 6. The figure shows that as α increases, the disordered phase
becomes more stable.
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Figure 6. r∗ in terms of α based on the mean field results.

To make connection between r∗ and ηc, we first note that r∗ → 0 ⇒ ηc → 0 and
r∗ → ∞⇒ ηc → ∞. Therefore, we expect that ηc is a decreasing function of α, which agrees
with the simulation results. As pointed out in [52] for a standard Vicsek model with large
densities, the system may percolate and form a huge cluster. This happens when r∗ → ∞
in our MF arguments. For the percolation probability, we should seek the conditions that
lead to r∗ → ∞, or equivalently r∗/L→ 1. In our model, the probability of percolation is
greater for the smaller α values. Given that in this limit, the fluctuations are much greater
than for large α values (because of the criticality of the system at this limit), it is consistent
with the percolation theory which tells us that at the percolation threshold, that fluctuations
are maximal. In the inset of Figure 6, we show the relation between ηc and r∗, which is
monotonic increasing function. If one fits this relation using a power-law function, the
exponent would be ≈ 0.07, although the range of the quantities are too small to deduce a
power-law form (it commonly should be more than one decade).

5. Geometrical Observables

In addition to local characteristics, systems undergoing continuous phase transitions
display global geometric features, which have been the subject of numerous analytical
and simulation studies. This characterization can reveal previously hidden aspects of the
models that are not apparent with only local observables. Section 5.1 focuses on the fractal
analysis of the density of active particles at the transition point. In Section 5.2, the critical
loop ensemble (CLE) of the iso-density loops on the system is analyzed.

5.1. Density Fractal Analysis

We employ the fractal analysis method for the density configurations [53] that we
obtain at the transition points. The density configurations are first converted into black-
and-white images, after which the white pixels are statistically analyzed; see Figure 1. The
system is meshed using boxes of a specific size linear size δ, and the statistics of the filling
fraction of each box is calculated. A pixel is considered white or occupied if the density of
active particles at that site ρ is greater than the spatial average of density ρ̄ ≡ N−1

pixels ∑i ρi

over that sample, where Npixels is the total number of pixels in the system. The filling

fraction of the ith box is µi ≡ Ni(δ)
Npixels

, where Ni(δ) is the number of white pixels in the ith
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box [54,55]. Note that ∑Nbox
i=1 Ni = Npixels, where Nbox is the total number of boxes. If we

attribute a local mass for ith box as mi(δ) ≡ 1− δNi(δ),0 and a total mass to the cluster as
M(δ) ≡ ∑i mi(δ), where δm,n is a Kronecker delta, then the box counting fractal dimension
is obtained as

D f ≡ − lim
δ→0

log M(δ)

log δ
. (10)

In a multifractal system, this exponent depends on the scale that we are considering
or changes from region to region. A unified standard theory called multifractal analysis
was previously developed, which employs a generalized partition function that yields a
spectrum of exponents, including the fractal, information, and correlation dimensions [53].
This q-generalized partition function is related to the qth moment of the fluctuations of µi,
and is defined as

Zq(δ) = ∑
i
[µi(δ)]

q, (11)

where q is a moment. For scale-invariant systems, Zq scales with δ in a power-law form
with the exponent γq, but the exponent may not be a unique number in all scales:

Zq(δ) ∝ δγq , so that γq = lim
δ→0

log Zq(δ)

log δ
. (12)

The generalized q-dimension is then defined as

Dq ≡
γq

q− 1
, (13)

so that D f = limq→0 Dq. Note that if one interprets µi as a probability associated with a
small segment (δ) of the system, then Dq plays the role of a normalized q-Renyi entropy
(Req(δ)) in the thermodynamic limit δ→ 0

Req(δ) ≡
1

1− q
log ∑

i
[µi(δ)]

q, (14)

so that

Dq = − lim
δ→0

Req(δ)

log δ
. (15)

Therefore, the mass fractal dimension of samples is related to q = 0 Renyi entropy

Req=0(δ)
∣∣
δ→0 = −D f log δ. (16)

It is worth noting that the hypothesis of scale invariance, as described in Equation (12),
has led to the fact that Renyi entropy is proportional to log δ and not δd (d = 2 in our
case) as expected for the ordinary systems. This serves as an important characteristic of
the scale-invariant systems, for which the system is not extensive [56]. The information
dimension associated with the Shannon entropy is obtained in the limit q→ 1

SH(δ) ≡ −∑
i

µi log µi, (17)

the fact that relates it to D1

D1 ≡ lim
δ→0

∑i µi(δ) log µi(δ)

log δ
= lim

q→1
Dq, (18)

so that
SH(δ)|δ→0 = −D1 log δ. (19)
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Finally the correlation dimension is defined as

C ≡ lim
δ→0

log C(δ)
log δ

, (20)

where
C(δ) ≡ 1

N2
pixels

∑
k 6=k′

Θ(δ− |Rk −Rk′ |), (21)

where Rk is the position of the kth white pixel (not box), and Θ is a step function. It is
shown that [54]

C = D2. (22)

We generated 103 configurations (density snapshots) at the transition points to investi-
gate the anomalous dimensions. Figure 7a shows log Zq(δ) in terms of log(δ) for α = 1.5,
and the inset shows γq in terms of q, which is well described by a linear function. The
numerical values for the dimensions are reported in the inset of Figure 7b. For the small
α values, the exponent remains constant and stable across various α values. Interestingly,
the mass fractal dimensions are lower than one, which is generally possible for the fractals
with fractional filling boxes. However, as α approaches two, power-law fittings fail to fit,
and the resulting exponents deviate from the others. This is not surprising since, at these
points, the system does not display a fractal structure.

Figure 7. (a) log Zq in terms of log δ for q ∈ [0, 30] in increment 2 for α = 1.5 (from the top to the
bottom q decreases), the slope of which is γ(q) (inset). (b) The fractal dimension (D f ), the information
dimension (D1) and the correlation dimension D2 in terms of α.

5.2. Contour Line Analysis

The critical (conformal) loop ensemble (CLE) theory enabled another type of classifi-
cation of two-dimensional (2D) critical models based on their global geometrical proper-
ties [57,58]. When considering this approach, the focus is on random curves that can be
transformed into dynamic stochastic paths, or exploration processes, within a connected
domain in the plane. This idea was originally suggested by Loewner and is known as
stochastic Loewner evolution (SLE) [59,60], which is now widely recognized as a means of
characterizing the interfaces of two-dimensional statistical models using growth processes.
The method can classify these interfaces into one-parameter classes, with the diffusivity
parameter κ serving as the representative parameter, called SLEκ [59,60]. Many other expo-
nents are related to κ, such as the fractal dimension of level lines or interfaces, which is [61]
d f = 1 + κ

2 (these extended objects are fractal paths, or sometimes loops). As another exam-

ple for the Potts models, it is shown that ν(κ) = 2
3(2−κ̄)

, γ(κ) = 4+3κ̄2

6κ̄(2−κ̄)
and β(κ) = 3κ̄−2

12κ̄ ,

where κ̄ ≡ 1/κ is the dual of κ, which is given by the equation
√

Q = −2 cos(π/κ̄) such
that, for example, κ̄ = 4

3 for Q = 2 [62].
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To investigate this, we start with the fractal dimension of loops (dloop
f ) for a single

connected cluster, which is defined as the scaling exponent between the loop length l
and the loop gyration radius r. The latter is defined for a closed path {~r1,~r2, . . . ,~rl} as
r2 ≡ 1

l ∑l
k=1|~rk −~rcom|2, where~rcom ≡ 1

l ∑l
k=1~rk is the loop center-of-mass. dloop

f is then de-
fined by the relation 〈log(l)〉 = d f 〈log(r)〉+ cont., where 〈〉 denotes the ensemble average.
We apply the Hoshen–Kopelman algorithm [63] to identify the connected components of
the clusters. This algorithm involves coloring the entire cluster and assigning different
colors to separate clusters while traversing the sample. We analyze these connected clusters
by measuring their external boundaries with length l, as well as their gyration radius r and
mass, which we denote as sm. The scale-invariant properties of the distribution function
of sm, l, and r are also evident (excluding finite size effects), with P(x) ∝ x−τx . Here, τx
represents the corresponding scaling exponent.

We consider clusters that are associated with the white-and-black density pattern.
The scaling hypothesis in the transition points is supported by the findings presented in
Figure 8a,b. It should be noted that when the value of α approaches two, the system loses
its scale-invariance property and also becomes anisotropic, indicating that the critical or
scaling exponents cannot be considered dependable in this range. Given the system and
the associated exponents, the fractal dimension dloop

f is observed to remain constant at
approximately 1.40 for all values of α, indicating its robustness. This exponent is associated
with κ = 0.8 (in the case of conformal invariance). However, the scaling exponents τx
(x ≡ sm, l, r) exhibit changes as α varies. This is the first time in this study that we see
the set of exponents change as a function of α, suggesting that a range of systems can be
visited within this interval of α. It would be intriguing to compare the results with the
ones for the geometric and Fortuin–Kasteleyn (FK) clusters of the critical Q = 2 Potts
(Ising) model, the diffusivity parameters, which are κG = 3

4 and κFK ≡ κ̄G = 1/κG = 4
3 ,

respectively [62]. It also was previously shown that τ
Ising
r ≈ 3.4, and τ

Ising
l = d

D f
+ 1 ≈ 2.5,

and also dGeometrical
f = 1 + 3

8 = 1.375 [64]. The exponents that we found for our model for
small α values are in agreement with the exponents explored above. By setting κ = 0.8
in our model, we obtain d f (κ) = 1.4, ν(κ) ≈ 0.9, γ(κ) ≈ 1.55 and β(κ) ≈ 0.12. These
values are consistent with our simulation results, except for the β exponent, which shows
a discrepancy. This suggests that the interfaces of our model do not exhibit conformal
invariance. Hence, we conclude that our model is self-similar for sufficiently small α values,
and exhibits some similarity to the Q = 2 Potts model but is not a perfect fit for this model.

Figure 8. (a) log l in terms of log r for α = 1.5, the slope of which is dloop
f . Lower inset: the distribution

of the gyration radius r for α = 1.5. Top inset: dloop
f and τr/2 in terms of α. (b) The distribution of the

loop length (x = l) and submass (x = sm). Top (Down) inset shows τsm (τl) in terms of α.
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6. Concluding Remarks

In this paper, we studied a super-diffusive variant of the Vicsek model by introducing
scale-free (Levy) stochasticity to the flights taken by the active particles during each time
step. As a result of this modification, the transition, which is of the first order for the
conventional Vicsek model, shows similarities with second-order phase transitions for small
α values. Since we observed some features of first-order phase transitions, we denote this
regime as weakly second-order phase transitions. In contrast, for α values around two, our
model displays first-order phase transitions, but like the Vicsek model, it also exhibits some
characteristics of scale invariance. The latter led Vicsek et al. to incorrectly conclude that
their model was of the second order and calculate “fictitious exponents” [11]. This occurs
when two peaks of p(φ) are in close proximity and difficult to distinguish as shown in the
right inset of Figure 2a. Since the values of ηc and the “fictitious exponents” for our model
(for α values close to two) are similar to those of the ordinary Vicsek model, we can infer that
our model exhibits the same characteristics as the ordinary Vicsek model at the transition
point for α values close to two. Additionally, for α ≥ 2, the α-stable Levy systems are
unstable towards a fixed point that is characterized by a Gaussian distribution function [44],
indicating that perturbing the ordinary Vicsek model with Gaussian-distributed flights does
not alter the fundamental properties of the Vicsek model, and is therefore an “irrelevant
perturbation”, while for the small α values, it is similar to second-order phase transitions
and the corresponding perturbation is relevant. We observe a crossover from first-order
phase transition (large α values) to weakly second-order transitions (small α values).

We developed a mean field theory for our model, which successfully describes why
the disordered phase becomes more stable as α increases. The geometrical properties of
the model at the transition points were also investigated. We found a series of anomalous
dimensions, including the mass dimension, the information dimension and the correlation
dimension. Our critical loop ensemble study shows that this system has similarities to the
Q = 2 Pottes (Ising) model, while the β exponent does not match.
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Appendix A. Crossover to Continuous Transition

In this section, we elaborate on the crossover between first- and second-order transition
regimes. In Figure A1, the alterations in the Binder cumulant and the probability density
function (PDF) are illustrated as α changes. For the largest α value, the Binder cumulant
drops sharply at the transition point to a minimal value as a function of L, signifying the
first-order transition. As α decreases, the depth of this drop also decreases, indicating a
crossover to a continuous transition. The same trend is apparent in the PDF (the right
figure). When α is the largest, the PDF exhibits a well-defined bi-modal distribution, but as
α decreases, this bi-modality becomes less distinct.
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Figure A1. (a) Binder cumulant in terms of η and (b) the PDF for φ for α = 0.8, 1, 1.5 and 1.95.

In Figure A2 we represent the results for the dilute phase, i.e., small density regime.
We see that in this case, we observe the same results as ρ = 2, i.e., the order–disorder
transition which takes place at smaller η values.

Figure A2. φ in terms of η (main) and the corresponding data collapse analysis (inset) in the
low density limit ρ = 0.3 and α = 1.5. The data collapse analysis shows that ηc = 2.098± 0.01,
β = 0.38± 0.1, and ν = 0.9± 0.1

Appendix B. Mean Field Theory

In this appendix, we describe some details of the mean field theory. As stated in
the text,

nin(r) =
πρout

2

∫ lmax+r

r+ε
r′′P(l > r′′ − r)dr′′

=
πρout

2

∫ lmax

ε
(r + v)P(l > v)dv

(A1)

where
P(l > r) ≡

∫ ∞

r
p(l)dl =

A
α

(
r−α − l−α

max
)
. (A2)

Based on this, we calculate the number of particles that leave this area. For determining
nout, we note that the required accumulated probability is given this time by
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P
(
l̄α − (r + y′) < l < l̄α + (r− y′)

)
= A

∫ l̄α+(r−y′)

max{l̄α−(r+y′),ε}
l−α−1dl =

A
α

[(
max

{
l̄α − (r + y′), ε

})−α −
(
l̄α + (r− y′)

)−α
]
. (A3)

Equation (8) is obtained by inserting these equations into Equations (6) and (7). For
the analysis of the average r, we need to determine the difference between nin and nout. Let
n be such a quantity

n ≡ nin − nout (A4)

which counts the rate of change of the average number of active particles inside the
swarmed cluster. Then, one can determine the dynamical behaviors of the model in terms
of r by studying n. To be more precise, the average r (which we call r∗) is the fixed point of
the dynamical behavior of n, i.e., n(r∗) = 0.

Figure A3. ρin (blue line) and ρout (orange line) in terms of r for lmax = 100 for (a) α = 0.8, (b) α = 1.01,
(c) α = 1.25, (d) α = 1.5, (e) α = 1.75, (f) α = 1.95.

In Figure A3, we plot ρin and ρout for α = 0.8, α = 1.01, α = 1.25, α = 1.5, α = 1.75,
α = 1.95. The graphs for nin (blue line) and nout (orange line) shown are represented in
terms of r and α in Figure A4. r∗ is the point at which these two graphs meet, i.e., the fixed
point of the dynamics. The behavior of r∗ is of central importance in this analysis since the
average size of the swarmed clusters shows which phase is stable in which α.
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Figure A4. nin (blue line) and nout (orange line) in terms of r for lmax = 100 for the coherent
movement, for (a) α = 0.8, (b) α = 1.01, (c) α = 1.25, (d) α = 1.5, (e) α = 1.75, (f) α = 1.95.

n is shown in Figure A5 and the corresponding r∗. The resulting graph is Figure 6.

Figure A5. n (defined in Equation (A4)) in terms of r for lmax = 100 for various α values. r∗ has been
defined as the point n(r∗) = 0 with bold circles with the same color as the main graph (r∗ decreases
as α increases).

Appendix C. Similarities with Q-State Potts Model

This section provides a description of the Q-state Potts model as a framework for
second-order transitions. The model exhibits the tricritical point at Qtrc = 4, above (under)
which the ordered–disordered transition is of the first (second) order. Its relation to the other
models is well known; the examples are the O(n) model [62], Coulomb gas [62,65,66], eight
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vertex model [67], Schramm–Loewner evolution [62], XY model [68–70], and conformal
field theories [66]. Given that our fractal dimension Dloop

f ≈ 1.4 for α < αTcr is consistent
with the fractal dimension of the external perimeter of the geometrical clusters of the Ising
(DIsing

f = 11
8 ), we explore its properties in this section, i.e., the Fortuin–Kasteleyn (FK)

clusters. To this end, suppose that the distribution of clusters with m sites is given by P(m)
so that

P(m) ∝ m−τ exp (−ϑ m) (A5)

where τ is its exponent and
ϑ (T − Tc)

−σ (A6)

is the decay rate which diverges as T → Tc (the critical order–disorder transition tempera-
ture), and σ is its corresponding exponent. Then the standard exponents of the transition
are given in terms of τ and σ. Importantly, [62]

αQ = 2− τ − 1
σ

(A7)

is the “heat capacity” exponent, which is zero for the Ising (Q = 2) model. We do not have
this exponent in our model. The two other exponents that we calculated in our model are β
(the order parameter exponent) and γ (the fluctuations exponent). The relation between
these two exponents and τ and σ is

β =
τ − 2

σ
and γ =

3− τ

σ
. (A8)

Additionally, the exponent ν (noise renormalization exponent) is given as follows:

ν =
τ − 1

dσ
=

1
d
(2− αQ). (A9)

where d is the dimension of space (here is two). This is the first hyper-scaling relation:

αQ + dν = 2 (A10)

The other two exponents (not calculated in our project) are the Fisher exponent and mass-
fractal dimension, which are, respectively,

ηFisher − 2 =
d(τ − 3)

τ − 1
and DF =

d
τ − 1

. (A11)

We also have the following hyperscaling relation between β, γ and ν:

νd = γ + 2β. (A12)

All of these exponents tell us that 2 < τ < 3. Table A1 shows the exponents for the case
Q = 2 and our model.
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Table A1. The critical exponents of the Q-state Potts model in terms of Q up to Q = 4. We see the best
similarity with Q = 2, i.e., the Ising model. The effective diffusivity parameter κ is reported in the
last column.

σ τ αQ β γ ηFisher ν D f κFK

our model 0.527 2.21 − 0.405 1.5–1.6 − 1.2 − ≈1.3

Q = 0 0.0075 2.001 − 0.166 − 0.004 − 1.997 1.99

Q = 1 0.3956 2.054 −0.666 0.1388 2.388 0.208 1.333 1.8958 3
2

Q = 2 (Ising) 0.533 2.066 0 0.125 1.75 0.25 1 1.875 4
3

Q = 3 0.6428 2.07 0.333 0.111 1.444 0.266 0.833 1.866 6
5

Q = 4 0.8 2.066 0.666 0.083 1.16 0.25 0.666 1.875 1

In this table, we see that the best similarity is obtained for Q = 2, which is the critical
Ising model. The only difference is concerning the β exponent, which is almost three times
bigger than the one for the Ising model. The corresponding diffusivity parameter κ in the
SLE theory is given in terms of the basic exponents σ and τ as follows:

σ =
12κ̄(2− κ̄)

3κ̄2 + 8κ̄ + 4
, τ =

3κ̄2 + 24κ̄ + 4
3κ̄2 + 8κ̄ + 4

. (A13)

It is more convenient to represent these exponents in terms of β and γ

γ =
4 + 3κ̄2

6κ̄(2− κ̄)
, β =

3κ̄ − 2
12κ̄

, (A14)

where κ̄ ≡ 1/κ as described in the main text.
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